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The Nadaraya-Watson Kernel Regression Estimator
Suppose that zi ≡ (yi, x0i is a (p+1)-dimensional random vector that is jointly continuously distributed,

with yi being a scalar random variable. Denoting the joint density function of zi as fy,x(y, x), the conditional
mean g(x) of yi given xi = x (assuming it exists) is given by

g(x) ≡ E[yi|xi = x]
=

R
y · fy,x(y, x)dyR
fy,x(y, x)dy

=

R
y · fy,x(y, x)dy

fx(x)
,

where fx(x) is the marginal density function of xi. If f̂y,x(y, x) is the kernel density estimator of fy,x(y, x),
i.e.,

f̂y,x(y, x) =
1

n

nX
i=1

1

hp+1
K̃

µ
y − yi
h

,
x− xi
h

¶
for some (p + 1)-dimensional kernel function K̃(v, u) satisfying

R
K̃(v, u)dvdu = 1, then an analogue

estimator for g(x) = E[yi|xi = x] would substitute the kernel estimator f̂y,x for fy,x in the expression for
g(x). Further assuming that the first “moment” of K̃ is zero,Z µ

u
v

¶
K̃(v, u)dvdu = 0

(which could be ensured by choosing a K̃ that is symmetric about zero with bounded support), this
analogue estimator for g(x) can be simplified to

ĝ(x) =

R
y · f̂y,x(y, x)dyR
f̂y,x(y, x)dy

=
1
nhp

Pn
i=1K

¡
x−xi
h

¢ · yi
1
nhp

Pn
i=1K

¡
x−xi
h

¢ ,

where

K(u) ≡
Z
K̃(v, u)dv.

The estimator ĝ(x), known as the Nadaraya-Watson kernel regression estimator, can be written as a
weighted average

ĝ(x) ≡
X
i

win · yi,
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where

win ≡
K
¡
x−xi
h

¢Pn
j=1K

³
x−xj
h

´
has

P
iwin = 1. Since K(u)→ 0 as kuk→∞ (because K is integrable), it follows that win → 0 for fixed

h as kx− xik → ∞, and also that win → 0 for fixed kx− xik as h → 0; hence ĝ(x) is a “locally-weighted
average” of the dependent variable yi, with increasing weight put on observations with values of xi that
are close to the target value x as n→∞.

For the special case of p = 1 (i.e., one regressor) and K(u) = 1{|u| ≤ 1/2} (the density of a
Uniform(−1/2, 1/2) variate), the kernel regression estimator ĝ(x) takes the formPn

i=1 1{x− h/2 ≤ xi ≤ x+ h/2} · yiPn
i=1 1{x− h/2 ≤ xi ≤ x+ h/2}

,

an average of yi values with corresponding xi values within h/2 of x. This estimator is sometimes called
the “regressogram,” in analogy with the histogram estimator of a density function at x.

Derivation of the conditions for consistency of ĝ(x), and of its rate of convergence to g(x), follow the
analogous derivations for the kernel density estimator. Indeed, ĝ(x) can be written as

ĝ(x) =
t̂(x)

f̂(x)
,

where f̂(x) is the usual kernel density estimator of the marginal density of xi, so the conditions for
consistency of the denominator of ĝ(x) — i.e., h → 0 and nhp → ∞ as n → ∞ — have already been
established, and it is easy to show the same conditions imply that

t̂(x)→p t(x) ≡ g(x)f(x).

The bias and variance of the numerator t̂(x) are also straightforward extensions of the corresponding
formulae for the kernel density estimator f̂(x); here

E[t̂(x)] = E

"
1

nhp

nX
i=1

K

µ
x− xi
h

¶
· yi
#

= E

"
1

nhp

nX
i=1

K

µ
x− xi
h

¶
· g(xi)

#

=

Z
1

hp
K

µ
x− z
h

¶
g(x)f(z)dz

=

Z
K(u)g(x− hu)f(x− hu)du,

which is the same formula as for the expectation of f̂(x) with “g(x)f(x)” replacing “f(x)” throughout.
Assuming the product g(x)f(x) is twice continously differentiable, etc., the same Taylor’s series expansion
as for the bias of f̂(x) yields the bias of t̂(x) as

E[t̂(x)]− g(x)f(x) =
h2

2
tr

µ
∂2g(x)f(x)

∂x∂x0
·
Z
uu0K(u)du

¶
+ o(h2)

= O(h2).
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And the variance of t̂(x) is

V ar(t̂(x)) = V ar

Ã
1

n

nX
i=1

1

hp
K

µ
x− xi
h

¶
yi

!

