
Final Midterm Exam
(With Sketch of Answers)

Economics 241A
Spring 2004

May 10, 2004

Instructions: This is a 30 point exam, with weights given for each question; all subsections of each
question have equal weight. The answers must be turned in no later than 25 hours after you pick up the
exams, to Jim Powell (669 Evans). You may consult and cite any lecture notes and any of the references on
the syllabus; you may not cite any other outside source, and under no circumstances should you discuss the
exam with anyone other than the instructor before you submit your answers. Please make your answers
elegant �that is, clear, concise, and, above all, correct.

1. (10 points) Suppose a scalar dependent variable yij for nj individuals in J groups (i = 1; :::; nj
and j = 1; :::; J) is assumed to satisfy a linear model

yij = x0j�0 + "ij

for some group-speci�c regressors xj with error terms "ij that are independent across i and j and satisfy
a conditional quantile restriction

Prf"ij < 0jxjg = � ((*))

for some � between zero and one. The "ij are assumed to be continuously distributed conditional on xj ;
with conditional densities that are strictly positive everywhere (with probability one).

De�ne the �th sample quantile q̂j of yij for the jth group as

q̂j = argmin
c

njX
i=1

j� � 1fyij < cgj � jyij � cj; j = 1; :::; J:

Under the assumption that N =
P
j nj ! 1 with lim(nj=N) � pj > 0 for all j; �nd the form of the

optimal weights for a weighted least-squares regression of q̂j on xj . These weights should be �optimal�
in the sense that they minimize the asymptotic covariance matrix of the resulting estimator, which you
should derive explicitly using the well-known form of the asymptotic distribution of the sample quantile q̂j :
You should also show that this estimator achieves the relevant e¢ ciency bound for the quantile restriction
de�ned by (*).

In addition, propose a �feasible�version of this e¢ cient estimator (using consistent estimators of the
optimal weights). Finally, calculate the probability limit of the weighted least-squares estimator of �0 when
the linear regression function is misspeci�ed �i.e., when

yij = g(xj) + "ij

with g(x) being nonlinear in x �and discuss the asymptotic behavior of the feasible estimator under this
misspeci�cation.
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Answer: This weighted least squares estimator is actually a �minimum distance�estimator,

�̂ = argmin
b
(q̂ �Xb)0W0(q̂ �Xb);

where

X �

24 x01
:::
x0J

35 ; q̂ �

24 q̂1
:::
q̂J

35 ; W0 � diag[wj ];

for wj � w(xj) the weights assigned to group j: Since there are only a �nite number J of regressors xj ,
we will derive the asymptotic distribution of �̂ conditional on X; i.e., treating the regressors xij for each
observation as having a degenerate distribution around the cell-speci�c value xj ; with X assumed to be a
�xed (full rank) matrix, as with the classical linear model.

This estimator will behave just like a GMM estimator, replacing the average moment function �m(b)
with q̂ �Xb: Using the same arguments as to derive the asymptotic distribution of GMM, this minimum
distance estimator will have the asymptotic distribution

p
N(�̂ � �0)

d! N (0; [M 0
0W0M0]

�1M 0
0W0V0W0M0[M

0
0W0M0]

�1);

where now

M0 � E

�
@(q �Xb)

@b0

�
b=�0

= X 0

and V0 is the asymptotic covariance matrix of the J sample quantiles,

p
N(q̂ �X�0)

d! N (0; V0):

By the independence of the observations across samples and groups, the matrix V0 is diagonal, with

V0 = diag

�
�(1� �)
pj [fj ]2

�
;

for fj � f(0jxj) the conditional density of "ij in group j; evaluated at the �th quantile (assumed to be
zero), and pj � lim(nj=N) as above.

Obviously the best choice of W0 is
W �
0 = V �10 ;

which yields the asymptotic distribution

p
N(�̂

� � �0)
d! N (0; [M 0

0V
�1
0 M0]

�1) = N (0; [X 0V �10 X]�1)

with the smallest asymptotic covariance matrix. The best weights are thus proportional to pj [fj ]2; i.e.,
weight each cell by the relative fraction of observations in the cell and the square of the cell density at the
pth quantile.

A feasible version of this weighted least-squares estimator would use weights p̂j [f̂j ]2, where p̂j � nj=N

(obviously consistent for pj) and f̂j is some nonparametric (e.g., kernel) estimator of the density of yij in
cell j; evaluated at the relevant quantile q̂j : As long as the density estimator is consistent for each cell, the
feasible version of �̂

�
will have the same asymptotic distribution as its infeasible counterpart, for the same

reason that only the probability limit of the weight matrix matters for GMM estimation.
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The e¢ ciency bound stu¤ is a little tricky. Rewriting the quantile restriction (*) in the usual conditional
moment restriction form

E[(� � 1fyij � x0ij�0g)jxij ] � E[u(yij ; xij ; �0)jxij ] = 0;

the semiparametric e¢ ciency bound for the asymptotic covariance matrix of a regular estimator of �0
under (*) is

