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Most estimation methods in econometrics can be recast as method-of-moments estimators, where

the p-dimensional parameter of interest �0 is assumed to satisfy an unconditional moment restriction

E[m(zi; �0)] � �(�) = 0 (*)

for some r-dimensional vector of functions m(zi; �) of the observable data vector zi and possible parameter

value � in some parameter space �: Assuming that �0 is the unique solution of this population moment

equation (equivalent to identi�cation when only (*) is imposed), a method-of-moments estimator �̂ is

de�ned as a solution (or near-solution) of a sample analogue to (*), replacing the population expectation

by a sample average.

Generally, for �0 to uniquely solve (*), the number of components r of the moment function m(�) must

be at least as large as the number of components p in � �that is, r � p; known as the �order condition�

for identi�cation. When �0 is identi�ed and r = p �termed �just identi�cation��a natural analogue of

the population moment equation for �0 de�nes the method-of-moment estimator as the solution to the

p-dimensional sample moment equation

�m(�̂) � 1

n

nX
�=1

m(zi; �̂) (**)

= 0;

where z1; :::; zn are all assumed to satisfy (*). The simplest setting, assumed hereafter, is that fzig is

a random sample (i.e., zi is i.i.d), but this is hardly necessary; the fzig can be dependent and/or have

heterogeneous distributions, provided an �ergodicity�result �m (�)� E[ �m(�)] p! 0 can be established.

Examples of estimators in this class include the maximum likelihood estimator (with m(zi; �) the �score

function,� i.e., derivative of the log density of zi with respect to � for an i.i.d. sample) and the classical

least squares estimator (with zi � (yi; x
0
i)
0 and m(zi; �) = (yi � x0i�)xi; the product of the residuals and

regressors). Another example is the instrumental variables estimator for the linear model

yi = w
0
i�0 + "i;
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where yi and wi 2 Rp are subvectors of zi and the error term "i is assumed to be orthogonal to some other

subvector xi 2 Rr of zi; i.e.,

E["ixi] = E[(yi � w0i�0)xi] = 0:

When r = p �i.e., the number of �instrumental variables�xi equals the number of right-hand-side regressors

wi �then the instrumental variables estimator

�̂ =

"
1

n

nX
�=1

xiw
0
i

#�1
1

n

nX
�=1

xiyi

is the solution to (**) when m(zi; �) = (yi � w0i�)xi:

Returning to the general moment condition (*), if r > p �termed �overidenti�cation�of �0 �the system

of equations �m(�) = 0 is overdetermined, and in general no solution of this sample analogue to (*) will

exist. In this case, an analogue estimator can be de�ned to make �m(�) �close to zero,�by de�ning

�̂ = argmin
�
Sn(�);

where Sn(�) is a quadratic form in the sample moment function �m(�);

Sn(�) � [ �m(�)]0An �m(�);

and An some non-negative de�nite, symmetric �weight matrix,� assumed to converge in probability to

some limiting value A0; i.e.,

An !p A0:

Here �̂ is called a generalized method of moments (GMM) estimator, with large-sample properties that

will depend upon the limiting weight matrix A0: Examples of possible (nonstochastic) weight matrices are

An = Ir; an r � r identity matrix �which yields Sn(�) = jj �m(�)jj2 �or

An =

�
Ip 0
0 0

�
;

for which the estimator �̂ sets the �rst p components of �m(�̂) equal to zero. More generally, An will have

estimated components; once the asymptotic (normal) distribution of �̂ is derived for a given value of A0;

the optimal choice of A0 (to minimize the asymptotic variance) can be determined, and a feasible e¢ cient

estimator can be constructed if this optimal weight matrix can be consistently estimated.

2



The consistency theory for �̂ is standard for extremum estimators: the �rst step is to demonstrate

uniform consistency of Sn(�) to its probability limit

S(�) � [�(�)]0A0�(�);

that is,

sup
�
jSn(�)� S(�)j !p 0;

and then to establish that the limiting minimand S(�) is uniquely minimized at � = �0; which follows if

A
1=2
0 �(�) 6= 0 if � 6= �0;

where A1=20 is any square root of the weight matrix A0: Establishing both the uniform convergence of the

minimand Sn to its limit S and uniqueness of �0 as the minimizer of S will require primitive assumptions

on the distribution of zi; the form of the moment function m(�); and the limiting weight matrix A0 which

vary with the particular problem.