=
1

n
E

µ
1

hp
K

µ
x− xi
h

¶
yi

¶2
− 1
n
(E[t̂(x)])2

=
1

n

Z
1

h2p

·
K

µ
x− z
h

¶¸2
[σ2(z) + g(z)2]f(z)dz − 1

n
(E[t̂(x)])2

=
1

nhp

Z
[K (u)]2 [σ2(x− hu) + g(x− hu)2]f(x− hu)du− 1

n
(E[f̂(x)])2

=
[σ2(x) + g(x)2]f(x)

nhp

Z
[K (u)]2 du+ o

µ
1

nhp

¶
,

where σ2 (x) ≡ V ar[yi|xi = x]. So, as for the kernel density estimator, the MSE of the numerator of ĝ(x)
is of order [O(h2)]2 +O(1/nhp), and the optimal bandwidth h∗ has

h∗ = O

Ãµ
1

n

¶1/(p+4)!
,

just like f̂(x). A “delta method” argument then implies that this yields the best rate of convergence of the
ratio ĝ(x) = t̂(x)/f̂(x) to the true value g(x).

Derivation of the asymptotic distribution of ĝ(x) uses that “delta method” argument. First, the Lia-
punov condition can be verified for the triangular array

zin ≡ 1

hp
K

µ
x− xi
h

¶
(λ1 + λ2yi),

where λ1 and λ2 are arbitrary constants, leading to the same requirement as for f̂(x) (namely, nhp →∞
as h→ 0 and n→∞) for zn to be asymptotically normal, with

√
nhp(z̄n −E[z̄n]) =

√
nhp

³
λ1(f̂(x)−E[f̂(x)])− λ2(t̂(x)−E

£
t̂(x)

¤
)
´

→ dN (0, £λ21 + 2λ1λ2g(x) + λ22
¡
g(x)2 + σ2(x)

¢¤
f(x)

Z
[K (u)]2 du). (**)

The Cramér-Wald device then implies that the numerator t̂(x) and denominator f̂(x) are jointly asymp-
totically normal, and the usual delta method approximation

√
nhp(ĝ(x)−E[t̂(x)]/E[f̂(x)]) =

√
nhp

³
E[f̂(x)](t̂(x)−E[t̂(x)])−E[t̂(x)](f̂(x)−E[f̂(x)])

´
f̂(x)E[f̂(x)]

=

√
nhp

³
(t̂(x)−E[t̂(x)])− g(x)(f̂(x)−E[f̂(x)])

´
f(x)

+op

³√
nhp

¡
t̂(x)−E[t̂(x)]¢´+ op ³√nhp(f̂(x)−E[f̂(x)])´

yields

√
nhp(ĝ(x)−E[t̂(x)]/E[f̂(x)])→d N (0, σ

2(x)

f(x)

Z
[K (u)]2 du)
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after (1) is applied with λ1 = −g(x)/f(x) and λ2 = 1/f(x).
When the bandwidth tends to zero at the optimal rate,

hn = c

µ
1

n

¶1/(p+4)
,

then the asymptotic distribution of ĝ(x) is biased when centered at the true value g(x),

√
nhp(ĝ(x)− g(x))→d N (δ(x), σ

2(x)

f(x)

Z
[K (u)]2 du),

where now

δ(x) ≡ lim

√
nhp

h
(E[t̂(x)]− t(x))− g(x)(E[f̂(x)]− f(x))

i
f(x)

=
c(p+4)/2

2f(x)
tr

·µ
∂2g(x)f(x)

∂x∂x0
− g(x)∂

2f(x)

∂x∂x0

¶
·
Z
uu0K(u)du

¸
.

And if the bandwidth tends to zero faster than the optimal rate, i.e., “undersmoothing” is assumed, so
that

h∗ = o
µ
1

n

¶1/(p+4)
,

then

lim

√
nhp

h
(E[t̂(x)]− t(x))− g(x)(E[f̂(x)]− f(x))

i
f(x)

= 0,

and the bias term vanishes from the asymptotic distribution,

√
nhp(ĝ(x)− g(x))→d N (0, σ

2(x)

f(x)

Z
[K (u)]2 du),

as for the kernel density estimator f̂(x).
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Some Other Nonparametric Regression Methods
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