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Unconditional Moment Restrictions and Optimal GMM
Most estimation methods in econometrics can be recast as method-of-moments estimators, where

the p-dimensional parameter of interest g is assumed to satisfy an unconditional moment restriction
E[m(zi,00)] = pu(0) = 0 (*)

for some r-dimensional vector of functions m(z;, 8) of the observable data vector z; and possible parameter
value 6 in some parameter space ©. Assuming that 6y is the unique solution of this population moment
equation (equivalent to identification when only (*) is imposed), a method-of-moments estimator @ is
defined as a solution (or near-solution) of a sample analogue to (*), replacing the population expectation
by a sample average.

Generally, for 6y to uniquely solve (*), the number of components 7 of the moment function m(-) must
be at least as large as the number of components p in 6 — that is, » > p, known as the “order condition”
for identification. When g is identified and r = p — termed “just identification” — a natural analogue of

the population moment equation for 6y defines the method-of-moment estimator as the solution to the

p-dimensional sample moment equation

n@®) = > ml0) ()
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= 0,

where z1, ..., 2z, are all assumed to satisfy (*). The simplest setting, assumed hereafter, is that {z;} is
a random sample (i.e., z; is i.i.d), but this is hardly necessary; the {z;} can be dependent and/or have
heterogeneous distributions, provided an “ergodicity” result m (0) — E[m(6)] £ 0 can be established.
Examples of estimators in this class include the maximum likelihood estimator (with m(z;, 8) the "score
function,” i.e., derivative of the log density of z; with respect to # for an i.i.d. sample) and the classical
least squares estimator (with z; = (y;,2})" and m(z;,0) = (y; — 2,0)z;, the product of the residuals and

regressors). Another example is the instrumental variables estimator for the linear model

yi = wifo + &,



where y; and w; € RP are subvectors of z; and the error term ¢; is assumed to be orthogonal to some other

subvector x; € R" of z;, i.e.,

E[&IZ] = E[(yl — w;eo)xi] =0.

When r = p —i.e., the number of “instrumental variables” x; equals the number of right-hand-side regressors

w; — then the instrumental variables estimator
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is the solution to (**) when m(z;, 0) = (y; — w}0)x;.
Returning to the general moment condition (*), if r > p — termed “overidentification” of 6y — the system

of equations m(#) = 0 is overdetermined, and in general no solution of this sample analogue to (*) will

exist. In this case, an analogue estimator can be defined to make m(6) “close to zero,” by defining
0 = arg m@in Sn(0),
where S, (0) is a quadratic form in the sample moment function m(6),
Sn(0) = [m(6)]" Anm(0),

and A, some non-negative definite, symmetric “weight matrix,” assumed to converge in probability to
some limiting value Ay, i.e.,

A, —P Ag.

Here 0 is called a generalized method of moments (GMM) estimator, with large-sample properties that

will depend upon the limiting weight matrix Ag. Examples of possible (nonstochastic) weight matrices are

A, = I, an 7 X r identity matrix — which yields S, (0) = ||m(6)||* - or
[ 0
[5e]

for which the estimator  sets the first p components of ﬁz(@) equal to zero. More generally, A, will have
estimated components; once the asymptotic (normal) distribution of 0 is derived for a given value of Agp,
the optimal choice of Ay (to minimize the asymptotic variance) can be determined, and a feasible efficient

estimator can be constructed if this optimal weight matrix can be consistently estimated.



The consistency theory for 0 is standard for extremum estimators: the first step is to demonstrate

uniform consistency of S, () to its probability limit

S(0) = [1(0)] Aopu(8),

that is,

sup |5, (0) — S(0)] =70,
©

and then to establish that the limiting minimand S(€) is uniquely minimized at § = 6y, which follows if

APpO) £0  if 0400,

where A(lj/ % is any square root of the weight matrix Agy. Establishing both the uniform convergence of the
minimand S, to its limit S and uniqueness of #y as the minimizer of S will require primitive assumptions
on the distribution of z;, the form of the moment function m(-), and the limiting weight matrix Ay which
vary with the particular problem.