Among the standard �regularity conditions�on the moment function m(�) is an assumption that it is

�smooth�(i.e., continuously di¤erentiable) in �; then, if �0 is assumed to be in the interior of the parameter

space �; then with probability approaching one the consistent GMM estimator �̂ will satisfy a �rst-order

condition for minimization of S;

0 =
@Sn(�̂)

@�

= 2

"
@ �m(�̂)

@�0

#0
An �m(�̂):

If the derivative of the average moment function �m(�) converges uniformly in probability to its expectation

in a neighborhood of �0 (which must be established in the usual way), then consistency of �̂ implies that"
@ �m(�̂)

@�0

#
!p M0 �

�
@�(�0)

@�0

�
:

This, plus convergence in probability of An to A0; means that the �rst-order condition can be rewritten as

0 =M 0
0A0 �m(�̂) + op( �m(�̂)):

Inserting the usual Taylor�s series expansion of �m(�̂) around the true value �0;

�m(�̂) = �m(�0) +

"
@ �m(�̂)

@�0

#
(�̂ � �0) + op(jj�̂ � �0jj);
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yields

0 = M 0
0A0

"
�m(�0) +

"
@ �m(�̂)

@�0

#
(�̂ � �0) + op(jj�̂ � �0jj)

#
+ op( �m(�̂))

� M 0
0A0 �m(�0) +M

0
0A0M0(�̂ � �0) + rn;

where rn is a generic remainder term. Assuming it can be veri�ed that

rn = op

�
1p
n

�
by the usual methods, the normalized di¤erence between the estimator �̂ and the true value �0 has the

asymptotically-linear representation

p
n(�̂ � �0) = [M 0

0A0M0]
�1M 0

0A0 �
p
n �m(�0) + op(1):

But
p
n �m(�0) is a normalized sample average of mean-zero, i.i.d. random vectors m(zi; �0); so by the

Lindeberg-Levy central limit theorem,

p
n �m(�0)!d N (0; V0);

where

V0 � V ar[m(zi; �0)]

= E[m(zi; �0)m(zi; �0)
0];

and thus
p
n(�̂ � �0)!d N (0; [M 0

0A0M0]
�1M 0

0A0V0A0M0[M
0
0A0M0]

�1);

which has a rather ungainly looking expression for the asymptotic covariance matrix.

By de�nition, an e¢ cient choice of limiting weight matrix A0 will minimize the asymptotic covariance

matrix of �̂ (in a positive semi-de�nite sense). The same proof as for the Gauss-Markov theorem can be

used to show that this product of matrices will be minimized by choosing A0 to make the �middle matrix�

M 0
0A0V0A0M0 equal to an �outside matrix�M 0

0A0M0 being inverted. That is,

[M 0
0A0M0]

�1M 0
0A0V0A0M0[M

0
0A0M0]

�1 � [M 0
0V

�1
0 M0]

�1;

where the inequality means the di¤erence in the two matrices is positive semi-de�nite; equality is obviously

achieved if A0 is chosen as

A�0 � V �10 = [V ar[m(zi; �0)]]
�1 ;
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up to a (positive) constant of proportionality.

A feasible version of the optimal GMM estimator requires a consistent estimator of the covariance

matrix V0: This can be obtained in two steps: �rst, by calculation of a non-optimal estimator �̂ using

an arbitrary sequence An for which �̂ is consistent (e.g., An = Ir), and then by construction of a sample

analogue to V0;

V̂ � 1

n

nX
�=1

m(zi; �̂)
h
m(zi; �̂)

i0
:

The resulting optimal GMM estimator �̂
�
will have asymptotic distribution

p
n(�̂

� � �0)!d N (0; [M 0
0V

�1
0 M0]

�1);

and its asymptotic covariance matrix is consistently estimated by [M̂ 0V̂ �1M̂ ]�1; where

M̂ � 1

n

nX
�=1

@m(zi; �̂
�
)

@�0
:

Inference on �0 can then be based upon the usual large-sample normal theory.

