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Unconditional Moment Restrictions and Optimal GMM
Most estimation methods in econometrics can be recast as method-of-moments estimators, where the
p-dimensional parameter of interest g is assumed to satisfy an unconditional moment restriction

Elm(zi,00)] = p(0) = 0 (*)

for some r-dimensional vector of functions m(z;, 8) of the observable data vector z; and possible parameter
value 0 in some parameter space ©. Assuming that g is the unique solution of this population moment
equation (equivalent to identification when only (*) is imposed), a method-of-moments estimator 0 is
defined as a solution (or near-solution) of a sample analogue to (*), replacing the population expectation
by a sample average.

Generally, for 6 to uniquely solve (*), the number of components r of the moment function m(-) must
be at least as large as the number of components p in 6 — that is, » > p, known as the “order condition”
for identification. When 6 is identified and r = p — termed “just identification” — a natural analogue of
the population moment equation for 6y defines the method-of-moment estimator as the solution to the
p-dimensional sample moment equation

()

=S (e ) ()
=1
= ()7

where z1, ..., 2z, are all assumed to satisfy (*). The simplest setting, assumed hereafter, is that {z} is
a random sample (i.e., z is i.i.d), but this is hardly necessary; the {z;} can be dependent and/or have
heterogeneous distributions, provided an “ergodicity” result m () — E[m(0)] can be established.
Examples of estimators in this class include the maximum likelihood estimator (with m(z;, @) the ”score
function,” i.e., derivative of the log density of z; with respect to 0 for an i.i.d. sample) and the classical
least squares estimator (with z; = (y;, «}) and m(z;,0) = (y; — 2,0)z;, the product of the residuals and

regressors). Another example is the instrumental variables estimator for the linear model
yi = wiblo + €4,

where y; and w; € RP are subvectors of z; and the error term ¢; is assumed to be orthogonal to some other
subvector x; € R" of z, i.e.,

E[EZZL‘Z] = E[(yz — wé@o)x,] = 0.

When r = p —i.e., the number of “instrumental variables” x; equals the number of right-hand-side regressors
w; — then the instrumental variables estimator

1< T
0= [E Z;xzw;] -~ z;xiyi
L= L=



is the solution to (**) when m(z;,0) = (y; — w}0)x;.

Returning to the general moment condition (*), if » > p — termed “overidentification” of fy — the system
of equations m(f) = 0 is overdetermined, and in general no solution of this sample analogue to (*) will
exist. In this case, an analogue estimator can be defined to make m(6) “close to zero,” by defining

0 = arg min Sn(0),

where 5,,(0) is a quadratic form in the sample moment function m(6),
Sn(0) = [m(0)] Anm(0),

and A, some non-negative definite, symmetric “weight matrix,” assumed to converge in probability to
some limiting value Ay, i.e.,

An —P Ao.

Here 0 is called a generalized method of moments (GMM) estimator, with large-sample properties that
will depend upon the limiting weight matrix Ag. Examples of possible (nonstochastic) weight matrices are
A, = I, an 7 X r identity matrix — which yields Sy (0) = ||m(6)||* - or
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for which the estimator 0 sets the first p components of m(é) equal to zero. More generally, A, will have
estimated components; once the asymptotic (normal) distribution of 0 is derived for a given value of Ag,
the optimal choice of Ay (to minimize the asymptotic variance) can be determined, and a feasible efficient
estimator can be constructed if this optimal weight matrix can be consistently estimated.

The consistency theory for 0 is standard for extremum estimators: the first step is to demonstrate
uniform consistency of S, (6) to its probability limit

S(0) = [1(0)]" Aopu(0),
that is,
sup |Sp(0) — S(0)| =P 0,
S

and then to establish that the limiting minimand S(6) is uniquely minimized at 6 = 6y, which follows if
AP0y £0  if  6#6q,

where A(l)/ % s any square root of the weight matrix Ag. Establishing both the uniform convergence of the
minimand S, to its limit S and uniqueness of fy as the minimizer of S will require primitive assumptions
on the distribution of z;, the form of the moment function m(-), and the limiting weight matrix Ay which
vary with the particular problem.

