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The Nadaraya-Watson Kernel Regression Estimator

Suppose that zi � (yi; x0i is a (p+1)-dimensional random vector that is jointly continuously distributed,

with yi being a scalar random variable. Denoting the joint density function of zi as fy;x(y; x); the conditional

mean g(x) of yi given xi = x (assuming it exists) is given by

g(x) � E[yijxi = x]

=

R
y � fy;x(y; x)dyR
fy;x(y; x)dy

=

R
y � fy;x(y; x)dy

fx(x)
;

where fx(x) is the marginal density function of xi: If f̂y;x(y; x) is the kernel density estimator of fy;x(y; x);

i.e.,

f̂y;x(y; x) =
1

n

nX
i=1

1

hp+1
~K

�
y � yi
h

;
x� xi
h

�
for some (p + 1)-dimensional kernel function ~K(v; u) satisfying

R
~K(v; u)dvdu = 1; then an analogue

estimator for g(x) = E[yijxi = x] would substitute the kernel estimator f̂y;x for fy;x in the expression for

g(x): Further assuming that the �rst �moment�of ~K is zero,Z �
u
v

�
~K(v; u)dvdu = 0

(which could be ensured by choosing a ~K that is symmetric about zero with bounded support), this

analogue estimator for g(x) can be simpli�ed to

ĝ(x) =

R
y � f̂y;x(y; x)dyR
f̂y;x(y; x)dy

=
1
nhp

Pn
i=1K

�
x�xi
h

�
� yi

1
nhp

Pn
i=1K

�
x�xi
h

� ;

where

K(u) �
Z
~K(v; u)dv:
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The estimator ĝ(x); known as the Nadaraya-Watson kernel regression estimator, can be written as a

weighted average

ĝ(x) �
X
i

win � yi;

where

win �
K
�
x�xi
h

�Pn
j=1K

�
x�xj
h

�
has

P
iwin = 1. Since K(u)! 0 as kuk ! 1 (because K is integrable), it follows that win ! 0 for �xed

h as kx� xik ! 1; and also that win ! 0 for �xed kx� xik as h ! 0; hence ĝ(x) is a �locally-weighted

average�of the dependent variable yi, with increasing weight put on observations with values of xi that

are close to the target value x as n!1:

For the special case of p = 1 (i.e., one regressor) and K(u) = 1fjuj � 1=2g (the density of a

Uniform(�1=2; 1=2) variate), the kernel regression estimator ĝ(x) takes the formPn
i=1 1fx� h=2 � xi � x+ h=2g � yiPn
i=1 1fx� h=2 � xi � x+ h=2g

;

an average of yi values with corresponding xi values within h=2 of x: This estimator is sometimes called

the �regressogram,�in analogy with the histogram estimator of a density function at x:

Derivation of the conditions for consistency of ĝ(x); and of its rate of convergence to g(x); follow the

analogous derivations for the kernel density estimator. Indeed, ĝ(x) can be written as

ĝ(x) =
t̂(x)

f̂(x)
;

where f̂(x) is the usual kernel density estimator of the marginal density of xi; so the conditions for

consistency of the denominator of ĝ(x) � i.e., h ! 0 and nhp ! 1 as n ! 1 � have already been

established, and it is easy to show the same conditions imply that

t̂(x)!p t(x) � g(x)f(x):

The bias and variance of the numerator t̂(x) are also straightforward extensions of the corresponding
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formulae for the kernel density estimator f̂(x); here

E[t̂(x)] = E

"
1

nhp

nX
i=1

K

�
x� xi
h

�
� yi

#

= E

"
1

nhp

nX
i=1

K

�
x� xi
h

�
� g(xi)

#

=

Z
1

hp
K

�
x� z
h

�
g(x)f(z)dz

=

Z
K(u)g(x� hu)f(x� hu)du;

which is the same formula as for the expectation of f̂(x) with �g(x)f(x)� replacing �f(x)� throughout.

Assuming the product g(x)f(x) is twice continously di¤erentiable, etc., the same Taylor�s series expansion

as for the bias of f̂(x) yields the bias of t̂(x) as

E[t̂(x)]� g(x)f(x) =
h2

2
tr

�
@2g(x)f(x)

@x@x0
�
Z
uu0K(u)du

�
+ o(h2)

= O(h2):

And the variance of t̂(x) is

V ar(t̂(x)) = V ar

 
1

n

nX
i=1

1

hp
K

�
x� xi
h

�
yi

!