Among the standard “regularity conditions” on the moment function m(-) is an assumption that it is
“smooth” (i.e., continuously differentiable) in 0; then, if ; is assumed to be in the interior of the parameter
space O, then with probability approaching one the consistent GMM estimator 6 will satisfy a first-order

condition for minimization of S,

If the derivative of the average moment function m(#) converges uniformly in probability to its expectation

in a neighborhood of fy (which must be established in the usual way), then consistency of 0 implies that

0] e 28]

This, plus convergence in probability of A, to Ay, means that the first-order condition can be rewritten as
0 = M}y Agm(6) + o, (1 (0)).

Inserting the usual Taylor’s series expansion of m(@) around the true value 6y,

~
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yields

om(0)
o0’

M) Agin(8o) + My Ao Mo (8 — 60) + 7,

0 = M)A [m(bo) + +0,(())
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where 1, is a generic remainder term. Assuming it can be verified that

o)

by the usual methods, the normalized difference between the estimator 0 and the true value Ay has the

asymptotically-linear representation
V(0 — o) = [M}AgMo) "L M} Ag - v/rim(8o) + 0p(1).

But /nm(fp) is a normalized sample average of mean-zero, i.i.d. random vectors m(z;,6p), so by the

Lindeberg-Levy central limit theorem,
Vm(6o) —* N(0, Vo),
where

Vo = Var[m(zi,00)]

= E[m(zi, Qo)m(zz‘; 00)1]7

and thus

V(0 — o) —% N(0, [M) Ag M)~ My AoV Ag Mo [ M) Ag Mo 1),

which has a rather ungainly looking expression for the asymptotic covariance matrix.

By definition, an efficient choice of limiting weight matrix Ay will minimize the asymptotic covariance
matrix of 0 (in a positive semi-definite sense). The same proof as for the Gauss-Markov theorem can be
used to show that this product of matrices will be minimized by choosing Ay to make the “middle matrix”

M{AoVoAgMy equal to an “outside matrix” M|{AoMp being inverted. That is,
[M{ Ao Mo) ™ M{ AoV Ao Mo [ M Ao M) ™t > [M{Vy * Mo] ™,

where the inequality means the difference in the two matrices is positive semi-definite; equality is obviously
achieved if Ag is chosen as

AS = Voil = [Var[m(zi, 00)“_1 )



up to a (positive) constant of proportionality.
A feasible version of the optimal GMM estimator requires a consistent estimator of the covariance
matrix Vp. This can be obtained in two steps: first, by calculation of a non-optimal estimator 6 using

an arbitrary sequence A, for which 0 is consistent (e.g., A, = 1), and then by construction of a sample

analogue to V,
n
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The resulting optimal GMM estimator 0" will have asymptotic distribution
Vi(®" — 8o) = N(0, [MgVy ' Mo ™),

and its asymptotic covariance matrix is consistently estimated by [M 'WoLM 71, where

1= Om(z;, 9*)
M= - —_—.
n ; o0’
Inference on 6y can then be based upon the usual large-sample normal theory.

For the example of the linear model with endogenous regressors,

yi = wib + e,

0 = Elegiz) = El(yi — wifo)zi],

the relevant matrices for the asymptotic distribution of 0" are

My = E[a[(yz —az)/geo)mi]]

= b [w,w;]
and

Vo = Var[(y; — wi0o)x;]

= EB[(yi — wifo)*z;}].

The first step in efficient estimation of 6y might be based upon the (inefficient) two-stage least squares
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which is a GMM estimator using m(z;, 0) = (y; — w}0)x;,

1 n
M = [ E xzw;]
n
=1

= (M'A,M)"*M'A,

and
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With this preliminary, y/n-consistent estimator of 6y, the efficient weight matrix is consistently estimated

as
1< -
Vvl= [n Z(yl — wgﬁ)Qmim;] ,
and the efficient GMM estimator is

~ % A, A ~ A A

=M'V'M)TTMV!

which has the approximate normal distribution

A%

1 ~,~ 1 .~
91M<&”nmfv—m@—v.

If the error terms ¢; = y; — w.6y happen to be homoskedastic,

Varlel|z] = o*(z)
= o3,
then
Vo = Elegiwa]]

= 0gB[zal]

= 0(2) plim A,,



and the 2SLS estimator 8 would be asymptotically efficient, and asymptotically equivalent to the efficient
GMM estimator 0.

