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Unconditional Moment Restrictions and Optimal GMM
Most estimation methods in econometrics can be recast as method-of-moments estimators, where the

p-dimensional parameter of interest θ0 is assumed to satisfy an unconditional moment restriction

E[m(zi, θ0)] ≡ µ(θ) = 0 (*)

for some r-dimensional vector of functions m(zi, θ) of the observable data vector zi and possible parameter
value θ in some parameter space Θ. Assuming that θ0 is the unique solution of this population moment
equation (equivalent to identification when only (*) is imposed), a method-of-moments estimator θ̂ is
defined as a solution (or near-solution) of a sample analogue to (*), replacing the population expectation
by a sample average.

Generally, for θ0 to uniquely solve (*), the number of components r of the moment function m(·) must
be at least as large as the number of components p in θ — that is, r ≥ p, known as the “order condition”
for identification. When θ0 is identified and r = p — termed “just identification” — a natural analogue of
the population moment equation for θ0 defines the method-of-moment estimator as the solution to the
p-dimensional sample moment equation

m̄(θ̂) ≡ 1

n

nX
ι=1

m(zi, θ̂) (**)

= 0,

where z1, ..., zn are all assumed to satisfy (*). The simplest setting, assumed hereafter, is that {zi} is
a random sample (i.e., zi is i.i.d), but this is hardly necessary; the {zi} can be dependent and/or have
heterogeneous distributions, provided an “ergodicity” result m̄ (θ)−E[m̄(θ)] can be established.

Examples of estimators in this class include the maximum likelihood estimator (with m(zi, θ) the ”score
function,” i.e., derivative of the log density of zi with respect to θ for an i.i.d. sample) and the classical
least squares estimator (with zi ≡ (yi, x0i)0 and m(zi, θ) = (yi − x0iθ)xi, the product of the residuals and
regressors). Another example is the instrumental variables estimator for the linear model

yi = w
0
iθ0 + εi,

where yi and wi ∈ Rp are subvectors of zi and the error term εi is assumed to be orthogonal to some other
subvector xi ∈ Rr of zi, i.e.,

E[εixi] = E[(yi − w0iθ0)xi] = 0.
When r = p — i.e., the number of “instrumental variables” xi equals the number of right-hand-side regressors
wi — then the instrumental variables estimator

θ̂ =

"
1

n

nX
ι=1

xiw
0
i

#−1
1

n

nX
ι=1

xiyi

1



is the solution to (**) when m(zi, θ) = (yi − w0iθ)xi.
Returning to the general moment condition (*), if r > p — termed “overidentification” of θ0 — the system

of equations m̄(θ) = 0 is overdetermined, and in general no solution of this sample analogue to (*) will
exist. In this case, an analogue estimator can be defined to make m̄(θ) “close to zero,” by defining

θ̂ = argmin
Θ
Sn(θ),

where Sn(θ) is a quadratic form in the sample moment function m̄(θ),

Sn(θ) ≡ [m̄(θ)]0Anm̄(θ),
and An some non-negative definite, symmetric “weight matrix,” assumed to converge in probability to
some limiting value A0, i.e.,

An →p A0.

Here θ̂ is called a generalized method of moments (GMM) estimator, with large-sample properties that
will depend upon the limiting weight matrix A0. Examples of possible (nonstochastic) weight matrices are
An = Ir, an r × r identity matrix — which yields Sn(θ) = ||m̄(θ)||2 — or

An =

·
Ip 0
0 0

¸
,

for which the estimator θ̂ sets the first p components of m̄(θ̂) equal to zero. More generally, An will have
estimated components; once the asymptotic (normal) distribution of θ̂ is derived for a given value of A0,
the optimal choice of A0 (to minimize the asymptotic variance) can be determined, and a feasible efficient
estimator can be constructed if this optimal weight matrix can be consistently estimated.

The consistency theory for θ̂ is standard for extremum estimators: the first step is to demonstrate
uniform consistency of Sn(θ) to its probability limit

S(θ) ≡ [µ(θ)]0A0µ(θ),
that is,

sup
Θ
|Sn(θ)− S(θ)|→p 0,

and then to establish that the limiting minimand S(θ) is uniquely minimized at θ = θ0, which follows if

A
1/2
0 µ(θ) 6= 0 if θ 6= θ0,

where A1/20 is any square root of the weight matrix A0. Establishing both the uniform convergence of the
minimand Sn to its limit S and uniqueness of θ0 as the minimizer of S will require primitive assumptions
on the distribution of zi, the form of the moment function m(·), and the limiting weight matrix A0 which
vary with the particular problem.

