Problem Set \#1

Economics 240B

Spring 2010
Due February 10

Turn in (correct) answers to the following exercises from An Introduction to Classical Econometric Theory, by Paul A. Ruud:

Chapter 13: Exercises 13.5, 13.6, 13.9, 13.11, 13.12.
Chapter 25: Exercises 25.11, 25.13.

Additional Questions:

1. Suppose the coefficients $\beta=\left(\beta_{1}, \beta_{2}\right)^{\prime}$ in the linear model $y=\mathbf{X} \beta+\varepsilon$ are estimated by classical least squares, where it is assumed that the errors ε are independent of the matrix \mathbf{X} of regressors with scalar covariance matrix $\mathbf{V}(\varepsilon)=\mathbf{V}(\varepsilon \mid \mathbf{X})=\boldsymbol{\sigma}^{2} \mathbf{I}$. An analysis of $N=347$ obervations yields

$$
\widehat{\beta}=\binom{0.25}{-0.25}, \quad s^{2}=0.1, \quad \mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cc}
40 & 10 \\
10 & 5
\end{array}\right]
$$

Construct an approximate 95% confidence interval for $\gamma \equiv \beta_{1} / \beta_{2}$, under the (possibly heroic) assumption that the sample size is large enough for the usual limit theorems and linear approximations to be applicable. Is $\gamma_{0}=0$ in this interval?
2. Consider the linear regression model

$$
y=\beta x+\alpha z+u \text {, }
$$

where β and α are unknown scalar parameters, x and z are n-dimensional vectors of (jointly) i.i.d. random variables, and u is an n-dimensional vector of unobservable i.i.d. random variables ("error terms") with zero mean and unit variance which is independent of x and z. Suppose we are given a preliminary estimator $\hat{\alpha}$ of α that is independent of u and has the asymptotic distribution

$$
\sqrt{n}(\hat{\alpha}-\alpha) \xrightarrow{d} \mathcal{N}(0,1) .
$$

Define a "second stage" estimator $\tilde{\beta}$ of β as

$$
\tilde{\beta} \equiv\left(x^{\prime} x\right)^{-1} x^{\prime}(y-\hat{\alpha} z) .
$$

Assuming plim $n^{-1} x^{\prime} x \equiv c \neq 0$ and $\operatorname{plim} n^{-1} x^{\prime} z \equiv d \neq 0$ exist, and all random variables have finite fourth moments, obtain the asymptotic distribution of $\tilde{\beta}$.

