
Notes On Median and Quantile Regression

James L. Powell
Department of Economics

University of California, Berkeley

Conditional Median Restrictions and Least Absolute Deviations
It is well-known that the expected value of a random variable Y minimizes the expected squared

deviation between Y and a constant; that is,

µY ≡ E[Y ]

= argmin
c
E(Y − c)2,

assuming E||Y ||2 is finite. (In fact, it is only necessary to assume E||Y || is finite, if the minimand is
normalized by subtracting Y 2, i.e.,

µY ≡ E[Y ]

= argmin
c
E[(Y − c)2 − Y 2]

= argmin
c
[c2 − 2cE[Y ]],

and this normalization has no effect on the solution if the stronger condition holds.) It is less well-known
that a median of Y, defined as any number ηY for which

Pr{Y ≤ ηY } ≥
1

2
and

Pr{Y ≥ ηY } ≥
1

2
,

minimizes an expected absolute deviation criterion,

ηY = argminc
E[|Y − c|− |Y |],

though the solution to this minimization problem need not be unique. When the c.d.f. FY is strictly
increasing everywhere (i.e., Y is continuously distributed with positive density), then uniqueness is not an
issue, and

ηY = F
−1
Y (1/2).

In this case, the first-order condition for minimization of E[|Y − c|− |Y |] is

0 = −E[sgn(Y − c)],

for sgn(u) the “sign” (or “signum”) function

sgn(u) ≡ 1− 2 · 1{u < 0},

here defined to be right-continuous.

1



Thus, just as least squares (LS) estimation is the natural generalization of the sample mean to estimation
of regression coefficients, least absolute deviations (LAD) estimation is the generalization of the sample
median to the linear regression context. For the linear structural equation

yi = x
0
iβ0 + εi,

if the error terms εi are assumed to have (unique) conditional median zero given the regressors xi, i.e.

E[sgn(εi)|xi] = 0,

E[sgn(εi − c)|xi] 6= 0 if c = c(xi) 6= 0,

then the true regression coefficients β0 are identified by

β0 = argmin
β
E[|yi − x0iβ|− |εi|],

and, given an i.i.d. sample of size n from this model, a natural sample analogue to β0 is

β̂ ≡ argmin
β

1

n

nX
i=1

|yi − x0iβ|

≡ argmin
β
Sn(β),

a slightly-nonstandard extremum estimator (because the minimand is not twice continuously differentiable
for all β.

Consistency of LAD
Demonstration of consistency of β̂ is straightforward, because the LAD minimand Sn(β) is clearly

continuous in β with probability one; in fact, Sn(β) is convex in β, so consistency follows if Sn can be
shown to converge pointwise to a function that is uniquely minimized at the true value β0. (Typically we
need to show uniform convergence, but pointwise convergence of convex functions implies their uniform
convergence on compact subsets.) To prove consistency, we need to impose some conditions on the model;
here are some conditions that will suffice:

A1. The data {(yi, x0i)0}ni=1 are independent and identically distributed across i;
A2. The regressors have bounded second moment, i.e., E[||xi||2] <∞.
A3. The error terms εi are continously distributed given xi, with conditional density f(ε|xi) satisfying the

conditional median restriction, i.e. Z 0

−∞
f(λ|xi)dλ = 1

2
.

A4. The regressors and error density satisfy a “local identification” condition — namely, the matrix

C ≡ E[f(0|xi)xix0i]

is positive definite.
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Note that moments of yi or εi need not exist under these assumptions, which is why LAD estimation
is attractive for heavy-tailed error distributions. Condition A4. combines a “unique median” assumption
(implied by positivity of the conditional density f(ε|xi) at ε = 0) with the usual full-rank assumption on
the second moments of the regressors.

Imposing these conditions, the first step in the consistency proof is to calculate the probability limit
of the minimand. To avoid assuming E[|yi|] < ∞, it is convenient to normalize the minimand Sn(β) by
subtracting off its value at the true parameter β0, which clearly does not affect the minimizing value β̂.
That is,

β̂ = argmin
β
Sn(β)− Sn(β0)

= argmin
β

1

n

nX
i=1

[|yi − x0iβ|− |yi − x0iβ0|]

= argmin
β

1

n

nX
i=1

[|εi − x0iδ|− |εi|],

where

δ ≡ β − β0.

