Notes On Nonparametric Regression Estimation

James L. Powell
Department of Economics
University of California, Berkeley

The Nadaraya-Watson Kernel Regression Estimator

Suppose that $z_{i} \equiv\left(y_{i}, x_{i}^{\prime}\right.$ is a $(p+1)$-dimensional random vector that is jointly continuously distributed, with y_{i} being a scalar random variable. Denoting the joint density function of z_{i} as $f_{y, x}(y, x)$, the conditional mean $g(x)$ of y_{i} given $x_{i}=x$ (assuming it exists) is given by

$$
\begin{aligned}
g(x) & \equiv E\left[y_{i} \mid x_{i}=x\right] \\
& =\frac{\int y \cdot f_{y, x}(y, x) d y}{\int f_{y, x}(y, x) d y} \\
& =\frac{\int y \cdot f_{y, x}(y, x) d y}{f_{x}(x)}
\end{aligned}
$$

where $f_{x}(x)$ is the marginal density function of x_{i}. If $\hat{f}_{y, x}(y, x)$ is the kernel density estimator of $f_{y, x}(y, x)$, i.e.,

$$
\hat{f}_{y, x}(y, x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^{p+1}} \tilde{K}\left(\frac{y-y_{i}}{h}, \frac{x-x_{i}}{h}\right)
$$

for some $(p+1)$-dimensional kernel function $\tilde{K}(v, u)$ satisfying $\int \tilde{K}(v, u) d v d u=1$, then an analogue estimator for $g(x)=E\left[y_{i} \mid x_{i}=x\right]$ would substitute the kernel estimator $\hat{f}_{y, x}$ for $f_{y, x}$ in the expression for $g(x)$. Further assuming that the first "moment" of \tilde{K} is zero,

$$
\int\binom{u}{v} \tilde{K}(v, u) d v d u=0
$$

(which could be ensured by choosing a \tilde{K} that is symmetric about zero with bounded support), this analogue estimator for $g(x)$ can be simplified to

$$
\begin{aligned}
\hat{g}(x) & =\frac{\int y \cdot \hat{f}_{y, x}(y, x) d y}{\int \hat{f}_{y, x}(y, x) d y} \\
& =\frac{\frac{1}{n h^{p}} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) \cdot y_{i}}{\frac{1}{n h^{p}} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)}
\end{aligned}
$$

where

$$
K(u) \equiv \int \tilde{K}(v, u) d v
$$

The estimator $\hat{g}(x)$, known as the Nadaraya-Watson kernel regression estimator, can be written as a weighted average

$$
\hat{g}(x) \equiv \sum_{i} w_{i n} \cdot y_{i},
$$

where

$$
w_{i n} \equiv \frac{K\left(\frac{x-x_{i}}{h}\right)}{\sum_{j=1}^{n} K\left(\frac{x-x_{j}}{h}\right)}
$$

has $\sum_{i} w_{i n}=1$. Since $K(u) \rightarrow 0$ as $\|u\| \rightarrow \infty$ (because K is integrable), it follows that $w_{i n} \rightarrow 0$ for fixed h as $\left\|x-x_{i}\right\| \rightarrow \infty$, and also that $w_{i n} \rightarrow 0$ for fixed $\left\|x-x_{i}\right\|$ as $h \rightarrow 0$; hence $\hat{g}(x)$ is a "locally-weighted average" of the dependent variable y_{i}, with increasing weight put on observations with values of x_{i} that are close to the target value x as $n \rightarrow \infty$.

For the special case of $p=1$ (i.e., one regressor) and $K(u)=1\{|u| \leq 1 / 2\}$ (the density of a Uniform($-1 / 2,1 / 2$) variate), the kernel regression estimator $\hat{g}(x)$ takes the form

$$
\frac{\sum_{i=1}^{n} 1\left\{x-h / 2 \leq x_{i} \leq x+h / 2\right\} \cdot y_{i}}{\sum_{i=1}^{n} 1\left\{x-h / 2 \leq x_{i} \leq x+h / 2\right\}}
$$

an average of y_{i} values with corresponding x_{i} values within $h / 2$ of x. This estimator is sometimes called the "regressogram," in analogy with the histogram estimator of a density function at x.