Conditional Moment Restrictions and Efficient Instrumental Variables

Now consider the case when a stronger conditional moment restriction
0= E[u(zl, 90)‘.%1] = E[ul\ml],

where u(z;,0) is some g-dimensional vector of known functions of the (i.i.d.) random vector z; and 6 €
© C RP. (Since E[u;|z;] is a random variable, we interpret such equalities as holding with probability one,
here and throughout.) Such moment restrictions can sometimes be derived as consequences of expected
utility maximization; more generally, they are often imposed on additive error terms in structural models.
For instance, for the linear equation

yi = wibo + €,

a common assumption is that the error terms ¢; have conditional mean zero given the instrumental variables
Ty,

Elg;|z;] =0,

in which case the moment function u(-) is just the residual function u(z;,0) = y; — w0, with u(z;, 0y) = ;.
Here ¢ = 1, which is generally less than p, the number of components of 8y to be estimated.

Assuming the function u(-) is bounded above (on ©) by some square-integrable function, i.e.,
Sup lu(zi,0)l] < b(zi),  E[b(z:)]* < o0,
it follows (by iterated expectations) that an unconditional moment restriction

0 = Elh(zi)u(z,00)] (**%)

E[m(zi, 90)]
holds, where h(.) is any r x ¢ matrix of functions of x; with
Ellh(x)|?] = Eltr{h(z:)[h(z:))'}] < co.

We can think of each column of h(x;) as a vector of “instrumental variables” for the corresponding com-

ponent of u(z;,0y), whose products are added together to obtain the (unconditional) moment function



m(-). While the dimension ¢ of the conditional moment function u(-) needs not be as large as the num-
ber of parameters p, the number of rows r of the matrix of instrumental variables h(x;) must be no
smaller than p if estimation of 6y is to be based upon the implied unconditional moment restriction
0= Elm(z;,00)] = E[h(z;)u(z;, 6p)]-

For a given choice of instrument matrix h(x;), the theory for unconditional moment restrictions above
can be applied to determine the form and asymptotic distribution of the optimal GMM estimator 0" =

@*(h); that is, the optimal estimator is

A%

= arg mén[m(ﬁ)]’vflm(ﬁ)

= arg Hgn[m(9)]"7_lm(9),

where now
m(0) = izn:h(l’i)u(zue)
and -
plimV = Vp
= Var[h(z:)u(z,00)]
= E[h(zi)u(z,00)[u(z, 00)]' [R(x:)]']
= Eh(z)2(zi)[h(z)]],
for

YX(zi) = Var(u(z,6o)|z)

= Elu(z,00)[u(zi, 00)]'a:].
The asymptotic distribution of 0" is thus
V(" — o) — N (0, [MgVg Mol ™),
where

My = E[



In terms of the function h(x;), the asymptotic covariance matrix of 0" is

2t (B Sl ]
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To find the best choice of instrumental variable matrix h(x;) across all possible square-integrable functions
of the conditioning variables x;, we would minimize this matrix over h(z;). By the same Gauss-Markov-
type argument as for the optimal GMM estimator, the best choice h*(z;) will equate the “inner matrix”
Elh(x;)%(x;)[h(z;)]] with the “outer matrix” E [h(z;)du(z;,00)/00'] (and its transpose). By inspection,
this happens when

ou(z;,0), 1’ _
st ey

D) - [S(a)] .

W (z;) = E [

So in this case the asymptotic covariance matrix reduces to

E <E h*(mi)%(ggﬁo)

= [B(D@) @) D))
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This formula looks very similar to the form of the asymptotic covariance matrix [M{V, ' Mp)~* for GMM
estimation with unconditional moment restrictions, except that the expected derivative and variance
matrices My and Vj are replaced by their “conditional” analogues D(z;) and ¥(z;), and the product
D(z;)[2(z;)] "' D(z;) is averaged over z; before being inverted.

Again returning to the example of the linear model with endogenous regressors,

yi = wiby+e,

0 = Elezi] = E[(yi — w;fo)zi],

here ¢ =1,

D) = E [a“(;;’,%) m]
_ & [3(% 5;1;90) m]
= —FEwjlv;]

)



and

Y(xy) = 02(a:i)
= Var((yi — wibo)|z)

= Var(eilz;).

In the special case with w; = x; (i.e., all regressors are exogenous), D(z;) = «}, and the optimal sample
moment condition for the restriction E|e;|z;] = 0 is the first-order condition for weighted LS estimation,

with weights 1/02(z;) inversely proportional to the conditional variance of the errors.

Global Optimality of GMM
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