But since

−||xi|| · ||δ|| ≤ |εi − x0iδ|− |εi| ≤ ||xi|| · ||δ||
by the triangle and Cauchy-Schwarz inequalities, the normalized minimand is a sample average of i.i.d.
random variables with finite first (and even second) moments under condition A2, so by Khintchine’s Law
of Large Numbers,

Sn(β)− Sn(β0) → pS̄(δ)

≡ E[Sn(β)− Sn(β0)]
= E[|εi − x0iδ|− |εi|]
= E

£
(εi − x0iδ)sgn{εi − x0iδ}− εisgn{εi}

¤
= E

£
(εi − x0iδ)(sgn{εi − x0iδ}− sgn{εi})

¤
= E

"
2

Z 0

x0iδ
[λ− (x0iδ)]f(λ|xi)dλ

#
,

where the second-to-last equality uses the fact that E[(x0iδ)sgn{εi}] = E[E[(x0iδ)sgn{εi}|xi]] = 0. (The
integral in the last equality is well-defined for both positive and negative values of x0iδ, under the standard
convention

R b
a dF = −

R a
b dF .)

By inspection, the limit S̄(δ) equals zero at δ = β − β0 = 0, and is non-negative otherwise (since the
sign of the integrand is the same as the sign of the lower limit x0iδ). Furthermore, since Sn(β)− Sn(β0) is
convex for all n, so is its probability limit S̄(β − β0); thus, if β = β0 is a unique local minimizer, it is also
a global minimizer, implying consistency of β̂. But by Leibnitz’ rule,

∂S̄(δ)

∂δ
= −2E[xi ·

Z 0

x0iδ
f(λ|xi)dλ],

∂S̄(0)

∂δ
= 0,
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and

∂2S̄(δ)

∂δ∂δ0
= 2E[xix

0
i · f(x0iδ|xi)],

∂2S̄(0)

∂δ∂δ0
= 2E[xix

0
i · f(0|xi)] ≡ 2C,

which is positive definite by condition A4. So δ = 0 = β − β0 is indeed a unique local (and global)
minimizer of S̄(δ) = S̄(β − β0), and thus

β̂ →p β0.¥

To generalize this consistency result to nonlinear median regression models

yi = g(xi,β0) + εi,

0 = E[sgn{εi}|xi],
the regularity conditions would have to be strengthened, since convexity of the corresponding LAD mini-
mand n−1

P
i |yi − g(xi,β)| in β is no longer assured. Standard conditions would include the assumption

that the LAD criterion is minimized over a compact parameter space B (and not over all of Rp), and a
uniform Lipschitz continuity condition on the median regression function g(xi,β) would typically be im-
posed, with the Lipschitz term assumed to have finite moments. Finally, the identification condition A4
would have to be strengthened to a global identification condition, such as:

A4.’ For some τ > 0, the conditional density f(λ|xi) > τ if |λ| < τ , and Pr{|g(xi,β)− g(xi,β0)| ≥ τ} > 0
if β 6= β0.

Asymptotic Normality of LAD
Returning to the linear LAD estimator, while demonstration of consistency of β̂ involves routine appli-

cation of asymptotic arguments for extremum estimators, demonstration of
√
n-consistency and asymptotic

normality is complicated by the fact that the LAD criterion S̄(β) is not continuously differentiable in β.
For comparison, consider the “standard” theory for extremum estimators, where the estimator θ̂ is defined
to minimize (or maximize) a twice-differentiable criterion, e.g.,

θ̂ = argmin
θ∈Θ

1

n

nX
i=1

ρ(zi, θ),

and (for large n) to satisfy a first-order condition for an interior minimum,

0 =
1

n

nX
i=1

∂ρ(zi, θ̂)

∂θ

≡ 1

n

nX
i=1

ψi(θ̂),

assuming consistency of θ̂ for an (interior) parameter θ0 has been established. The true value θ0 satisfies
the corresponding population first-order condition

0 = E[ψi(θ0)];
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derivation of the asymptotic distribution of θ̂ is based upon a Taylor’s series expansion of the sample
first-order condition for θ̂ around θ̂ = θ0 :