Among the standard “regularity conditions” on the moment function m(-) is an assumption that it is
“smooth” (i.e., continuously differentiable) in 0; then, if ; is assumed to be in the interior of the parameter
space O, then with probability approaching one the consistent GMM estimator 0 will satisfy a first-order
condition for minimization of S,




If the derivative of the average moment function m(6) converges uniformly in probability to its expectation
in a neighborhood of 6y (which must be established in the usual way), then consistency of 6 implies that

[am@)] My = [@t(@o)] |

o0’ a0’
This, plus convergence in probability of A, to Ap, means that the first-order condition can be rewritten as
0 = M}y Agm(6) + o,(m(0)).

Inserting the usual Taylor’s series expansion of 7 (f) around the true value 0,

~

m(6) = m(6y) + [3729(7)] (0~ o) + oy (110 — o).
yields
0 = M, m<90>+[8?§,€>] (0 00) + 0p(1l0 — dol})| + 0,(m(9))

= M}Agm(00) + M{AMo(0 — 0o) + 4,

where 7, is a generic remainder term. Assuming it can be verified that

(L)

by the usual methods, the normalized difference between the estimator 0 and the true value 6y has the
asymptotically-linear representation

V(0 — o) = [M} Ao M) "L M} Ag - v/rim(8o) + 0p(1).

But /nm(fp) is a normalized sample average of mean-zero, i.i.d. random vectors m(z;,6p), so by the
Lindeberg-Levy central limit theorem,

Vim(0o) = N(0, V),
where
Vo = Var[m(z;,060)]
E[m(zi, 00)m(zi, 00)'],
and thus
V(0 — 09) —% N(0, [M{ Ao Mo) ~ M AgVo Ao Mo[ M AgMo] 1),

which has a rather ungainly looking expression for the asymptotic covariance matrix.

By definition, an efficient choice of limiting weight matrix Ay will minimize the asymptotic covariance
matrix of 0 (in a positive semi-definite sense). The same proof as for the Gauss-Markov theorem can be
used to show that this product of matrices will be minimized by choosing Ay to make the “middle matrix”
M{AoVoAgMy equal to an “outside matrix” MjAoMy being inverted. That is,

[M{ Ao Mo~ M{ AoV Ao Mo [M{ Ao Mo ™t > [M{Vy *Mo] ™,



where the inequality means the difference in the two matrices is positive semi-definite; equality is obviously
achieved if Ag is chosen as

Ay =Vt = [Var[m(z;,00)]] ",

up to a (positive) constant of proportionality.

A feasible version of the optimal GMM estimator requires a consistent estimator of the covariance
matrix Vp. This can be obtained in two steps: first, by calculation of a non-optimal estimator 0 using
an arbitrary sequence A, for which 0 is consistent (e.g., Ap = I), and then by construction of a sample
analogue to Vg,
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The resulting optimal GMM estimator 0" will have asymptotic distribution
V(0" — o) — N0, [MyVy ' Mol ),

and its asymptotic covariance matrix is consistently estimated by [M'V~1M]~1, where

A~k

1 G Om(z,0)
M=- _—
n ; a0’

Inference on 0y can then be based upon the usual large-sample normal theory.
For the example of the linear model with endogenous regressors,

yi = wifo+ei
0 = E[EZZL‘Z] = E[(yz — wé@o)xi],

the relevant matrices for the asymptotic distribution of 0" are

My, = E[a[(yi—azgeo)xi]]

= F [xzw;]
and

Vo = Var[(y; — wifo)x;]
= El(y; — wjbo)*wy].

The first step in efficient estimation of 0y might be based upon the (inefficient) two-stage least squares
(2SLS) estimator
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which is a GMM estimator using m(z;, 0) = (y; — w}0)x;,

1 n
M = [— Z:pzw;]
n =1
and

A, =

-1
n
1 E /
n =1

With this preliminary, y/n-consistent estimator of 6, the efficient weight matrix is consistently estimated
as

and the efficient GMM estimator is

Ak A, A ~

0" = (M'VIM)TIMYV

1 n
Ls y] ,
=1
which has the approximate normal distribution
LA

0N (90, %(M'V—lM)—1> .

If the error terms ¢; = y; — w}fp happen to be homoskedastic,

Varlgilr;) = o%(x)
a3,
then
Vo = Elelzl]
— 2B
= O‘% plim A,,

and the 2SLS estimator 8 would be asymptotically efficient, and asymptotically equivalent to the efficient
Ak
GMM estimator 6 .