For the example of the linear model with endogenous regressors,

yi = w0i�0 + "i;

0 = E["ixi] = E[(yi � w0i�0)xi];

the relevant matrices for the asymptotic distribution of �̂
�
are

M0 = E

�
@[(yi � w0i�0)xi]

@�0

�
= E

�
xiw

0
i

�
and

V0 = V ar[(yi � w0i�0)xi]

= E[(yi � w0i�0)2xix0i]:

The �rst step in e¢ cient estimation of �0 might be based upon the (ine¢ cient) two-stage least squares
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(2SLS) estimator

�̂ =

0@" 1
n

nX
�=1

wix
0
i

#"
1

n

nX
�=1

xix
0
i

#�1 "
1

n

nX
�=1

xiw
0
i

#1A�1

�
"
1

n

nX
�=1

wix
0
i

#"
1

n

nX
�=1

xix
0
i

#�1 "
1

n

nX
�=1

xiyi

#
;

� (M̂ 0AnM̂)
�1M̂ 0An

"
1

n

nX
�=1

xiyi

#

which is a GMM estimator using m(zi; �) � (yi � w0i�)xi;

M̂ �
"
1

n

nX
�=1

xiw
0
i

#
and

An �
"
1

n

nX
�=1

xix
0
i

#�1
:

With this preliminary,
p
n-consistent estimator of �0; the e¢ cient weight matrix is consistently estimated

as

V̂ �1 �
"
1

n

nX
�=1

(yi � w0i�̂)2xix0i

#�1
;

and the e¢ cient GMM estimator is

�̂
� � (M̂ 0V̂ �1M̂)�1M̂ 0V̂ �1

"
1

n

nX
�=1

xiyi

#
;

which has the approximate normal distribution

�̂
�A
~N

�
�0;

1

n
(M̂ 0V̂ �1M̂)�1

�
:

If the error terms "i � yi � w0i�0 happen to be homoskedastic,

V ar["ijxi] � �2(xi)

= �20;

then

V0 � E["2ixix
0
i]

= �20E[xix
0
i]

= �20 plim An;
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and the 2SLS estimator �̂ would be asymptotically e¢ cient, and asymptotically equivalent to the e¢ cient

GMM estimator �̂
�
.

Conditional Moment Restrictions and E¢ cient Instrumental Variables

Now consider the case when a stronger conditional moment restriction

0 = E[u(zi; �0)jxi] � E[uijxi];

where u(zi; �) is some q-dimensional vector of known functions of the (i.i.d.) random vector zi and � 2

� � Rp: (Since E[uijxi] is a random variable, we interpret such equalities as holding with probability one,

here and throughout.) Such moment restrictions can sometimes be derived as consequences of expected

utility maximization; more generally, they are often imposed on additive error terms in structural models.

For instance, for the linear equation

yi = w
0
i�0 + "i;

a common assumption is that the error terms "i have conditional mean zero given the instrumental variables

xi;

E["ijxi] = 0;

in which case the moment function u(�) is just the residual function u(zi; �) = yi�w0i�; with u(zi; �0) � "i:

Here q = 1; which is generally less than p; the number of components of �0 to be estimated.

Assuming the function u(�) is bounded above (on �) by some square-integrable function, i.e.,

sup
�
jju(zi; �)jj � b(zi); E[b(zi)]

2 <1;

it follows (by iterated expectations) that an unconditional moment restriction

0 = E[h(xi)u(zi; �0)] (***)

� E[m(zi; �0)]

holds, where h(:) is any r � q matrix of functions of xi with

E[jjh(xi)jj2] � E[trfh(xi)[h(xi)]0g] <1:

We can think of each column of h(xi) as a vector of �instrumental variables� for the corresponding com-

ponent of u(zi; �0); whose products are added together to obtain the (unconditional) moment function
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m(�): While the dimension q of the conditional moment function u(�) needs not be as large as the num-

ber of parameters p; the number of rows r of the matrix of instrumental variables h(xi) must be no

smaller than p if estimation of �0 is to be based upon the implied unconditional moment restriction