=
1

n
E

�
1

hp
K

�
x� xi
h

�
yi

�2
� 1

n
(E[t̂(x)])2

=
1

n

Z
1

h2p

�
K

�
x� z
h

��2
[�2(z) + g(z)2]f(z)dz � 1

n
(E[t̂(x)])2

=
1

nhp

Z
[K (u)]2 [�2(x� hu) + g(x� hu)2]f(x� hu)du� 1

n
(E[f̂(x)])2

=
[�2(x) + g(x)2]f(x)

nhp

Z
[K (u)]2 du+ o

�
1

nhp

�
;

where �2 (x) � V ar[yijxi = x]. So, as for the kernel density estimator, the MSE of the numerator of ĝ(x)

is of order [O(h2)]2 +O(1=nhp); and the optimal bandwidth h� has

h� = O

 �
1

n

�1=(p+4)!
;

just like f̂(x): A �delta method�argument then implies that this yields the best rate of convergence of the

ratio ĝ(x) = t̂(x)=f̂(x) to the true value g(x):

Derivation of the asymptotic distribution of ĝ(x) uses that �delta method�argument. First, the Lia-

punov condition can be veri�ed for the triangular array

zin �
1

hp
K

�
x� xi
h

�
(�1 + �2yi);
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where �1 and �2 are arbitrary constants, leading to the same requirement as for f̂(x) (namely, nhp ! 1

as h! 0 and n!1) for zn to be asymptotically normal, with

p
nhp(�zn � E[�zn]) =

p
nhp

�
�1(f̂(x)� E[f̂(x)])� �2(t̂(x)� E

�
t̂(x)

�
)
�

! dN (0;
�
�21 + 2�1�2g(x) + �

2
2

�
g(x)2 + �2(x)

��
f(x)

Z
[K (u)]2 du): (**)

The Cramér-Wald device then implies that the numerator t̂(x) and denominator f̂(x) are jointly asymp-

totically normal, and the usual delta method approximation

p
nhp(ĝ(x)� E[t̂(x)]=E[f̂(x)]) =

p
nhp

�
E[f̂(x)](t̂(x)� E[t̂(x)])� E[t̂(x)](f̂(x)� E[f̂(x)])

�
f̂(x)E[f̂(x)]

=

p
nhp

�
(t̂(x)� E[t̂(x)])� g(x)(f̂(x)� E[f̂(x)])

�
f(x)

+op

�p
nhp

�
t̂(x)� E[t̂(x)]

��
+ op

�p
nhp(f̂(x)� E[f̂(x)])

�
yields

p
nhp(ĝ(x)� E[t̂(x)]=E[f̂(x)])!d N (0; �

2(x)

f(x)

Z
[K (u)]2 du)

after (**) is applied with �1 = �g(x)=f(x) and �2 = 1=f(x):

When the bandwidth tends to zero at the optimal rate,

hn = c

�
1

n

�1=(p+4)
;

then the asymptotic distribution of ĝ(x) is biased when centered at the true value g(x);

p
nhp(ĝ(x)� g(x))!d N (�(x); �

2(x)

f(x)

Z
[K (u)]2 du);

where now

�(x) � lim

p
nhp

h
(E[t̂(x)]� t(x))� g(x)(E[f̂(x)]� f(x))

i
f(x)

=
c(p+4)=2

2f(x)
tr

��
@2g(x)f(x)

@x@x0
� g(x)@

2f(x)

@x@x0

�
�
Z
uu0K(u)du

�
:

And if the bandwidth tends to zero faster than the optimal rate, i.e., �undersmoothing� is assumed, so

that

h� = o

�
1

n

�1=(p+4)
;
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then

lim

p
nhp

h
(E[t̂(x)]� t(x))� g(x)(E[f̂(x)]� f(x))

i
f(x)

= 0;

and the bias term vanishes from the asymptotic distribution,

p
nhp(ĝ(x)� g(x))!d N (0; �

2(x)

f(x)

Z
[K (u)]2 du);

as for the kernel density estimator f̂(x):

Discrete Regressors

Some Other Nonparametric Regression Methods

Cross-Validation
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