Conditional Moment Restrictions and Efficient Instrumental Variables
Now consider the case when a stronger conditional moment restriction

0 = Elu(zi,00)|z;] = Flug|x],

where u(z;,0) is some g-dimensional vector of known functions of the (i.i.d.) random vector z; and 6 €
© C RP. (Since E[u;|z;] is a random variable, we interpret such equalities as holding with probability one,
here and throughout.) Such moment restrictions can sometimes be derived as consequences of expected
utility maximization; more generally, they are often imposed on additive error terms in structural models.
For instance, for the linear equation

yi = wifo + &i,



a common assumption is that the error terms ¢; have conditional mean zero given the instrumental variables
L,

E[EZ|J}1] = 0,

in which case the moment function u(-) is just the residual function u(z;, ) = y; — w0, with u(z;, 0p) = ;.
Here ¢ = 1, which is generally less than p, the number of components of 6y to be estimated.
Assuming the function u(-) is bounded above (on ©) by some square-integrable function, i.e.,

Slép ||u(zi7 9)“ < b(zi)’ E[b(zl)]2 < 0,

it follows (by iterated expectations) that an unconditional moment restriction

0 = FE[h(zi)u(z,0)] (%)
= E[m(zi, 00)]

holds, where h(.) is any r x ¢ matrix of functions of x; with
Ell[n(z:)[|Y] = Eltr{h(z:)[h(z:)]'}] < cc.

We can think of each column of h(x;) as a vector of “instrumental variables” for the corresponding com-
ponent of u(z;,6p), whose products are added together to obtain the (unconditional) moment function
m(-). While the dimension ¢ of the conditional moment function u(-) needs not be as large as the num-
ber of parameters p, the number of rows r of the matrix of instrumental variables h(x;) must be no
smaller than p if estimation of 6y is to be based upon the implied unconditional moment restriction
0 = E[m(z;,00)] = E[h(z;)u(zi,00)]-

For a given choice of instrument matrix h(x;), the theory for unconditional moment restrictions above
can be applied to determine the form and asymptotic distribution of the optimal GMM estimator 0" =
é*(h); that is, the optimal estimator is

A~k

= my%mmwwvﬁmw)

= arg Hgn[m(@]"%lmw%

where now
m(0) = % > h(wi)u(z,0)
=1
and
plimV = V,
= Var[h(z;)u(z,00)]
= Elh(x;)u(z,00)[u(z,00)] [P(2)]']
= Elh(x)X(x)[h(2:)]],
for

Y(zi) = Var(u(z,0o)|z:)
= Elu(z;,00)[u(zi, 00)]'| 4]



The asymptotic distribution of 0" is thus
V(0" — Bo) = N(0, [MgVy ' Mo) ),
where

My = FE [M}

o0’
- B[]

In terms of the function h(z;), the asymptotic covariance matrix of 0 is

B ] L R e S ) [hm)%})l .

To find the best choice of instrumental variable matrix h(x;) across all possible square-integrable functions
of the conditioning variables z;, we would minimize this matrix over h(z;). By the same Gauss-Markov-
type argument as for the optimal GMM estimator, the best choice h*(z;) will equate the “inner matrix”
Elh(x;)%(x;)[h(z;)]] with the “outer matrix” E [h(z;)du(z;,00)/00'] (and its transpose). By inspection,
this happens when

we) = B[] s

= D(x) - [Z(x)]
So in this case the asymptotic covariance matrix reduces to

P (E h@)%] Bl () S [B* @))]) L B [th] ﬂ i

— [E (D[S D)

- (2 e

This formula looks very similar to the form of the asymptotic covariance matrix [MjVy ' Mp)~* for GMM
estimation with unconditional moment restrictions, except that the expected derivative and variance
matrices My and Vp are replaced by their “conditional” analogues D(x;) and X(z;), and the product
D(z;) [2(;)] "' D(x;) is averaged over x; before being inverted.

Again returning to the example of the linear model with endogenous regressors,

-1

yi = wibp+ e,
0 = Elgzi) = E[(yi — wibo)zi],

here g =1,

D) = F [—‘9“%’,90) m]



and

E(xz) = 0'2($i)
= Var((yi — wibo)|zi)
= Var(ez;).
In the special case with w; = x; (i.e., all regressors are exogenous), D(x;) = «, and the optimal sample

moment condition for the restriction E[e;|z;] = 0 is the first-order condition for weighted LS estimation,
with weights 1/02(z;) inversely proportional to the conditional variance of the errors.

Global Optimality of GMM