Derivation of the conditions for consistency of $\hat{g}(x)$, and of its rate of convergence to $g(x)$, follow the analogous derivations for the kernel density estimator. Indeed, $\hat{g}(x)$ can be written as

$$
\hat{g}(x)=\frac{\hat{t}(x)}{\hat{f}(x)},
$$

where $\hat{f}(x)$ is the usual kernel density estimator of the marginal density of x_{i}, so the conditions for consistency of the denominator of $\hat{g}(x)$ - i.e., $h \rightarrow 0$ and $n h^{p} \rightarrow \infty$ as $n \rightarrow \infty$ - have already been established, and it is easy to show the same conditions imply that

$$
\hat{t}(x) \rightarrow^{p} t(x) \equiv g(x) f(x)
$$

The bias and variance of the numerator $\hat{t}(x)$ are also straightforward extensions of the corresponding
formulae for the kernel density estimator $\hat{f}(x)$; here

$$
\begin{aligned}
E[\hat{t}(x)] & =E\left[\frac{1}{n h^{p}} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) \cdot y_{i}\right] \\
& =E\left[\frac{1}{n h^{p}} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) \cdot g\left(x_{i}\right)\right] \\
& =\int \frac{1}{h^{p}} K\left(\frac{x-z}{h}\right) g(x) f(z) d z \\
& =\int K(u) g(x-h u) f(x-h u) d u
\end{aligned}
$$

which is the same formula as for the expectation of $\hat{f}(x)$ with " $g(x) f(x)$ " replacing " $f(x)$ " throughout. Assuming the product $g(x) f(x)$ is twice continously differentiable, etc., the same Taylor's series expansion as for the bias of $\hat{f}(x)$ yields the bias of $\hat{t}(x)$ as

$$
\begin{aligned}
E[\hat{t}(x)]-g(x) f(x) & =\frac{h^{2}}{2} \operatorname{tr}\left(\frac{\partial^{2} g(x) f(x)}{\partial x \partial x^{\prime}} \cdot \int u u^{\prime} K(u) d u\right)+o\left(h^{2}\right) \\
& =O\left(h^{2}\right) .
\end{aligned}
$$

And the variance of $\hat{t}(x)$ is

$$
\begin{aligned}
\operatorname{Var}(\hat{t}(x)) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^{p}} K\left(\frac{x-x_{i}}{h}\right) y_{i}\right) \\
& =\frac{1}{n} E\left(\frac{1}{h^{p}} K\left(\frac{x-x_{i}}{h}\right) y_{i}\right)^{2}-\frac{1}{n}(E[\hat{t}(x)])^{2} \\
& =\frac{1}{n} \int \frac{1}{h^{2 p}}\left[K\left(\frac{x-z}{h}\right)\right]^{2}\left[\sigma^{2}(z)+g(z)^{2}\right] f(z) d z-\frac{1}{n}(E[\hat{t}(x)])^{2} \\
& =\frac{1}{n h^{p}} \int[K(u)]^{2}\left[\sigma^{2}(x-h u)+g(x-h u)^{2}\right] f(x-h u) d u-\frac{1}{n}(E[\hat{f}(x)])^{2} \\
& =\frac{\left[\sigma^{2}(x)+g(x)^{2}\right] f(x)}{n h^{p}} \int[K(u)]^{2} d u+o\left(\frac{1}{n h^{p}}\right),
\end{aligned}
$$

where $\sigma^{2}(x) \equiv \operatorname{Var}\left[y_{i} \mid x_{i}=x\right]$. So, as for the kernel density estimator, the MSE of the numerator of $\hat{g}(x)$ is of order $\left[O\left(h^{2}\right)\right]^{2}+O\left(1 / n h^{p}\right)$, and the optimal bandwidth h^{*} has

$$
h^{*}=O\left(\left(\frac{1}{n}\right)^{1 /(p+4)}\right)
$$

just like $\hat{f}(x)$. A "delta method" argument then implies that this yields the best rate of convergence of the ratio $\hat{g}(x)=\hat{t}(x) / \hat{f}(x)$ to the true value $g(x)$.

