
Instructions: This is a 20 point exam, with equal weights for each question. The answers
must be turned in no later than 25 hours after you pick up the exams, to Jim Powell (669
Evans). You may consult and cite any lecture notes and any of the references on the syllabus;
you may not cite any other outside source, and under no circumstances should you discuss the
exam with anyone other than the instructor before you submit your answers. Please make your
answers elegant – that is, clear, concise, and, above all, correct.

Suppose a sample of N i.i.d. observations on a scalar dependent variable yi and
p-dimensional vector of (non-constant) regressors xi satifies a linear model

yi  xi
′0   i,

where the slope coefficients 0 are unknown, and the unobservable error term  i is statistically
independent of the regressors xi, with (unknown) marginal density function f that is very
well behaved (i.e., having lots of continuous derivatives, with the level and derivatives of f
being uniformly bounded).

A “rank regression" estimator of the slope coefficient vector 0 is defined to minimize the
sum of absolute deviations of differences in dependent variables yi − yj and corresponding
differences in regression functions xi − xj ′ across all distinct pairs of observations; that is,

̂ ≡ arg min
∈Rp

Sn,

Sn ≡
N
2

−1

∑
i1

N−1

∑
ji1

N

|yi − yj − xi − xj ′|.

1. Give an argument for consistency of ̂ for 0 under the assumptions on the model
given above, using analogous arguments to those for consistency of the LAD estimator of
regression coefficients under a conditional median restriction.

Answer: Since the error terms  i are i.i.d. (and independent of the regressors), the
difference uij ≡  i −  j is symmetrically distributed about zero when i ≠ j, with density
fuu ≡  fu  vfvdv (by the convolution formula). Thus writing Yij ≡ yi − yj and
Xij ≡ xi − xj, the conditional median of Yij given Xij is Xij

′ 0.
First note that ̂ also minimizes S̃n ≡ Sn − Sn0, so, by the U-statistic theorem,

Sn converges to its expectation S̄ ≡ ESn for each  ∈ Rp as long as

E|yi − yj − xi − xj ′| − |yi − yj − xi − xj ′0 |2

is finite. But since



|yi − yj − xi − xj ′| − |yi − yj − xi − xj ′0 |2 ≡ |uij − Xij
′  − 0| − |uij |

2

≤ ‖Xij‖2‖ − 0‖2  ‖xi − xj‖2‖ − 0‖2,

this will be finite as long as xi has bounded second moments. Under this condition, S̃n will
converge pointwise to its expectation, and, since it is a convex function of . consistency will
follow if S̄ is uniquely minimized at the true value 0. This will hold under two regularity
conditions:

(i) The matrix xx  Vxi  1/2  Exi − xjxi − xj ′  1/2  EXijXij
′  is

positive definite (i.e., full rank); and
(ii) The density function of uij   i −  j at zero,

fu0 ≡  fu  vfvdv  fu2du ≡ 0, is positive, i.e., 0  0.
Under these two conditions, uniqueness of 0 as the minimizer of S̄ and the consistency

of ̂ both follow from the same arguments as given for LAD consistency in the "Notes on
Quantile Regression."

2. The approximate first-order condition for the minimization problem defining ̂ is

̂N̂ ≡
N
2

−1

∑
i1

N−1

∑
ji1

N

sgn yi − yj − xi − xj ′̂  xi − xj

≡
N
2

−1

∑
i1

N−1

∑
ji1

N

sgn̂ i − ̂ j  xi − xj

 op
1
N

,

where, as usual,

sgnu ≡ 1u ≥ 0 − 1u ≤ 0

and

̂ i ≡ yi − xi
′̂.

Show that this condition is equivalent to a sample moment condition which sets the sample
covariance of the regressors and the ranks of the residuals to zero (approximately); that is,
show that

1
N ∑

i1

N
R̂i

N  1 −
1
2  xi  op

1
N

,

where



R̂i ≡ ∑
j1

N

1̂ j ≤ ̂ i

is the rank of the ith residual in the sample, with

∑
1

N

R̂i 
N  1

2
 NN  1

2

(ignoring possible ties in the residuals). [You should convert the U-statistic ̂N into the
corresponding V-statistic before starting on the algebra.]

