Notes On Nonparametric Regression Estimation

JAMES L. POWELL DEPARTMENT OF ECONOMICS UNIVERSITY OF CALIFORNIA, BERKELEY

The Nadaraya-Watson Kernel Regression Estimator

Suppose that $z_i \equiv (y_i, x'_i \text{ is a } (p+1)\text{-dimensional random vector that is jointly continuously distributed,}$ with y_i being a scalar random variable. Denoting the joint density function of z_i as $f_{y,x}(y, x)$, the conditional mean g(x) of y_i given $x_i = x$ (assuming it exists) is given by

$$g(x) \equiv E[y_i|x_i = x]$$

$$= \frac{\int y \cdot f_{y,x}(y, x) dy}{\int f_{y,x}(y, x) dy}$$

$$= \frac{\int y \cdot f_{y,x}(y, x) dy}{f_x(x)}$$

where $f_x(x)$ is the marginal density function of x_i . If $\hat{f}_{y,x}(y,x)$ is the kernel density estimator of $f_{y,x}(y,x)$, i.e.,

$$\hat{f}_{y,x}(y,x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^{p+1}} \tilde{K}\left(\frac{y-y_i}{h}, \frac{x-x_i}{h}\right)$$

for some (p + 1)-dimensional kernel function $\tilde{K}(v, u)$ satisfying $\int \tilde{K}(v, u) dv du = 1$, then an analogue estimator for $g(x) = E[y_i|x_i = x]$ would substitute the kernel estimator $\hat{f}_{y,x}$ for $f_{y,x}$ in the expression for g(x). Further assuming that the first "moment" of \tilde{K} is zero,

$$\int \left(\begin{array}{c} u\\ v \end{array}\right) \tilde{K}(v,u) dv du = 0$$

(which could be ensured by choosing a \tilde{K} that is symmetric about zero with bounded support), this analogue estimator for g(x) can be simplified to

$$\hat{g}(x) = \frac{\int y \cdot \hat{f}_{y,x}(y,x)dy}{\int \hat{f}_{y,x}(y,x)dy}$$
$$= \frac{\frac{1}{nh^p} \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right) \cdot y_i}{\frac{1}{nh^p} \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right)},$$

where

$$K(u) \equiv \int \tilde{K}(v, u) dv.$$

The estimator $\hat{g}(x)$, known as the Nadaraya-Watson kernel regression estimator, can be written as a weighted average

$$\hat{g}(x) \equiv \sum_{i} w_{in} \cdot y_i,$$

where

$$w_{in} \equiv \frac{K\left(\frac{x-x_i}{h}\right)}{\sum_{j=1}^{n} K\left(\frac{x-x_j}{h}\right)}$$

has $\sum_{i} w_{in} = 1$. Since $K(u) \to 0$ as $||u|| \to \infty$ (because K is integrable), it follows that $w_{in} \to 0$ for fixed h as $||x - x_i|| \to \infty$, and also that $w_{in} \to 0$ for fixed $||x - x_i||$ as $h \to 0$; hence $\hat{g}(x)$ is a "locally-weighted average" of the dependent variable y_i , with increasing weight put on observations with values of x_i that are close to the target value x as $n \to \infty$.

For the special case of p = 1 (i.e., one regressor) and $K(u) = 1\{|u| \le 1/2\}$ (the density of a Uniform(-1/2, 1/2) variate), the kernel regression estimator $\hat{g}(x)$ takes the form

$$\frac{\sum_{i=1}^{n} 1\{x - h/2 \le x_i \le x + h/2\} \cdot y_i}{\sum_{i=1}^{n} 1\{x - h/2 \le x_i \le x + h/2\}}$$

an average of y_i values with corresponding x_i values within h/2 of x. This estimator is sometimes called the "regressogram," in analogy with the histogram estimator of a density function at x.

