Final Midterm Exam

Economics 241A

Spring 2004
May 10, 2004
Instructions: This is a 30 point exam, with weights given for each question; all subsections of each question have equal weight. The answers must be turned in no later than 25 hours after you pick up the exams, to Jim Powell (669 Evans). You may consult and cite any lecture notes and any of the references on the syllabus; you may not cite any other outside source, and under no circumstances should you discuss the exam with anyone other than the instructor before you submit your answers. Please make your answers elegant - that is, clear, concise, and, above all, correct.

1. (10 points) Suppose a scalar dependent variable $y_{i j}$ for n_{j} individuals in J groups $\left(i=1, \ldots, n_{j}\right.$ and $j=1, \ldots, J)$ is assumed to satisfy a linear model

$$
y_{i j}=x_{j}^{\prime} \beta_{0}+\varepsilon_{i j}
$$

for some group-specific regressors x_{j} with error terms $\varepsilon_{i j}$ that are independent across i and j and satisfy a conditional quantile restriction

$$
\begin{equation*}
\operatorname{Pr}\left\{\varepsilon_{i j}<0 \mid x_{j}\right\}=\pi \tag{*}
\end{equation*}
$$

for some π between zero and one. The $\varepsilon_{i j}$ are assumed to be continuously distributed conditional on x_{j}, with conditional densities that are strictly positive everywhere (with probability one).

Define the $\pi^{\text {th }}$ sample quantile \hat{q}_{j} of $y_{i j}$ for the $j^{\text {th }}$ group as

$$
\hat{q}_{j}=\arg \min _{c} \sum_{i=1}^{n_{j}}\left|\pi-1\left\{y_{i j}<c\right\}\right| \cdot\left|y_{i j}-c\right|, \quad j=1, \ldots, J
$$

Under the assumption that $N=\sum_{j} n_{j} \rightarrow \infty$ with $\lim \left(n_{j} / N\right) \equiv p_{j}>0$ for all j, find the form of the optimal weights for a weighted least-squares regression of \hat{q}_{j} on x_{j}. These weights should be "optimal" in the sense that they minimize the asymptotic covariance matrix of the resulting estimator, which you should derive explicitly using the well-known form of the asymptotic distribution of the sample quantile \hat{q}_{j}. You should also show that this estimator achieves the relevant efficiency bound for the quantile restriction defined by (*).

In addition, propose a "feasible" version of this efficient estimator (using consistent estimators of the optimal weights). Finally, calculate the probability limit of the weighted least-squares estimator of β_{0} when the linear regression function is misspecified - i.e., when

$$
y_{i j}=g\left(x_{j}\right)+\varepsilon_{i j}
$$

with $g(x)$ being nonlinear in x - and discuss the asymptotic behavior of the feasible estimator under this misspecification.
2. (20 points) For the censored regression model with a single (scalar) regressor,

$$
y_{i}=\max \left\{0, x_{i} \cdot \beta_{0}+u_{i}\right\}, \quad i=1, \ldots, N,
$$

suppose that the error terms u_{i} are symmetrically distributed about zero conditionally, not on x_{i}, but on some q-dimensional vector of "instrumental variables" z_{i}. The regressors x_{i} are assumed to be related to the instruments z_{i} by a linear reduced form:

$$
x_{i}=z_{i}^{\prime} \pi_{0}+v_{i},
$$

where the error terms u_{i} and v_{i} are jointly continuous and symmetrically distributed given z_{i} - more precisely, for any fixed numbers α and λ, the linear combination $\alpha u_{i}+\lambda v_{i}$ is symmetric about zero given z_{i}.
A. Consider the following two-stage procedure:first, estimate π_{0} by least squares, then estimate β_{0} by symmetrically-censored least squares (SCLS) estimation, after replacing the "endogenous" regressors x_{i} by their fitted values $\hat{x}_{i} \equiv z_{i}^{\prime} \hat{\pi}$. Thus, the second-stage estimator $\hat{\beta}$ will be the (consistent) solution to the equation

$$
\begin{aligned}
0 & =\frac{1}{N} \sum_{i=1}^{n} 1\left\{\hat{x}_{i} \cdot \hat{\beta}>0\right\} \cdot \min \left\{y_{i}-\hat{x}_{i} \cdot \hat{\beta}, \hat{x}_{i} \cdot \hat{\beta}\right\} \cdot \hat{x}_{i} \\
& \equiv \frac{1}{N} \sum_{i=1}^{n} \psi\left(y_{i}, z_{i}, \hat{\pi}, \hat{\beta}\right),
\end{aligned}
$$

where

$$
\hat{\pi} \equiv\left[\frac{1}{N} \sum_{i=1}^{n} z_{i} z_{i}^{\prime}\right]^{-1}\left[\frac{1}{N} \sum_{i=1}^{n} z_{i} x_{i}^{\prime}\right] .
$$

Assuming this estimator is consistent, and assuming i.i.d. sampling, all needed moments exist, etc., derive the asymptotic distribution of the second-stage estimator $\hat{\beta}$. (Don't check regularity conditions, stochastic equicontinuity, etc. - just do the calculations.)
B. Suppose instead that the reduced form for x_{i}^{\prime} was substituted into the model for the dependent variable y_{i}, and the reduced-form parameter $\delta_{0} \equiv \pi_{0} \beta_{0}$ for the resulting censored regression model for y_{i} and z_{i} was estimated using SCLS. Given the SCLS estimator $\hat{\delta}$ and the least-squares estimator $\hat{\pi}$ from the first stage, propose an efficient way to combine these two estimators to obtain an estimator of β_{0}, and derive its asymptotic distribution. Discuss the sense in which this estimator is efficient. (As above, don't bother listing or verifying regularity conditions.)