B �

24lim 1

N

X
i;j

�
E
�
D(xij)

0[�(xij)]
�1D(xij)

��35�1

=

24X
j

pj
�
D(xj)

0[�(xj)]
�1D(xj)

�35�1

under the assumption that X is nonrandom, with

D(xj) � @

@b0
E[u(yij ; xij ; b)jxij = xj ]b=�0

=
@

@b0
[� � Prfyij � x0ijbjxij = xjg]b=�0

= �f(0jxj)x0j
and

�(xj) � V [u((yij ; xj ; b)jxj ]
= V [(� � 1fyij � x0ij�0g)jxij = xj ]

= �(1� �):

So

B =

24X
j

pj(�fjx0j)0[�(1� �)]�1(�fjx0j)

35�1

=

24X
j

[
pj [fj ]

2

�(1� �)�(1� �)]
�1xjx

0
j

35�1
= [X 0V �10 X]�1;

the asymptotic covariance matrix of ��; which is thus e¢ cient under the moment restriction (�): [Whew!]
To make matters worse, the question also asks about the distribution of the feasible estimator

~� � argmin
b
(q̂ �Xb)0V̂ �1(q̂ �Xb)

=

24X
j

p̂j [f̂j ]
2xjx

0
j

35�1X
j

p̂j [f̂j ]
2xjyj

under misspeci�cation of the linear form of the quantiles, i.e., when p lim q̂ � g 6= X�0 for any �0: In this
case, clearly

~�
p! �0 �

24X
j

pj [fj ]
2xjx

0
j

35�1X
j

pj [fj ]
2xjg(xj);

3



a weighted linear projection of the cell quantiles g(xj) on the xj :
Furthermore, the rate of convergence of the feasible estimator ~� to its probability limit �0 will be

governed by the rate of convergence of the estimated densities ff̂jg to their true values, which is slower
than

p
N: Using suboptimal weights that don�t involve the conditional density estimators (e.g., using just

p̂j as weights) would yield estimators with the usual
p
N convergence rates under misspeci�cation, though

of course these estimators converge to di¤erent weighted linear projection. This point (and much of the
setup and results of this problem) were discussed by Gary Chamberlain (1994), �Quantile Regression,
Censoring and the Structure of Wages,�in Sims, C., ed., Advances in Econometrics: Proceedings from the
Sixth World Congress (Cambridge U. Press), in case you want to follow up on quantile minimum distance
estimation.�

2. (20 points) For the censored regression model with a single (scalar) regressor,

yi = maxf0; xi � �0 + uig; i = 1; :::; N;

suppose that the error terms ui are symmetrically distributed about zero conditionally, not on xi; but on
some q-dimensional vector of �instrumental variables� zi: The regressors xi are assumed to be related to
the instruments zi by a linear reduced form:

xi = z0i�0 + vi;

where the error terms ui and vi are jointly continuous and symmetrically distributed given zi �more
precisely, for any �xed numbers � and �; the linear combination �ui + �vi is symmetric about zero given
zi:

A. Consider the following two-stage procedure:�rst, estimate �0 by least squares, then estimate �0 by
symmetrically-censored least squares (SCLS) estimation, after replacing the �endogenous�regressors
xi by their �tted values x̂i � z0i�̂: Thus, the second-stage estimator �̂ will be the (consistent) solution
to the equation

0 =
1

N

nX
i=1

1fx̂i � �̂ > 0g �minfyi � x̂i � �̂; x̂i � �̂g � x̂i

� 1

N

nX
i=1

 (yi; zi; �̂; �̂);

where

�̂ �
"
1

N

nX
i=1

ziz
0
i

#�1 "
1

N

nX
i=1

zix
0
i

#
:

Assuming this estimator is consistent, and assuming i.i.d. sampling, all needed moments exist, etc.,
derive the asymptotic distribution of the second-stage estimator �̂: (Don�t check regularity conditions,
stochastic equicontinuity, etc. �just do the calculations.)

Answer: The �rst-stage LS estimator �̂ satis�es the standard asymptotic linearity relation

p
N(�̂ � �0) =

1p
N

X
i

viD
�1zi + op(1)

d! N (0; D�1CD�1);
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for

D � E[ziz
0
i];

C = V [vizi] = E[v2i ziz
0
i]:

Writing the second stage estimator �̂ as the solution to

0 = �	(�̂; �̂) � 1

N

nX
i=1

 (yi; zi; �̂; �̂);

we�ll just assume the stochastic equicontinuity condition

p
N
h�
�	(�̂; �̂)� �	(�0; �0)

�
� E

�
�	(�; �)� �	(�0; �0)

�
�=�̂;�=�̂

i
= op(1)

holds. Here

 (yi; zi; �; �) � 1fz0i� � � > 0g �minfmaxf0; xi � �0 + uig � z0i��; z0i��g � z0i�
= 1fz0i� � � > 0g �minfmaxf�z0i��; ui + v0i�0 � z0i(�� � �0�0)g; z0i��g � z0i�

Since

�	(�0; �0) =
1

N

nX
i=1

1fz0i�0 � �0 > 0g �minfyi � z0i�0 � �0; z0i�0 � �0g � z0i�0

=
1

N

nX
i=1

1fz0i�0�0 > 0g �minfmaxfz0i�0�0; ui + v0i�0g; z0i�0�0g � z0i�0;

� 1

N

nX
i=1

1fz0i�0�0 > 0g �minfmaxfz0i�0�0; "ig; z0i�0�0g � z0i�0;

which is an odd function of
"i � ui + v

0
i�0:

Since "i is symmetric about zero by the joint symmetry assumption on ui and vi �it follows that

E
�
�	(�0; �0)

�
= 0 = �	(�̂; �̂):

These equalities, combined with the stochastic equiwhatever condition, yield the relation
p
NE

�
�	(�; �)

�
�=�̂;�=�̂

=
p
N �	(�0; �0) + op(1): ((**))

A Taylor�s series expansion of the left-hand side of this expression yields
p
NE

�
�	(�; �)

�
�=�̂;�=�̂

= J0
p
N(�̂ � �0) +H0

p
N(�̂ � �0) + op(1);

where the (1� q) Jacobian matrix J0 is de�ned as

J0 � @

@�0
E
�
�	(�0; �0)

�
=

@

@�0
E
�
1fz0i�� > 0g �minfmaxf�z0i��; "i � z0i(�� � �0�0)g; z0i��g � z0i�

�
�=�0;�=�0

= �0E
�
1fj"ij < z0i�0�0g

�
z0i�0

�
z0i
�
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and the (1� 1) Hessian �matrix�H0 is

J0 � @

@�
E
�
�	(�0; �0)

�
=

@

@b0
E
�
1fz0i�� > 0g �minfmaxf�z0i��; "i � z0i(�� � �0�0)g; z0i��g � z0i�

�
�=�0;�=�0

= E
�
1f
��ui + v0i�0�� < z0i�0�0g(z0i�0)2

�
:

Assuming H0 6= 0; solving out for
p
N(�̂ � �0) in (**) yields

p
N(�̂ � �0) =

�1
H0

hp
N �	(�0; �0)� J0

p
N(�̂ � �0)

i
+ op(1):

Finally, substituting in the expressions for �	(�0; �0) and
p
N(�̂ � �0) gives

p
N(�̂ � �0) =

1p
N

nX
i=1

�i + op(1)

d! N (0; V ar(�i));

for

�i �  (yi; zi; �0; �0)� J0D�1zi � vi
H0

=
[1fz0i�0�0 > 0g �minfmaxf�z0i�0�0; "ig; z0i�0�0g � z0i�0]� J0D�1zi � vi

H0
:

�:

B. Suppose instead that the reduced form for x0i was substituted into the model for the dependent
variable yi; and the reduced-form parameter �0 � �0�0 for the resulting censored regression model for
yi and zi was estimated using SCLS. Given the SCLS estimator �̂ and the least-squares estimator �̂
from the �rst stage, propose an e¢ cient way to combine these two estimators to obtain an estimator
of �0; and derive its asymptotic distribution. Discuss the sense in which this estimator is e¢ cient.
(As above, don�t bother listing or verifying regularity conditions.)

Answer: Using the relationship �0 � �0�0, we can stack the asymptotic linearity relationships for �̂
and �̂; the solution of

�	(�̂; 1) = 0;

as

p
N

�
�̂ � �0
�̂ � �0�0

�
=

1p
N

nX
i=1

�
viD

�1zi
H�1
0  (yi; zi; �0; 1)

�
+ op(1)

� 1p
N

nX
i=1

�i + op(1)

d! N (0; V0);
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with V0 = V [�i]: Again, a minimum-distance approach to joint estimation of the q+1 structural parameters
�0 and �0 using the 2q �reduced form�estimators �̂ and �̂ will produce �e¢ cient�estimators. The e¢ cient
minimum distance estimators �� and �� are de�ned as�

��

��

�
= argmin

�;�
(�̂0 � �0; �̂0 � ��0)V �10

�
�̂ � �
�̂ � ��

�
;

whose asymptotic distribution will have the �usual�form

p
N

�
�� � �0
�� � �0

�
d! N (0; [M 0

0V
�1
0 M0]

�1):

In this expression, the 2q � (q + 1) matrix M0 will be

M0 �
@

�
�̂ � �0
�̂ � �0�0

�
@(�00; �0)

= �
�

Iq 0
�0 � Iq �0

�
:

This estimator will yield the e¢ cient combination of �̂ and �̂; but will not be globally e¢ cient, since those
reduced-form estimators need not be jointly e¢ cient under the assumption of conditional symmetry.�
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