Derivation of the conditions for consistency of $\hat{g}(x)$, and of its rate of convergence to g(x), follow the analogous derivations for the kernel density estimator. Indeed, $\hat{g}(x)$ can be written as

$$\hat{g}(x) = \frac{\hat{t}(x)}{\hat{f}(x)},$$

where $\hat{f}(x)$ is the usual kernel density estimator of the marginal density of x_i , so the conditions for consistency of the denominator of $\hat{g}(x)$ – i.e., $h \to 0$ and $nh^p \to \infty$ as $n \to \infty$ – have already been established, and it is easy to show the same conditions imply that

$$\hat{t}(x) \to^p t(x) \equiv g(x)f(x).$$

The bias and variance of the numerator $\hat{t}(x)$ are also straightforward extensions of the corresponding

formulae for the kernel density estimator $\hat{f}(x)$; here

$$E[\hat{t}(x)] = E\left[\frac{1}{nh^p}\sum_{i=1}^n K\left(\frac{x-x_i}{h}\right) \cdot y_i\right]$$
$$= E\left[\frac{1}{nh^p}\sum_{i=1}^n K\left(\frac{x-x_i}{h}\right) \cdot g(x_i)\right]$$
$$= \int \frac{1}{h^p}K\left(\frac{x-z}{h}\right)g(x)f(z)dz$$
$$= \int K(u)g(x-hu)f(x-hu)du,$$

which is the same formula as for the expectation of $\hat{f}(x)$ with "g(x)f(x)" replacing "f(x)" throughout. Assuming the product g(x)f(x) is twice continously differentiable, etc., the same Taylor's series expansion as for the bias of $\hat{f}(x)$ yields the bias of $\hat{t}(x)$ as

$$E[\hat{t}(x)] - g(x)f(x) = \frac{h^2}{2}tr\left(\frac{\partial^2 g(x)f(x)}{\partial x \partial x'} \cdot \int uu' K(u)du\right) + o(h^2)$$
$$= O(h^2).$$

And the variance of $\hat{t}(x)$ is

$$\begin{aligned} Var(\hat{t}(x)) &= Var\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{h^{p}}K\left(\frac{x-x_{i}}{h}\right)y_{i}\right) \\ &= \frac{1}{n}E\left(\frac{1}{h^{p}}K\left(\frac{x-x_{i}}{h}\right)y_{i}\right)^{2} - \frac{1}{n}(E[\hat{t}(x)])^{2} \\ &= \frac{1}{n}\int\frac{1}{h^{2p}}\left[K\left(\frac{x-z}{h}\right)\right]^{2}[\sigma^{2}(z) + g(z)^{2}]f(z)dz - \frac{1}{n}(E[\hat{t}(x)])^{2} \\ &= \frac{1}{nh^{p}}\int[K(u)]^{2}[\sigma^{2}(x-hu) + g(x-hu)^{2}]f(x-hu)du - \frac{1}{n}(E[\hat{f}(x)])^{2} \\ &= \frac{[\sigma^{2}(x) + g(x)^{2}]f(x)}{nh^{p}}\int[K(u)]^{2}du + o\left(\frac{1}{nh^{p}}\right), \end{aligned}$$

where $\sigma^2(x) \equiv Var[y_i|x_i = x]$. So, as for the kernel density estimator, the MSE of the numerator of $\hat{g}(x)$ is of order $[O(h^2)]^2 + O(1/nh^p)$, and the optimal bandwidth h^* has

$$h^* = O\left(\left(\frac{1}{n}\right)^{1/(p+4)}\right),$$

just like $\hat{f}(x)$. A "delta method" argument then implies that this yields the best rate of convergence of the ratio $\hat{g}(x) = \hat{t}(x)/\hat{f}(x)$ to the true value g(x).