Among the standard “regularity conditions” on the moment function m(·) is an assumption that it is
“smooth” (i.e., continuously differentiable) in θ; then, if θ0 is assumed to be in the interior of the parameter
space Θ, then with probability approaching one the consistent GMM estimator θ̂ will satisfy a first-order
condition for minimization of S,

0 =
∂Sn(θ̂)

∂θ

= 2

"
∂m̄(θ̂)

∂θ0

#0
Anm̄(θ̂).
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If the derivative of the average moment function m̄(θ) converges uniformly in probability to its expectation
in a neighborhood of θ0 (which must be established in the usual way), then consistency of θ̂ implies that"

∂m̄(θ̂)

∂θ0

#
→p M0 ≡

·
∂µ(θ0)

∂θ0

¸
.

This, plus convergence in probability of An to A0, means that the first-order condition can be rewritten as

0 =M 0
0A0m̄(θ̂) + op(m̄(θ̂)).

Inserting the usual Taylor’s series expansion of m̄(θ̂) around the true value θ0,

m̄(θ̂) = m̄(θ0) +

"
∂m̄(θ̂)

∂θ0

#
(θ̂ − θ0) + op(||θ̂ − θ0||),

yields

0 = M 0
0A0

"
m̄(θ0) +

"
∂m̄(θ̂)

∂θ0

#
(θ̂ − θ0) + op(||θ̂ − θ0||)

#
+ op(m̄(θ̂))

≡ M 0
0A0m̄(θ0) +M

0
0A0M0(θ̂ − θ0) + rn,

where rn is a generic remainder term. Assuming it can be verified that

rn = op

µ
1√
n

¶
by the usual methods, the normalized difference between the estimator θ̂ and the true value θ0 has the
asymptotically-linear representation

√
n(θ̂ − θ0) = [M

0
0A0M0]

−1M 0
0A0 ·

√
nm̄(θ0) + op(1).

But
√
nm̄(θ0) is a normalized sample average of mean-zero, i.i.d. random vectors m(zi, θ0), so by the

Lindeberg-Levy central limit theorem,
√
nm̄(θ0)→d N (0, V0),

where

V0 ≡ V ar[m(zi, θ0)]

= E[m(zi, θ0)m(zi, θ0)
0],

and thus
√
n(θ̂ − θ0)→d N (0, [M 0

0A0M0]
−1M 0

0A0V0A0M0[M
0
0A0M0]

−1),

which has a rather ungainly looking expression for the asymptotic covariance matrix.
By definition, an efficient choice of limiting weight matrix A0 will minimize the asymptotic covariance

matrix of θ̂ (in a positive semi-definite sense). The same proof as for the Gauss-Markov theorem can be
used to show that this product of matrices will be minimized by choosing A0 to make the “middle matrix”
M 0
0A0V0A0M0 equal to an “outside matrix” M 0

0A0M0 being inverted. That is,

[M 0
0A0M0]

−1M 0
0A0V0A0M0[M

0
0A0M0]

−1 ≥ [M 0
0V

−1
0 M0]

−1,
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where the inequality means the difference in the two matrices is positive semi-definite; equality is obviously
achieved if A0 is chosen as

A∗0 ≡ V −10 = [V ar[m(zi, θ0)]]
−1 ,

up to a (positive) constant of proportionality.
A feasible version of the optimal GMM estimator requires a consistent estimator of the covariance

matrix V0. This can be obtained in two steps: first, by calculation of a non-optimal estimator θ̂ using
an arbitrary sequence An for which θ̂ is consistent (e.g., An = Ir), and then by construction of a sample
analogue to V0,

V̂ ≡ 1

n

nX
ι=1

m(zi, θ̂)
h
m(zi, θ̂)

i0
.

The resulting optimal GMM estimator θ̂
∗
will have asymptotic distribution

√
n(θ̂

∗ − θ0)→d N (0, [M 0
0V

−1
0 M0]

−1),

and its asymptotic covariance matrix is consistently estimated by [M̂ 0V̂ −1M̂ ]−1, where

M̂ ≡ 1

n

nX
ι=1

∂m(zi, θ̂
∗
)

∂θ0
.

