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Abstract

Semiparametric estimation methods are used for models which are partly parametric and partly nonparametric; typically
the parametric part is an underlying regression function which is assumed to be linear in the observable explanatory
variables, while the nonparametric component involves the distribution of the model's ‘error terms’. Semiparametric
methods are particularly useful for limited dependent variable models (for example, the binary response or censored
regression models), since fully parametric specifications for those models yield inconsistent estimators if the parametric
distribution of the errors is misspecified.

Keywords

binary response models; censored regression (‘Tobit’) models; fixed effects; identification; kernel estimators; limited
dependent variable models; linear regression models; maximum likelihood; maximum score estimation; nonparametric
estimation; panel data models; propensity score; sample selection models; selectivity bias; semiparametric estimation;
semiparametric regression models

Article

Introduction

Semiparametric estimation methods are used to obtain estimators of the parameters of interest – typically the coefficients
of an underlying regression function – in an econometric model, without a complete parametric specification of the
conditional distribution of the dependent variable given the explanatory variables (regressors). A structural econometric
model relates an observable dependent variable y to some observable regressors x; some unknown parameters β, and some
unobservable ‘error term’ ε, through some functional form y=g(x, β, ε); in this context, a semiparametric estimation
problem does not restrict the distribution of ε (given the regressors) to belong to a parametric family determined by a finite
number of unknown parameters, but instead imposes only broad restrictions on the distribution of ε (for example,
independence of ε and x, or symmetry of ε about zero given x) to obtain identification of β and construct consistent
estimators of it.
Thus the term ‘semiparametric estimation’ is something of a misnomer; the same estimator can be considered a
parametric, semiparametric or nonparametric estimator depending upon the restrictions imposed upon the economic
model. For example, if a random sample of dependent variables {yi} and regressors {xi} are assumed to satisfy a linear
regression model yi = xi

′β + εi, the classical least squares estimator can be considered a ‘parametric’ estimator of the
regression coefficient vector β if the error terms {εi} are assumed to be normally distributed and independent of {xi}. It
could alternatively be considered a ‘nonparametric estimator’ of the best linear predictor coefficients

β = [E(xi xi
′)]

−1
E(xi, yi) if only the weak condition E(xiεi) is imposed (implying that β is a unique function of the joint

distribution of the observations). And the least squares estimator would be ‘semiparametric’ under the intermediate
restriction E(εi|xi)=0, which imposes a parametric (linear) form for the conditional mean E(yi|xi)=xi′β of the dependent
variable but imposes no further restrictions on the conditional distribution. So the term ‘semiparametric’ is a more suitable
adjective for models which are partly (but not completely) parametrically specified than it is for the estimators of those
parameters.
Nevertheless, while most econometric estimation methods that do not explicitly specify the likelihood function of the
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observable data (for example, least squares, instrumental variables, and generalized method-of-moments estimators) could
be considered semiparametric estimators, ‘semiparametric’ is sometimes used to refer to estimators of a finite number of
parameters of interest (here, β) that involve explicit nonparametric estimators of unknown nuisance functions (for
example, features of the distribution of the errors ε). Such ‘semiparametric estimators’ use nonparametric estimators of
density or regression functions as inputs to second-stage estimators of regression coefficients or similar parameters.
Occasionally terms like ‘semi-nonparametric’, ‘distribution-free’ and even ‘nonparametric’ have been used to describe
such estimation methods, with the latter terms referring to the treatment of the error terms in an otherwise-parametric
structural model.
The primary objective of semiparametric methods is to identify and consistently estimate the unknown parameter of
interest β by determining which combinations of structural functions g(x,β,ε) and weak restrictions on the distribution of
the errors ε permit this. Given identification and consistent estimation, the next step in the statistical theory is

determination of the speed with which the estimator β̂ converges to its probability limit β. The rate of convergence for
estimators for standard parametric problems is the square root of the sample size n, while nonparametric estimators of
unknown density and regression functions (with continuously distributed regressors) generically converge at a slower rate;
if a semiparametric estimator can be shown to converge at the parametric rate, that is, if it is ‘root-n consistent’, then its
relative efficiency to a parametric estimator (for a correctly specified parametric model) will not tend to zero as n
increases. For inference, it is also useful to demonstrate the asymptotic (that is, approximate) normality of the distribution

of β̂ in large samples, so that asymptotic confidence regions and hypothesis tests can be constructed using normal
sampling theory. Finally, for problems where existence of root-n consistent, asymptotically normal semiparametric
estimators can be shown, the question of efficient estimation arises. The solution to this question has two parts –
determination of the efficiency bound for the semiparametric estimation problem and construction of a feasible estimator
that attains that bound.