0 ≡ 1

n

nX
i=1

ψi(θ̂) (*)

≡ 1

n

nX
i=1

ψi(θ0) +

"
1

n

nX
i=1

∂ψi(θ0)

∂θ0

#
(θ̂ − θ0) + op(||θ̂ − θ0||),

hich is solved for θ̂ to yield the asymptotic linearity expression

θ̂ = θ0 +H
−1
0

1

n

nX
i=1

ψi(θ0) + op

µ
1√
n

¶
,

where

H0 ≡ −E
·
∂ψi(θ0)

∂θ0

¸
= −E

·
∂2ρ(zi, θ0)

∂θ∂θ0

¸
is minus one times the expected Hessian of the original minimand. From the linearity expression, it follows
that

√
n(θ̂ − θ0)→d N (0,H−10 V0H

−1
0 ),

where V0 is the asymptotic covariance matrix of the sample average of ψi(θ0), i.e.,

1√
n

nX
i=1

ψi(θ0)→d N (0, V0),

which is established by appeal to a suitable central limit theorem.
In the LAD case (where θ ≡ β), the criterion function

ρ(zi, θ) = |yi − x0iβ|

is not continuously differentiable at values of β for which yi = x0iβ; furthermore, the (discontinuous)
subgradient

∂ρ(zi, θ)

∂θ
= sgn{yi − x0iβ}xi

itself has a derivative that is identically zero wherever it is defined. Thus the Taylor’s expansion (*) is not
applicable to this problem, even though an approximate first-order condition

1

n

nX
i=1

sgn{yi − x0iβ̂}xi = op
µ
1√
n

¶
can be established for this problem. This condition can be shown to hold by showing that each element of
the subgradient of the LAD criterion, when evaluated at the minimizing value β̂, is bounded in magnitude
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by the difference between the right and left derivatives of the criterion, so that¯̄̄̄
¯ 1n

nX
i=1

sgn{yi − x0iβ̂}xi
¯̄̄̄
¯ ≤

¯̄̄̄
¯ 1n

nX
i=1

1{yi = x0iβ̂}xi
¯̄̄̄
¯

≤
"
nX
i=1

1{yi = x0iβ̂}
#
max
i

||xi||
n

= K · op
µ
1√
n

¶
,

where K ≡ dim{β} and E[||xi||2] <∞ by A2.
Though the subgradient for the LAD minimization is not differentiable, its expected value

E

·
∂ρ(zi, θ)

∂θ

¸
= E

£
sgn{yi − x0iβ}xi

¤
= E[sgn{εi − x0iδ}xi]

= 2E

"ÃZ x0iδ

0
f(λ|xi)dλ

!
xi

#
is differentiable in δ = β − β0. The Taylor’s series expansion would thus be applicable if the order of
the expectation (over yi and xi) and differentiation (over θ) could somehow be interchanged. To do this
rigorously, a stochastic equicontinuity condition on the sample average moment function

Ψ̄n(β) ≡ 1

n

nX
i=1

sgn{yi − x0iβ}xi

must be established; specifically, the stochastic equicontinuity condition is that, for any β̂ →p β,

√
n
h
Ψ̄n(β̂)− Ψ̄n(β0)−E

£
Ψ̄n(β)− Ψ̄n(β0)

¤ |β=β̂i→p 0,

or, written alternatively,
√
n
h¡
Ψ̄n(β)−E[Ψ̄n(β)]

¢ |β=β̂ − ¡Ψ̄n(β0)−E[Ψ̄n(β0)]¢i→p 0. (**)

Intuitively, while we would expect the normalized difference
√
n
¡
Ψ̄n(β)−E[Ψ̄n(β)]

¢
to have a limiting

normal distribution for each fixed value of β by a central limit theorem, the stochastic equicontinuity
condition specifies that the normalized difference, evaluated at the consistent estimator β̂, is asymptotically
equivalent to its value evaluated at β0 = plim β̂.