Answer: The U-statistic ̂N can be rewritten as

̃N̂ ≡ 1
NN − 1 ∑

i1

N

∑
j1

N

sgn yi − yj − xi − xj ′̂  xi − xj

≡ 1
NN − 1 ∑

i1

N

∑
j1

N

1̂ i ≥ ̂ j − 1̂ j ≥ ̂ i  xi − xj

 1
NN − 1 ∑

i1

N

∑
j1

N

1̂ i ≥ ̂ jxi  1
NN − 1 ∑

i1

N

∑
j1

N

1̂ j ≥ ̂ jxj

− 1
NN − 1 ∑

i1

N

∑
j1

N

1̂ i ≥ ̂ jxj − 1
NN − 1 ∑

i1

N

∑
j1

N

1̂ j ≥ ̂ ixi.

The first two terms are equal, and can be rewritten as

1
NN − 1 ∑

i1

N

∑
j1

N

1̂ i ≥ ̂ jxi  1
NN − 1 ∑

i1

N

∑
j1

N

1̂ j ≥ ̂ jxj

 N  1
NN − 1 ∑

i1

N
R̂i

N  1  xi.

To get at the third and fourth terms, the identity

1̂ i ≥ ̂ j ≡ 1 − 1̂ j ≥ ̂ j  1̂ i  ̂ j

is useful; with it, those two terms can be written as



1
NN − 1 ∑

i1

N

∑
j1

N

1̂ i ≥ ̂ jxj  1
NN − 1 ∑

i1

N

∑
j1

N

1̂ j ≥ ̂ ixi

 1
NN − 1 ∑

i1

N

∑
j1

N

xi − 1
NN − 1 ∑

i1

N

∑
j1

N

1̂ i ≥ ̂ jxi

 1
NN − 1 ∑

i1

N

∑
j1

N

1̂ j  ̂ ixi

 2
N − 1 ∑

i1

N
1
2  xi −

N  1
NN − 1 ∑

i1

N
R̂i

N  1  xi  op
N

NN − 1

where that last term follows from the usual LAD argument that exploits continuity of the
yi,

∑
i1

N

∑
j1

N

1̂ j  ̂ ixi ≤ max
i
‖xi‖ ∑

i1

N

∑
j1

N

1 yi − xi
′̂  yj − xj

′̂

 max
i
‖xi‖  p w.p. 1

 op N .

Putting all of this stuff together,

̃N̂ ≡
4N  1
NN − 1 ∑

i1

N
R̂i

N  1  xi − 2N
NN − 1 ∑

i1

N
1
2  xi  op

N
NN − 1

 4 1
N ∑

i1

N
R̂i

N  1 −
1
2  xi  op

1
N

 op
1
N

,

which establishes the result.

3. Rewriting the U-process ̂N characterizing the first-order condition as

̂N ≡
N
2

−1

∑
i1

N−1

∑
ji1

N

zi, zj;

(with zi ≡ yi,xi
′ ′), assume (without proof) that the estimator ̂ also solves the approximate

moment condition



̃N̂  op
1
N

,

where ̃N is the projection of the U-process,

̃N ≡ 1
N ∑

i1

N

zi;,

zi; ≡ Ezi, zj;|zi .

Calculate the form of the function , and use this expression to derive the limiting normal
distribution of N ̂ − 0 under the given assumptions. Your expression for the asymptotic
covariance matrix should involve the nuisance parameter

0 ≡ Ef i  fu2du.

[Hint: you will need to use the fact that, if Fu is the c.d.f. of  i, then F i ≡ ui is uniformly
distributed on 0,1.]

Answer: From the usual expansion of first-order conditions for smooth M-estimators,
the asymptotic distribution of ̂ will be

N ̂ − 0
d
→ N0,D0

−1V0D0
′ −1,

where

D0  −E
∂zi,0
∂′

and

V0  Varzi,0.