Econometric applications

In econometrics, most of the attention to semiparametric methods dates from the late 1970s and early 1980s, which saw
the development of parametric models for discrete and limited dependent variable (LDV) models. Unlike the linear
regression model, those models are not additive in the underlying error terms, so the validity (specifically, the consistency)
of maximum likelihood and related estimation methods depends crucially on the assumed parametric form of the error
distribution. As shown for particular examples by Arabmazar and Schmidt (1981; 1982) and Goldberger (1983), failure of
the standard assumption of normally distributed error terms makes the corresponding likelihood-based estimators
inconsistent. This is in contrast to the linear regression model, where the maximum likelihood (classical least squares)
estimator is consistent under much weaker assumptions than normally (and identically) distributed errors.
Much of the early literature on semiparametric estimation concentrated on a particular limited dependent variable model,
the binary response model, which arguably presents the most challenging setting for identification and estimation of the
underlying regression coefficients. Early examples of semiparametric identification assumptions and estimation methods
for this model give a flavour of the approaches used for other econometric models, among them the censored regression
and sample selection models. The discussion here treats only selected assumptions and estimators for these models, and
not their numerous variants; more complete surveys of semiparametric models and estimation methods are given by
Manski (1989), Powell (1994), Newey (1994), and Pagan and Ullah (1999).

Semiparametric binary response models

The earliest semiparametric estimation methods in the econometrics literature on LDV models concerned the binary
response model, in which the dependent variable y assumed the values zero or 1 depending upon the sign of some

underlying latent (unobservable) dependent variable y* which satisfies a linear regression model y*=x′β+ε; that is,

yi = 1{xi
′β − εi > 0},

where ‘1{A}’ denotes the indicator function of the event A; that is, it is 1 if A occurs and is zero otherwise. For a
parametric model, in which the errors εi are assumed to be independent of xi and distributed with a known marginal
cumulative distribution function F(ε), the average log-likelihood function takes the form
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Ln(β) =
1

n
∑
i = 1

n
[yiln F(xi

′β) + (1 − yi) ln (1 − F(xi
′β))]

for a random sample of size n, and consistency of the corresponding the maximum likelihood estimator β̂ML requires
correct specification of F unless the regressors satisfy certain restrictions (as discussed by Ruud, 1986). When F is
unknown, a scale normalization on β is required, and a constant (intercept) term will not be identified no normalization on
the location of ε is imposed.
Manski (1975; 1985) proposed a semiparametric alternative, termed the ‘maximum score’ estimator, which defined the
estimator to maximize the number of correct matches of the value of yi with an indicator function 1{xi

′β > 0} of the

positivity of the regression function. That is, the maximum score estimator β̂MS  maximizes the average ‘score’ function

Sn(β) =
1

n
∑
i = 1

n
[yi · 1





xi
′β > 0





+ (1 − yi) · 1




xi
′β ≤ 0




]

over β. Unlike the maximum likelihood estimator β̂ML, consistency of β̂MS  requires only that the median of the error terms

was zero given the regressors, that is, the conditional cumulative F(ε|x) of given xi=x had F(λ|x)>1/2 when λ̇ > 0, and
F(λ|x)<1/2 when λ<0. However, the estimation approach is generally not root-n consistent (as shown by Chamberlain,
1986). A variant of the maximum score estimator, proposed by Horowitz (1992), essentially ‘smoothed’ the indicator
functions for positivity of xi

′β in the minimand Sn(β) using a continuous approximation to it, similar to the smoothing used
in nonparametric kernel estimators of regression and density functions. The rate of convergence of the resulting
‘smoothed maximum score’ estimator can be made arbitrarily close to the root-n rate if the distribution of the regressors is
sufficiently smooth.
To obtain root-n consistent estimators of the unknown β, the assumption on the error term ε can be strengthened to
independence of ε and x. Han (1987) proposed an alternative to the maximum score estimator, termed the ‘maximum rank
correlation’ estimator, which compared the sign of the difference yi−yj of the dependent variable to the corresponding

difference (xi−xj)′β in the regression functions across all distinct pairs of observations i and j. The estimator β̂MRC

maximizes

Mn(β) =




n

2






−1

∑
i = 1

n−1
∑

j = i+ 1

n
sgn(yi − y j) · sgn((xi − x j)

