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1. Prove that Op(1) + op(1) = Op(1) and Op(1) · op(1) = op(1). [Hint: you may want to use the
inequalities

Pr{A ∪B} ≤ Pr{A}+Pr{B},
Pr{A ∩B) ≤ Pr{A}+Pr{B}.]

2. For the “two-sided” univariate density function estimator

f̃n(x) = h−1[F̂ (x+ h/2)− F̂ (x− h/2)]

of a density f(x) of a sequence of i.i.d. scalar random variables {xi}, find the optimal sequence h∗ which
asymptotically minimizes the mean-squared error of the estimator (pointwise). [Here F̂ (x) is the empirical
c.d.f. of the observed data.]. Assume the true density f(x) has as many non-zero derivatives as you need.
How do the convergence rates of h∗ and the MSE to zero compare to the corresponding rates for the
”one-sided” density estimator

f̂n(x) = h−1[F̂ (x+ h)− F̂ (x)]?

3 For the same two-sided estimator f̃n(x) of problem #2, show that the optimal bandwidth sequence
h∗ is scale equivariant; that is, if yi is related to xi by yi = α · xi for some α > 0, the optimal bandwidth
h∗y for estimation of the density fy(y0) at a point y0 = α · x0 is related to the optimal bandwidth h∗x for
estimation of the density fx(x0) by h∗y = α · h∗x.

4. Given an i.i.d. sample of a bivariate random variable (xi, yi), a simple estimator of the conditional
mean function g(x) ≡ E[yi|xi = x] is the uniform kernel estimator
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where the ”weight” function win is defined as

win ≡ h−11{|x− x| < h/2|},

and h = hn is a nonrandom bandwidth sequence depending upon the sample size n.
Suppose the distribution of xi is discrete, with finite support. That is,

Pr{xi = ξj} = πj , j = 1, 2, ..., J

for some distinct constants ξ1, ξ2, ..., ξJ with
P

i πi = 1. Under what conditions on the bandwidth sequence
h will ĝ(ξj) be consistent? Asymptotically normal? (Be sure to make your conditions as general as possible,
but you need not verify any regularity conditions for the limit theorems you cite.) When it is consistent
and asymptotically normal, derive the asymptotic distribution of ĝ(ξj).
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5. Consider the problem of estimating the conditional variance of a scalar random variable yi given
a p-dimensional vector of regressors xi. Since

σ2(x) ≡ V ar{yi|xi = x}
= E[y2i |xi = x]− (E[yi|xi = x])2

≡ m(x)− (g(x))2,

we can use kernel regression to estimate m(x) and g(x), and then plug them into this expression to estimate
σ2(x).

As usual, we’ll assume yi and xi are i.i.d. across i, with as many bounded moments as needed, and
that all the unknown density and regression functions have as many continuous derivatives as needed; we’ll
also assume that yi and xi are jointly continuously distributed, with positive marginal density f(x) of xi
at the value x.

Under these conditions, using the same (bounded and nonnegative) kernel functionK(u) and bandwidth
sequence hn to estimate both the first and second conditional moments g(x) and m(x) of yi, find the
asymptotic distribution of an appropriately-normalized version of

σ̂2(x) ≡ m̂(x)− (ĝ(x))2,

assuming that the bandwidth hn tends to zero faster than the optimal rate, i.e.,

hn =
c

nα
,

where α ∈ (1/(p + 4), 1/p). You need not explicitly check Liapunov conditions, etc. Instead, you should
just show that σ̂2(x) is asymptotically equivalent to a kernel regression of a certain function of yi and xi
on xi, and apply the known asymptotic distribution results for that latter kernel regression.
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