For this problem, the projection function zi; is

zi; ≡ E1 i  xi − xj ≥  j − 1 i  xi − xj ≤  j  xi − xj| i,xi 

 E2F i  xi − xj − 1  xi − xj| i,xi ,

with  ≡  − 0. So

zi;0  2F i − 1  xi − x

≡ 2Ui − 1  xi − x,

where x ≡ Exj and Ui ≡ F i has a Uniform0,1 distribution with mean 1/2 and variance
1/12, which means



V0  Var2Ui  Varxi

 1
3 xx.

Also,

D0  −E
∂zi,0
∂′

 −E2f i  xi − xjxi − xj ′ 

 −20  2xx,

leading to the explicit expression for the asymptotic distribution of ̂,

N ̂ − 0
d
→ N0, 480

2−1xx
−1.



4. If f̂ is the kernel density estimator of f using the residuals ̂ i, i.e.,

f̂  1
NhN
∑
j1

N

K  − ̂ j

hN
,

with K a smooth, symmetric, nonnegative kernel with bounded derivatives, an estimator of the
nuisance parameter 0 is

̂ ≡ 1
N ∑

i1

N

f̂̂ i.

Show that if hN → 0 and hN
2  N →  as N → , then ̂ is (weakly) consistent for 0. [First

use a mean-value expansion to show that the residuals ̂ i can be replaced by the true error
terms  i, then use analogous bias-variance calculations to those for the kernel density estimator
f̂ itself.]

Answer: To show the residuals can be replace by the true error terms, use the
expansion



̂ ≡ 1
N2hN
∑
i1

N

∑
j1

N

K ̂ i − ̂ j

hN

 1
N2hN
∑
i1

N

∑
j1

N

K  i −  j

hN
 1

N2hN
2 ∑

i1

N

∑
j1

N

K′ ̃ i − ̃ j

hN
 ̂ i − ̂ j −  i −  j

 1
N2hN
∑
i1

N

∑
j1

N

K  i −  j

hN
 op1

≡ ̃  op1,

where the ̃ i are intermediate values, and the third equality follows from the root-N
consistency of ̂ and

1
N2hN

2 ∑
i1

N

∑
j1

N

K′ ̃ i − ̃ j

hN
 ̂ i − ̂ j −  i −  j ≤ 1

hn
2 N

 N ̂ − 0  K1
1

N2 ∑
i1

N

∑
j1

N

‖xi − xj‖

 1
hn

2 N
 Op1,

where K1 is an upper bound for K′.
The infeasible estimator ̃ is asymptotically equivalent to a U-statistic,

̃ ≡ 1
N2hN
∑
i1

N

∑
j1

N

K  i −  j

hN


N
2

−1

∑
i1

N−1

∑
ji1

N
1
hN

K  i −  j

hN
 1

N2hN
∑
i1

N

K0

≡
N
2

−1

∑
i1

N−1

∑
ji1

N

pn i, j  o1,

with

pn i, j ≡ 1
hN

K  i −  j

hN

being the kernel of the U-statistic. To verify consistency of ̃ (and thus of ̂), we first need to
show

E‖pn i, j‖2  oN,

from which it follows that ̃ − E̃
p
→ 0 by the U-statistic theorem, and then to show the bias

term E̃ − 0 also converges to zero as N → . Direct calculation gives



E‖pn i, j‖2  E 1
hN

2 K  i −  j

hN

2

 1
hN
  1

hN
K u − v

h
2
fvfudvdu

 1
hN
 Kz2fz − hufudvdu

≤ 1
hN

K0
2,

where |Ku| ≤ K0. Since it is assumed hN
−1  oN1/4, it follows that ̃ − E̃

p
→ 0. To show

that the bias vanishes as N → , the usual expectation calculations for kernel regression give

E̃   Kufx − hufxdudx

→  Kufxfxdudx

 Kudu  fx2dx

 0

as h → 0 by dominated convergence, because Kudu  1.