Derivation of the asymptotic distribution of $\hat{g}(x)$ uses that "delta method" argument. First, the Liapunov condition can be verified for the triangular array

$$
z_{i n} \equiv \frac{1}{h^{p}} K\left(\frac{x-x_{i}}{h}\right)\left(\lambda_{1}+\lambda_{2} y_{i}\right),
$$

where λ_{1} and λ_{2} are arbitrary constants, leading to the same requirement as for $\hat{f}(x)$ (namely, $n h^{p} \rightarrow \infty$ as $h \rightarrow 0$ and $n \rightarrow \infty$) for \bar{z}_{n} to be asymptotically normal, with

$$
\begin{align*}
\sqrt{n h^{p}}\left(\bar{z}_{n}-E\left[\bar{z}_{n}\right]\right) & =\sqrt{n h^{p}}\left(\lambda_{1}(\hat{f}(x)-E[\hat{f}(x)])-\lambda_{2}(\hat{t}(x)-E[\hat{t}(x)])\right) \\
& \rightarrow{ }^{d} \mathcal{N}\left(0,\left[\lambda_{1}^{2}+2 \lambda_{1} \lambda_{2} g(x)+\lambda_{2}^{2}\left(g(x)^{2}+\sigma^{2}(x)\right)\right] f(x) \int[K(u)]^{2} d u\right) . \tag{**}
\end{align*}
$$

The Cramér-Wald device then implies that the numerator $\hat{t}(x)$ and denominator $\hat{f}(x)$ are jointly asymptotically normal, and the usual delta method approximation

$$
\begin{aligned}
\sqrt{n h^{p}}(\hat{g}(x)-E[\hat{t}(x)] / E[\hat{f}(x)])= & \frac{\sqrt{n h^{p}}(E[\hat{f}(x)](\hat{t}(x)-E[\hat{t}(x)])-E[\hat{t}(x)](\hat{f}(x)-E[\hat{f}(x)]))}{\hat{f}(x) E[\hat{f}(x)]} \\
= & \frac{\sqrt{n h^{p}}((\hat{t}(x)-E[\hat{t}(x)])-g(x)(\hat{f}(x)-E[\hat{f}(x)]))}{f(x)} \\
& +o_{p}\left(\sqrt{n h^{p}}(\hat{t}(x)-E[\hat{t}(x)])\right)+o_{p}\left(\sqrt{n h^{p}}(\hat{f}(x)-E[\hat{f}(x)])\right)
\end{aligned}
$$

yields

$$
\sqrt{n h^{p}}(\hat{g}(x)-E[\hat{t}(x)] / E[\hat{f}(x)]) \rightarrow^{d} \mathcal{N}\left(0, \frac{\sigma^{2}(x)}{f(x)} \int[K(u)]^{2} d u\right)
$$

after $\left({ }^{* *}\right)$ is applied with $\lambda_{1}=-g(x) / f(x)$ and $\lambda_{2}=1 / f(x)$.
When the bandwidth tends to zero at the optimal rate,

$$
h_{n}=c\left(\frac{1}{n}\right)^{1 /(p+4)},
$$

then the asymptotic distribution of $\hat{g}(x)$ is biased when centered at the true value $g(x)$,

$$
\sqrt{n h^{p}}(\hat{g}(x)-g(x)) \rightarrow^{d} \mathcal{N}\left(\delta(x), \frac{\sigma^{2}(x)}{f(x)} \int[K(u)]^{2} d u\right)
$$

where now

$$
\begin{aligned}
\delta(x) & \equiv \lim \frac{\sqrt{n h^{p}}[(E[\hat{t}(x)]-t(x))-g(x)(E[\hat{f}(x)]-f(x))]}{f(x)} \\
& =\frac{c^{(p+4) / 2}}{2 f(x)} \operatorname{tr}\left[\left(\frac{\partial^{2} g(x) f(x)}{\partial x \partial x^{\prime}}-g(x) \frac{\partial^{2} f(x)}{\partial x \partial x^{\prime}}\right) \cdot \int u u^{\prime} K(u) d u\right] .
\end{aligned}
$$

And if the bandwidth tends to zero faster than the optimal rate, i.e., "undersmoothing" is assumed, so that

$$
h^{*}=o\left(\frac{1}{n}\right)^{1 /(p+4)},
$$

then

$$
\lim \frac{\sqrt{n h^{p}}[(E[\hat{t}(x)]-t(x))-g(x)(E[\hat{f}(x)]-f(x))]}{f(x)}=0
$$

and the bias term vanishes from the asymptotic distribution,

$$
\sqrt{n h^{p}}(\hat{g}(x)-g(x)) \rightarrow^{d} \mathcal{N}\left(0, \frac{\sigma^{2}(x)}{f(x)} \int[K(u)]^{2} d u\right)
$$

as for the kernel density estimator $\hat{f}(x)$.

Discrete Regressors

Some Other Nonparametric Regression Methods

Cross-Validation