Inference on θ0 can then be based upon the usual large-sample normal theory.
For the example of the linear model with endogenous regressors,

yi = w0iθ0 + εi,

0 = E[εixi] = E[(yi − w0iθ0)xi],
the relevant matrices for the asymptotic distribution of θ̂

∗
are

M0 = E

·
∂[(yi − w0iθ0)xi]

∂θ0

¸
= E

£
xiw

0
i

¤
and

V0 = V ar[(yi − w0iθ0)xi]
= E[(yi − w0iθ0)2xix0i].

The first step in efficient estimation of θ0 might be based upon the (inefficient) two-stage least squares
(2SLS) estimator

θ̂ =

" 1
n

nX
ι=1

wix
0
i

#"
1

n

nX
ι=1

xix
0
i

#−1 "
1

n

nX
ι=1

xiw
0
i

#−1

·
"
1

n

nX
ι=1

wix
0
i

#"
1

n

nX
ι=1

xix
0
i

#−1 "
1

n

nX
ι=1

xiyi

#
,

≡ (M̂ 0AnM̂)−1M̂ 0An

"
1

n

nX
ι=1

xiyi

#
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which is a GMM estimator using m(zi, θ) ≡ (yi − w0iθ)xi,

M̂ ≡
"
1

n

nX
ι=1

xiw
0
i

#
and

An ≡
"
1

n

nX
ι=1

xix
0
i

#−1
.

With this preliminary,
√
n-consistent estimator of θ0, the efficient weight matrix is consistently estimated

as

V̂ −1 ≡
"
1

n

nX
ι=1

(yi − w0iθ̂)2xix0i
#−1

,

and the efficient GMM estimator is

θ̂
∗ ≡ (M̂ 0V̂ −1M̂)−1M̂ 0V̂ −1

"
1

n

nX
ι=1

xiyi

#
,

which has the approximate normal distribution

θ̂
∗A
˜N

µ
θ0,

1

n
(M̂ 0V̂ −1M̂)−1

¶
.

If the error terms εi ≡ yi −w0iθ0 happen to be homoskedastic,
V ar[εi|xi] ≡ σ2(xi)

= σ20,

then

V0 ≡ E[ε2ixix
0
i]

= σ20E[xix
0
i]

= σ20 plim An,

and the 2SLS estimator θ̂ would be asymptotically efficient, and asymptotically equivalent to the efficient
GMM estimator θ̂

∗
.

Conditional Moment Restrictions and Efficient Instrumental Variables
Now consider the case when a stronger conditional moment restriction

0 = E[u(zi, θ0)|xi] ≡ E[ui|xi],
where u(zi, θ) is some q-dimensional vector of known functions of the (i.i.d.) random vector zi and θ ∈
Θ ⊂ Rp. (Since E[ui|xi] is a random variable, we interpret such equalities as holding with probability one,
here and throughout.) Such moment restrictions can sometimes be derived as consequences of expected
utility maximization; more generally, they are often imposed on additive error terms in structural models.
For instance, for the linear equation

yi = w
0
iθ0 + εi,
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a common assumption is that the error terms εi have conditional mean zero given the instrumental variables
xi,

E[εi|xi] = 0,
in which case the moment function u(·) is just the residual function u(zi, θ) = yi−w0iθ, with u(zi, θ0) ≡ εi.
Here q = 1, which is generally less than p, the number of components of θ0 to be estimated.

Assuming the function u(·) is bounded above (on Θ) by some square-integrable function, i.e.,
sup
Θ
||u(zi, θ)|| ≤ b(zi), E[b(zi)]

2 <∞,

it follows (by iterated expectations) that an unconditional moment restriction

0 = E[h(xi)u(zi, θ0)] (***)

≡ E[m(zi, θ0)]

holds, where h(.) is any r × q matrix of functions of xi with
E[||h(xi)||2] ≡ E[tr{h(xi)[h(xi)]0}] <∞.

We can think of each column of h(xi) as a vector of “instrumental variables” for the corresponding com-
ponent of u(zi, θ0), whose products are added together to obtain the (unconditional) moment function
m(·). While the dimension q of the conditional moment function u(·) needs not be as large as the num-
ber of parameters p, the number of rows r of the matrix of instrumental variables h(xi) must be no
smaller than p if estimation of θ0 is to be based upon the implied unconditional moment restriction
0 ≡ E[m(zi, θ0)] = E[h(xi)u(zi, θ0)].