′β)

 over β, where sgn(u)≡1{u>0}−1{u<0}. The rationale for this estimator is based upon the monotonicity of

Pr{yi = 1|x} = F(xi
′β) in xi

′β so that, given yi≠yj, Pr{yi>yj|xi, xj} exceeds 1/2 when xi
′β > x j

′ β. Han's article gave

conditions under which β̂MRC  was shown to be consistent, and Sherman (1993) showed that this estimator was root-n
consistent and asymptotically normal.
An alternative estimation approach for β under the assumption of independence of u and x combines estimation of the
parameter vector β with nonparametric estimation of the unknown distribution function F. Cosslett (1983) proposed a
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‘nonparametric maximum likelihood’ estimator β̂NPML obtained by simultaneously maximizing the likelihood function
Ln(β)=Ln(β; F) over both β and F, where the latter function is restricted to be nondecreasing with values in the unit
interval. While consistency of this estimator could be established, its rate of convergence could not. An alternative
estimation method, proposed by Klein and Spady (1993), used kernel regression methods to estimate the unknown
distribution function F in the likelihood function. The resulting estimator was shown to be root-n consistent and
asymptotically normally distributed under additional regularity conditions; furthermore, the estimator was shown to
achieve the semiparametric efficiency bound for this problem, that is, its asymptotic covariance matrix is the smallest
possible among regular estimators of β which impose only the independence restriction between x and u.
Still other estimators for β when u and x are independent exploit the single index regression structure of this model, since
the conditional expectation of yi given xi only depends upon the ‘single index’ xi

′β:

E[yi |xi] ≡ g(xi) = F(xi
′β).

If the vector of regressors xi is continuously distributed with joint density function fX(x) which is continuous for all x,
Stoker (1986) noted that the vector of slope parameters β is proportional to the expectation of the derivative of g(x),

E

∂g(xi)

∂ x



= E[F ′(xi
′β)] · β.

Using integration-by-parts, this ‘average derivative’ can in turn be expressed as the expected value of the product of −yi
and the derivative of the logarithm of the density fX of the regressors,

E

∂g(xi)

∂ x



= − E

yi

∂ log[ f X (xi)]

∂ x


.

Härdle and Stoker (1989) proposed a semiparametric estimator of this representation of β (up to scale) using
nonparametric (kernel) estimators of fX and its gradient, while Powell, Stock and Stoker (1989) constructed a similar
estimator of the ‘density-weighted average derivative’

E


f X (xi)
∂g(xi)

∂ x



= E[ f X (xi)F
′(xi

′β)] · β = − 2E

yi

∂ f X (xi)

∂ x


,

which is also proportional to β under the single index restriction.
Though the motivation given here was based upon the binary response model under independence of the errors and
regressors, the average derivative and weighted average derivative estimators apply to other models with a single index
structure, for example, any transformation model with

yi = T(xi
′β + εi),

for T a nondegenerate function (possibly unknown) and with εi continuously distributed and independent of xi. The same
is true for the ‘single index regression’ estimator proposed by Ichimura (1993), defined to minimize
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Rn(β) =
1

n
∑
i = 1

n 
yi − F̂(xi

′β; β)
2
tn(xi);

in this expression, F̂(u; β) represents a nonparametric regression estimator of E[yi |xi
′β = u] and tn (xi) represents a

‘trimming’ term which is zero whenever xi lies outside a set for which F is sufficiently precisely estimated. Unlike the

average derivative β̂AD and weighted average derivative β̂WAD estimators, which require the regressors to be jointly

continuously distributed, root-n consistency and asymptotic normality of the single index regression estimator β̂SIR require

only that xi
′β has a continuous distribution, so that some of the regressors can be discrete. The criterion function Rn(β) is

the nonlinear least squares analogue of the maximand for the Klein and Spady (1993) estimator (which also involved a
similar trimming term tn(xi)). The asymptotic covariance matrices for both estimators have the same general form as the
corresponding nonlinear least squares and maximum likelihood estimators with F known, except for the replacement of
the cross product of the regressors xi with the cross product of xi − E[xi |xi

′β], adjusting the asymptotic covariance
matrices upward to account for the nonparametric estimation of the unknown function F.
The problem of consistent estimation of β in binary response models is compounded for panel data models with fixed
effects (that is, individual-specific intercept terms), written as

yit = 1{xit
′ β + αi − εit > 0}

for individuals i ranging from 1 to n and time periods t from 1 to T. For this model, even if the distribution function F of
the error terms εit is known, the maximum likelihood estimators of β and the fixed effects {αi} will generally be
inconsistent if the number of time periods T is fixed as N increases. A consistent semiparametric estimation strategy using
a variant of the maximum rank correlation estimator was proposed by Manski (1987); for the special case T=2 (that is,

two time periods), the estimator β̂BPD can be defined as the maximizer of the criterion