Derivation of the asymptotic distribution of $\hat{g}(x)$ uses that "delta method" argument. First, the Liapunov condition can be verified for the triangular array

$$z_{in} \equiv \frac{1}{h^p} K\left(\frac{x-x_i}{h}\right) (\lambda_1 + \lambda_2 y_i),$$

where λ_1 and λ_2 are arbitrary constants, leading to the same requirement as for $\hat{f}(x)$ (namely, $nh^p \to \infty$ as $h \to 0$ and $n \to \infty$) for \overline{z}_n to be asymptotically normal, with

$$\sqrt{nh^{p}}(\bar{z}_{n} - E[\bar{z}_{n}]) = \sqrt{nh^{p}} \left(\lambda_{1}(\hat{f}(x) - E[\hat{f}(x)]) - \lambda_{2}(\hat{t}(x) - E[\hat{t}(x)])\right)
\rightarrow {}^{d}\mathcal{N}(0, \left[\lambda_{1}^{2} + 2\lambda_{1}\lambda_{2}g(x) + \lambda_{2}^{2}\left(g(x)^{2} + \sigma^{2}(x)\right)\right] f(x) \int [K(u)]^{2} du). \quad (**)$$

The Cramér-Wald device then implies that the numerator $\hat{t}(x)$ and denominator $\hat{f}(x)$ are jointly asymptotically normal, and the usual delta method approximation

$$\begin{split} \sqrt{nh^{p}}(\hat{g}(x) - E[\hat{t}(x)]/E[\hat{f}(x)]) &= \frac{\sqrt{nh^{p}} \left(E[\hat{f}(x)](\hat{t}(x) - E[\hat{t}(x)]) - E[\hat{t}(x)](\hat{f}(x) - E[\hat{f}(x)]) \right)}{\hat{f}(x)E[\hat{f}(x)]} \\ &= \frac{\sqrt{nh^{p}} \left((\hat{t}(x) - E[\hat{t}(x)]) - g(x)(\hat{f}(x) - E[\hat{f}(x)]) \right)}{f(x)} \\ &+ o_{p} \left(\sqrt{nh^{p}} \left(\hat{t}(x) - E[\hat{t}(x)] \right) \right) + o_{p} \left(\sqrt{nh^{p}} (\hat{f}(x) - E[\hat{f}(x)]) \right) \end{split}$$

yields

$$\sqrt{nh^p}(\hat{g}(x) - E[\hat{t}(x)]/E[\hat{f}(x)]) \to^d \mathcal{N}(0, \frac{\sigma^2(x)}{f(x)} \int [K(u)]^2 du)$$

after (**) is applied with $\lambda_1 = -g(x)/f(x)$ and $\lambda_2 = 1/f(x)$.

When the bandwidth tends to zero at the optimal rate,

$$h_n = c \left(\frac{1}{n}\right)^{1/(p+4)},$$

then the asymptotic distribution of $\hat{g}(x)$ is biased when centered at the true value g(x),

$$\sqrt{nh^p}(\hat{g}(x) - g(x)) \to^d \mathcal{N}(\delta(x), \frac{\sigma^2(x)}{f(x)} \int [K(u)]^2 du),$$

where now

$$\delta(x) \equiv \lim \frac{\sqrt{nh^p} \left[(E[\hat{t}(x)] - t(x)) - g(x)(E[\hat{f}(x)] - f(x)) \right]}{f(x)}$$
$$= \frac{c^{(p+4)/2}}{2f(x)} tr \left[\left(\frac{\partial^2 g(x)f(x)}{\partial x \partial x'} - g(x) \frac{\partial^2 f(x)}{\partial x \partial x'} \right) \cdot \int uu' K(u) du \right]$$

And if the bandwidth tends to zero *faster* than the optimal rate, i.e., "undersmoothing" is assumed, so that

$$h^* = o\left(\frac{1}{n}\right)^{1/(p+4)},$$

then

$$\lim \frac{\sqrt{nh^p} \left[(E[\hat{t}(x)] - t(x)) - g(x)(E[\hat{f}(x)] - f(x)) \right]}{f(x)} = 0,$$

and the bias term vanishes from the asymptotic distribution,

$$\sqrt{nh^p}(\hat{g}(x) - g(x)) \to^d \mathcal{N}(0, \frac{\sigma^2(x)}{f(x)} \int [K(u)]^2 \, du),$$

as for the kernel density estimator $\hat{f}(x)$.

Discrete Regressors

Some Other Nonparametric Regression Methods

Cross-Validation