For a given choice of instrument matrix h(xi), the theory for unconditional moment restrictions above
can be applied to determine the form and asymptotic distribution of the optimal GMM estimator θ̂

∗
=

θ̂
∗
(h); that is, the optimal estimator is

θ̂
∗
= argmin

Θ
[m̄(θ)]0V̂ −1m̄(θ)

= argmin
Θ
[m̄(θ)]0V̂ −1m̄(θ),

where now

m̄(θ) ≡ 1

n

nX
ι=1

h(xi)u(zi, θ)

and

plim V̂ ≡ V0

≡ V ar[h(xi)u(zi, θ0)]

= E[h(xi)u(zi, θ0)[u(zi, θ0)]
0[h(xi)]0]

= E[h(xi)Σ(xi)[h(xi)]
0],

for

Σ(xi) ≡ V ar(u(zi, θ0)|xi)
= E[u(zi, θ0)[u(zi, θ0)]

0|xi].
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The asymptotic distribution of θ̂
∗
is thus
√
n(θ̂

∗ − θ0)→d N (0, [M 0
0V

−1
0 M0]

−1),

where

M0 ≡ E

·
∂m(zi, θ0)

∂θ0

¸
= E

·
h(xi)

∂u(zi, θ0)

∂θ0

¸
.

In terms of the function h(xi), the asymptotic covariance matrix of θ̂
∗
is

[M 0
0V

−1
0 M0]

−1 =
µ
E

·
h(xi)

∂u(zi, θ0)

∂θ0

¸0
· £E[h(xi)Σ(xi)[h(xi)]0]¤−1 ·E ·h(xi)∂u(zi, θ0)

∂θ0

¸¶−1
.

To find the best choice of instrumental variable matrix h(xi) across all possible square-integrable functions
of the conditioning variables xi, we would minimize this matrix over h(xi). By the same Gauss-Markov-
type argument as for the optimal GMM estimator, the best choice h∗(xi) will equate the “inner matrix”
E[h(xi)Σ(xi)[h(xi)]

0] with the “outer matrix” E
£
h(xi)∂u(zi, θ0)/∂θ

0¤ (and its transpose). By inspection,
this happens when

h∗(xi) = E

·
∂u(zi, θ0)

∂θ0
|xi
¸0
· [Σ(xi)]−1

≡ D(xi)
0 · [Σ(xi)]−1.

So in this case the asymptotic covariance matrix reduces to·
E

µ
E

·
h∗(xi)

∂u(zi, θ0)

∂θ0

¸0
· £E[h∗(xi)Σ(xi)[h∗(xi)]0]¤−1 ·E ·h∗(xi)∂u(zi, θ0)

∂θ0

¸¶¸−1
=

£
E
¡
D(xi)

0[Σ(xi)]−1D(xi)
¢¤−1

=

·
E

µ
E

·
∂u(zi, θ0)

∂θ0
|xi
¸0
· [Σ(xi)]−1E

·
∂u(zi, θ0)

∂θ0
|xi
¸¶¸−1

.

This formula looks very similar to the form of the asymptotic covariance matrix [M 0
0V

−1
0 M0]

−1 for GMM
estimation with unconditional moment restrictions, except that the expected derivative and variance
matrices M0 and V0 are replaced by their “conditional” analogues D(xi) and Σ(xi), and the product
D(xi)

0[Σ(xi)]−1D(xi) is averaged over xi before being inverted.
Again returning to the example of the linear model with endogenous regressors,

yi = w0iθ0 + εi,

0 = E[εixi] = E[(yi − w0iθ0)xi],
here q = 1,

D(xi) ≡ E

·
∂u(zi, θ0)

∂θ0
|xi
¸

= E

·
∂(yi − w0iθ0)

∂θ0
|xi
¸

= −E[w0i|xi]

7



and

Σ(xi) ≡ σ2(xi)

= V ar((yi − w0iθ0)|xi)
≡ V ar(εi|xi).

In the special case with wi = xi (i.e., all regressors are exogenous), D(xi) = x0i, and the optimal sample
moment condition for the restriction E[εi|xi] = 0 is the first-order condition for weighted LS estimation,
with weights 1/σ2(xi) inversely proportional to the conditional variance of the errors.

Global Optimality of GMM
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