P(n)(β) =
1

n
∑
i = 1

n
sgn(yi2 − yi1) · sgn((xi2 − xi1) ′β),

which is analogous to Mn(β), except that the differencing is across time periods rather than across individuals. While

consistency of β̂BPD was established under weak conditions on the error terms, it is not possible to obtain a root-n
consistent estimator unless the errors are logistic (Chamberlain, 1993) or other restrictive assumptions (for example,
independence of the fixed effect αi and the regressors xit, or the conditions in Honoré and Lewbel, 2002; Lee, 1999) are
imposed.

Other semiparametric econometric models

Many of the identifying assumptions imposed on semiparametric binary response models give identification and yield
consistent estimators for other limited dependent variable models, though these models can sometimes be identified and
consistently estimated using assumptions that are uninformative for binary response. Consider, for example, the censored
regression (‘Tobit’) model, in which the dependent variable yi satisfies a linear regression model if it is nonnegative, and is
zero otherwise:
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yi = max{0, xi
′β + εi}.

For this model, as for the binary response model, the dependent variable is a monotonic function of the error term εi; since
monotone transformations by definition preserve orderings, the median (or any other percentile) of this monotonic
transformation of εi is the monotonic transformation evaluated at the median. Thus the assumption that the errors εi have
conditional median zero given xi implies that the conditional median of yi given xi takes the form max{0, xi

′β}, depending
only on the unknown coefficients β and not on the shape of the distribution of εi. Using this fact, and the characterization
of medians as minimizers of a least absolute deviations criterion, Powell (1984) proposed estimation of the unknown β

vector by the minimizer β̂CLAD of

Qn(β) =
1

n
∑
i = 1

n
|yi − max




0, xi

′β



|

for this model; it is analogous to the maximum score estimator β̂MS  for the binary response model, which can be defined

as the minimizer of the sample average absolute deviation of yi from its conditional median function 1{xi
′β > 0} for binary

response with median zero errors. (The maximum rank correlation estimator β̂MRC  and binary panel data estimator β̂BPD

can also be expressed as solutions to least absolute deviations problems.) Unlike β̂MS , though, the censored median

estimator β̂CLAD is root-n consistent and asymptotically normally distributed under weak regularity conditions, without
need for a scale normalization. An alternative estimator for this model, which involved a nonparametric estimator of the
probability that yi equals zero given xi, was proposed by Buchinsky and Hahn (1998).
A stronger restriction on the error distribution is conditional symmetry about zero given the regressors; while this
restriction is no more informative than the implied zero median restriction for binary response, it yields different
identification approaches for censored regression. Specifically, the ‘symmetrically censored’ residual

ui(β) ≡ min{yi − xi
′β, xi

′β} = min{max{ − xi
′β, εi}, xi

′β}

is an even function of εi when the regression function xi
′β is positive, and thus is itself conditionally symmetric about zero.

This implies a population moment restriction

0 = E[1{xi
′β > 0}ψ(ũi(β)) · xi],

for ψ(u)=−ψ(−u) an odd function of its argument. Powell (1986) proposed a ‘symmetrically censored least squares’

estimator of β based upon this restriction with ψ(u)=u; like the censored median estimator β̂CLAD – which exploits the

same moment condition with ψ(u)=sgn(u) − the estimator β̂SCLS  is root-n consistent and asymptotically normally
distributed under weak assumptions. Neither estimator involves explicit nonparametric estimation of the error distribution,

a feature shared by the maximum score estimator β̂MS  and its relatives β̂MRCand β̂BPD for binary response.
As for the binary response model or most limited dependent variable models, consistent estimation of slope coefficients
using panel data with fixed effects is challenging, with maximum likelihood estimators for β being inconsistent when the
number of time periods is fixed and the number estimated fixed effects increases. For the special case T=2, writing
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y
it

= max{0, xit
′ β + αi + εit},

Honoré (1992) noted that the difference in ‘identically trimmed’ residuals

ũi(β) = max{−xi1
′ β, yi2 − xi2

′ β} − max{−xi2
′ β, yi1 − xi1

′ β} = max{−xi1
′ β, − xi2

′ β, αi + εi2} − max{−xi1
′ β, − xi2

′ β, αi + εi2}

would be symmetrically distributed about zero if the error terms εi1 and εi2 were identically distributed given xi1 and xi2
and value of the fixed effect αi. This implies population moment conditions of the form