0 � E[m(zi; �0)] = E[h(xi)u(zi; �0)]:

For a given choice of instrument matrix h(xi); the theory for unconditional moment restrictions above

can be applied to determine the form and asymptotic distribution of the optimal GMM estimator �̂
�
=

�̂
�
(h); that is, the optimal estimator is

�̂
�
= argmin

�
[ �m(�)]0V̂ �1 �m(�)

= argmin
�
[ �m(�)]0V̂ �1 �m(�);

where now

�m(�) � 1

n

nX
�=1

h(xi)u(zi; �)

and

plim V̂ � V0

� V ar[h(xi)u(zi; �0)]

= E[h(xi)u(zi; �0)[u(zi; �0)]
0[h(xi)]

0]

= E[h(xi)�(xi)[h(xi)]
0];

for

�(xi) � V ar(u(zi; �0)jxi)

= E[u(zi; �0)[u(zi; �0)]
0jxi]:

The asymptotic distribution of �̂
�
is thus

p
n(�̂

� � �0)!d N (0; [M 0
0V

�1
0 M0]

�1);

where

M0 � E

�
@m(zi; �0)

@�0

�
= E

�
h(xi)

@u(zi; �0)

@�0

�
:
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In terms of the function h(xi); the asymptotic covariance matrix of �̂
�
is

[M 0
0V

�1
0 M0]

�1 =

�
E

�
h(xi)

@u(zi; �0)

@�0

�0
�
�
E[h(xi)�(xi)[h(xi)]

0]
��1 � E �h(xi)@u(zi; �0)

@�0

���1
:

To �nd the best choice of instrumental variable matrix h(xi) across all possible square-integrable functions

of the conditioning variables xi; we would minimize this matrix over h(xi): By the same Gauss-Markov-

type argument as for the optimal GMM estimator, the best choice h�(xi) will equate the �inner matrix�

E[h(xi)�(xi)[h(xi)]
0] with the �outer matrix�E

�
h(xi)@u(zi; �0)=@�

0� (and its transpose). By inspection,
this happens when

h�(xi) = E

�
@u(zi; �0)

@�0
jxi
�0
� [�(xi)]�1

� D(xi)
0 � [�(xi)]�1:

So in this case the asymptotic covariance matrix reduces to�
E

�
E

�
h�(xi)

@u(zi; �0)

@�0

�0
�
�
E[h�(xi)�(xi)[h

�(xi)]
0]
��1 � E �h�(xi)@u(zi; �0)

@�0

����1
=

�
E
�
D(xi)

0[�(xi)]
�1D(xi)

���1
=

�
E

�
E

�
@u(zi; �0)

@�0
jxi
�0
� [�(xi)]�1E

�
@u(zi; �0)

@�0
jxi
����1

:

This formula looks very similar to the form of the asymptotic covariance matrix [M 0
0V

�1
0 M0]

�1 for GMM

estimation with unconditional moment restrictions, except that the expected derivative and variance

matrices M0 and V0 are replaced by their �conditional� analogues D(xi) and �(xi); and the product

D(xi)
0[�(xi)]�1D(xi) is averaged over xi before being inverted.

Again returning to the example of the linear model with endogenous regressors,

yi = w0i�0 + "i;

0 = E["ixi] = E[(yi � w0i�0)xi];

here q = 1,

D(xi) � E

�
@u(zi; �0)

@�0
jxi
�

= E

�
@(yi � w0i�0)

@�0
jxi
�

= �E[w0ijxi]
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and

�(xi) � �2(xi)

= V ar((yi � w0i�0)jxi)

� V ar("ijxi):

In the special case with wi = xi (i.e., all regressors are exogenous), D(xi) = x0i; and the optimal sample

moment condition for the restriction E["ijxi] = 0 is the �rst-order condition for weighted LS estimation,

with weights 1=�2(xi) inversely proportional to the conditional variance of the errors.

Global Optimality of GMM

10