Such a condition can be established for this LAD (and related quantile regression) problems using
empirical process theory; once it has been established, it can be used to derive the asymptotic normal
distribution of β̂. Inserting the previous results that

Ψ̄n(β̂) ≡ 1

n

nX
i=1

sgn{yi − x0iβ̂}xi = op
µ
1√
n

¶
and

E[Ψ̄n(β0)] ≡ E
£
sgn{yi − x0iβ0}xi

¤
= E[sgn{εi}xi]
= 0
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into (**), it follows that

√
n
h
Ψ̄n(β0)−E[Ψ̄n(β)]|β=β̂

i
→p 0,

and a mean-value expansion of E[Ψ̄n(β)]|β=β̂ around β̂ = β0 yields

√
n
³
β̂ − β0

´
= H−10

√
nΨ̄n(β0) + op (1)

= H−10
1√
n

nX
i=1

sgn{εi}xi + op (1) ,

where now

H0 ≡ ∂E[Ψ̄n(β)]

∂β0
|β=β0

=
∂E [sgn{yi − x0iβ}xi]

∂β0
|β=β0

= 2E[f(0|xi)xix0i]
≡ 2C,

assumed positive definite in A4 above. Application of the Lindeberg-Levy central limit theorem to√
nΨ̄n(β0) yields the asymptotic distribution of the LAD estimator β̂ as

√
n(β̂ − β0)→d N (0, 1

4
C−1DC−1),

for

D = E
³£
sgn{yi − x0iβ}xi

¤ · £sgn{yi − x0iβ}xi¤0´
= E

³£
sgn{yi − x0iβ}

¤2 · xix0i´
= E[xix

0
i].

In the special case where εi is independent of xi, so the conditional density f(0|xi) equals the marginal
density f(0), the asymptotic distribution simplifies to

√
n(β̂ − β0)→d N (0, 1

[2f(0)]2
D−1).

Alternatively, for the nonlinear median regression model

yi = g(xi,β0) + εi,

0 = E[sgn{εi}|xi],
the relevant matrices C and D would be defined as

C ≡ E

·
∂g(xi,β0)

∂β

∂g(xi,β0)

∂β0

¸
,

D ≡ E

·
f(0|xi)∂g(xi,β0)

∂β

∂g(xi,β0)

∂β0

¸
,

which reduce to the previous definitions when g(xi,β) ≡ x0iβ.
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Asymptotic Covariance Matrix Estimation
To use the asymptotic normality of β̂ to do the usual large-sample inference on β0, consistent estimators

of the matrices C ≡ E[f(0|xi)xix0i] and D ≡ E[xix0i] must be constructed. The latter is easy; clearly

D̂ ≡ 1

n

nX
i=1

xix
0
i

→ pD.

Consistently estimating the matrix C is trickier, due to the presence of the unknown conditional density
function f(0|xi); while the error density might be parametrized, and its (finite-dimensional) parameter
vector consistently estimated using standard methods, this would run counter to the spirit of the LAD
theory so far, which does not rely upon a parametric form for the error terms. An alternative, nonparametric
estimation strategy can be based upon kernel estimation methods for density functions. A specific form
for an estimator is

Ĉ ≡ 1

n

nX
i=1

h
h−11{

¯̄̄
yi − x0iβ̂

¯̄̄
≤ h/2}

i
xix

0
i,

where h = hn is a user-chosen “bandwidth” term that is assumed to tend to zero as the sample size n
increases. The term h−11{|u| ≤ h/2} (which is evaluated at u = yi − x0iβ̂) is essentially a numerical
derivative of the function sgn{u}, based upon the small perturbation h. It can be shown that Ĉ →p C as
n → ∞, provided that h = hn → 0 in such a way that n

√
hn → ∞, using the sorts of mean and variance

calculations used to demonstrate consistency of the standard kernel density estimator. A generalization of
this estimator would be

Ĉ∗ ≡ 1

n

nX
i=1

"
h−1K

Ã
yi − x0iβ̂
h

!#
xix

0
i,

where the kernel function K(·) satisfies Z
K(u)du = 1

(for example, K(u) could be a density function for a continuous random variable). The estimator Ĉ
is a special case with K(u) = 1 {|u| ≤ 1/2} , the density for a uniform random variable on the interval
[−1/2, 1/2]. And both the estimators for C and D can be extended to the nonlinear median regression

model by replacing the terms “xix0i” with the more general “[∂g(xi, β̂)/∂β]
h
∂g(xi, β̂)/∂β

i0
.

Quantile Regression

8