0 = E[ψ(ũi(β)) · (x2i − xi1)],

again with ψ(u) an odd function of its argument. Setting ψ(u)=sgn(u) and ψ(u)=u yields root-n consistent and

asymptotically normal estimators which are similar to the censored least absolute deviations estimator β̂CLADand

symmetrically-censored least squares estimator β̂SCLS , respectively.
Other estimation approaches for censored regression involve explicit nonparametric estimation of features of the
distribution of the error terms, which is common for other semiparametric econometric models. One such model is the
semiparametric regression (or semilinear regression) model, for which some regressors enter linearly while others enter
nonparametrically. The model can be written algebraically as

yi = xi
′β + λ(wi) + εi ≡ xi

′β + ui,

where the error terms εi are restricted to satisfy E[εi|xi,wi]=0, or, equivalently, E[ui|xi,wi]=E[ui|wi]≡λ(wi); the regressors xi
and wi thus enter parametrically (linearly) or nonparametrically in the conditional mean of yi. Robinson (1988) exploited
the fact that

yi − E[yi |wi] = (xi − E[xi |wi])
′β + εi

to construct a root-n consistent, asymptotically-normal estimator of β by applying least squares estimation to this equation,
replacing the unknown quantities E[yi|wi] and E[xi|wi] by nonparametric (kernel) estimators. For the parameters β to be
identified for this model, the covariance matrix of the ‘residual regressors’ must be nonsingular, ruling out functional
dependence of xi on wi.
Though the semilinear regression model is not itself a limited dependent variable model, it arises as a consequence of
‘selectivity bias’ in a bivariate limited dependent variable model, the censored selection model, in which a linear latent
‘outcome’ variable yi

* = xi
′β + εi is observed only if some related binary ‘selection’ variable di equals 1:

di = 1{wi
′δ − ηi > 0},

yi = di · (xi
′β + εi),
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where the regressors xi and wi are observed and the unobserved error terms ηi and εi need not be mutually independent.
Heckman (1979) showed that, for the uncensored (di=1) subsample from this model, the dependent variable satisfied a
semilinear regression model, since

E[yi |di = 1, xi, wi] = xi
′β + λ(wi

′δ);

when the errors are jointly normal, as Heckman assumed, the function λ(u) has a known parametric form, but is
nonparametric if the error distribution is not in a parametric family. Cosslett (1991) developed a consistent two-step
estimator for the regression parameters β in the outcome equation, computing a binary nonparametric maximum likelihood

estimator δ̂NPML of δ in the first step and using a step-function approximation to λ(u) in a least squares fit of the outcome
equation for the uncensored observations. Ahn and Powell (1993) proposed a root-n consistent two-step estimator of β for
the related semilinear model

E[yi |di = 1, xi, wi] = xi
′β + λ*(p(wi)),

where the ‘propensity score’ p(wi)≡E[di|wi] is first estimated by a nonparametric regression method; this semilinear model
is implied by a generalization of the original censored selection model, replacing the linear form of the regression function
wi
′δ in the selection equation with an unknown function of the regressors wi.

Some variations of the censored selection model admit other semiparametric identification strategies. For example, if the
selection equation is censored rather than binary, for example, if

di = max{0, w ′δ + ηi},

yi = 1{di > 0} · (xi
′β + εi),

then Honoré, Kyriazidou and Udry (1997) construct a root-n consistent two-step estimator of β under the assumption that
the errors ηi and εi are jointly symmetric about zero given the regressors wi and xi, using a symmetrically censored least
squares estimator of δ in the first step and exploiting the symmetry of yi − xi

′β about zero given that 0 < di < 2wi
′δ in the

second step. In contrast, estimation of censored selection models for panel data with fixed effects is no less challenging
than for binary panel data models; Kyriazidou (1997) proposes a consistent (but not root-n consistent) two-step estimator
for the panel data selection model

dit = 1{wit
′ δ + vi − ηit > 0},

yit = dit · (xit
′ β + αi + εit),

using Manski's (1987) binary panel data estimator to estimate δ in the first step and a semilinear regression estimator
similar to the Ahn and Powell (1993) approach in the second step.

See Also

nonlinear panel data models
nonparametric structural models
quantile regression
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robust estimators in econometrics
selection bias and self-selection
Tobit model
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