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It is well-known that the expected value of a random variable Y minimizes the expected squared

deviation between Y and a constant; that is,

�Y � E[Y ]

= argmin
c
E(Y � c)2;

assuming EjjY jj2 is �nite. (In fact, it is only necessary to assume EjjY jj is �nite, if the minimand is

normalized by subtracting Y 2; i.e.,

�Y � E[Y ]

= argmin
c
E[(Y � c)2 � Y 2]

= argmin
c
[c2 � 2cE[Y ]];

and this normalization has no e¤ect on the solution if the stronger condition holds.) It is less well-known

that a median of Y; de�ned as any number �Y for which

PrfY � �Y g �
1

2
and

PrfY � �Y g �
1

2
;

minimizes an expected absolute deviation criterion,

�Y = argminc
E[jY � cj � jY j];

though the solution to this minimization problem need not be unique. When the c.d.f. FY is strictly

increasing everywhere (i.e., Y is continuously distributed with positive density), then uniqueness is not an

issue, and

�Y = F�1Y (1=2):
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In this case, the �rst-order condition for minimization of E[jY � cj � jY j] is

0 = �E[sgn(Y � c)];

for sgn(u) the �sign�(or �signum�) function

sgn(u) � 1� 2 � 1fu < 0g;

here de�ned to be right-continuous.

Thus, just as least squares (LS) estimation is the natural generalization of the sample mean to estimation

of regression coe¢ cients, least absolute deviations (LAD) estimation is the generalization of the sample

median to the linear regression context. For the linear structural equation

yi = x0i�0 + "i;

if the error terms "i are assumed to have (unique) conditional median zero given the regressors xi, i.e.

E[sgn("i)jxi] = 0;

E[sgn("i � c)jxi] 6= 0 if c = c(xi) 6= 0;

then the true regression coe¢ cients �0 are identi�ed by

�0 = argmin
�
E[jyi � x0i�j � j"ij];

and, given an i.i.d. sample of size n from this model, a natural sample analogue to �0 is

�̂ � argmin
�

1

n

nX
i=1

jyi � x0i�j

� argmin
�
Sn(�);

a slightly-nonstandard extremum estimator (because the minimand is not twice continuously di¤erentiable

for all �:

Consistency of LAD

Demonstration of consistency of �̂ is straightforward, because the LAD minimand Sn(�) is clearly

continuous in � with probability one; in fact, Sn(�) is convex in �; so consistency follows if Sn can be

shown to converge pointwise to a function that is uniquely minimized at the true value �0: (Typically we
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need to show uniform convergence, but pointwise convergence of convex functions implies their uniform

convergence on compact subsets.) To prove consistency, we need to impose some conditions on the model;

here are some conditions that will su¢ ce:

A1. The data f(yi; x0i)0gni=1 are independent and identically distributed across i;

A2. The regressors have bounded second moment, i.e., E[jjxijj2] <1:

A3. The error terms "i are continously distributed given xi; with conditional density f("jxi) satisfying the

conditional median restriction, i.e. Z 0

�1
f(�jxi)d� =

1

2
:

A4. The regressors and error density satisfy a �local identi�cation�condition �namely, the matrix

C � E[f(0jxi)xix0i]

is positive de�nite.

Note that moments of yi or "i need not exist under these assumptions, which is why LAD estimation

is attractive for heavy-tailed error distributions. Condition A4. combines a �unique median�assumption

(implied by positivity of the conditional density f("jxi) at " = 0) with the usual full-rank assumption on

the second moments of the regressors.

Imposing these conditions, the �rst step in the consistency proof is to calculate the probability limit

of the minimand. To avoid assuming E[jyij] < 1; it is convenient to normalize the minimand Sn(�) by

subtracting o¤ its value at the true parameter �0; which clearly does not a¤ect the minimizing value �̂:

That is,

�̂ = argmin
�
Sn(�)� Sn(�0)

= argmin
�

1

n

nX
i=1

[jyi � x0i�j � jyi � x0i�0j]

= argmin
�

1

n

nX
i=1

[j"i � x0i�j � j"ij];

where

� � � � �0:
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But since

�jjxijj � jj�jj � j"i � x0i�j � j"ij � jjxijj � jj�jj

by the triangle and Cauchy-Schwarz inequalities, the normalized minimand is a sample average of i.i.d.

random variables with �nite �rst (and even second) moments under condition A2, so by Khintchine�s Law

of Large Numbers,

Sn(�)� Sn(�0) ! p �S(�)

� E[Sn(�)� Sn(�0)]

= E[j"i � x0i�j � j"ij]

= E
�
("i � x0i�)sgnf"i � x0i�g � "isgnf"ig

�
= E

�
("i � x0i�)(sgnf"i � x0i�g � sgnf"ig)

�
= E

"
2

Z 0

x0i�
[�� (x0i�)]f(�jxi)d�

#
;

where the second-to-last equality uses the fact that E[(x0i�)sgnf"ig] = E[E[(x0i�)sgnf"igjxi]] = 0: (The

integral in the last equality is well-de�ned for both positive and negative values of x0i�; under the standard

convention
R b
a dF = �

R a
b dF .)

By inspection, the limit �S(�) equals zero at � = � � �0 = 0; and is non-negative otherwise (since the

sign of the integrand is the same as the sign of the lower limit x0i�). Furthermore, since Sn(�)� Sn(�0) is

convex for all n; so is its probability limit �S(� � �0); thus, if � = �0 is a unique local minimizer, it is also

a global minimizer, implying consistency of �̂. But by Leibnitz�rule,

@ �S(�)

@�
= �2E[xi �

Z 0

x0i�
f(�jxi)d�];

@ �S(0)

@�
= 0;

and

@2 �S(�)

@�@�0
= 2E[xix

0
i � f(x0i�jxi)];

@2 �S(0)

@�@�0
= 2E[xix

0
i � f(0jxi)] � 2C;

which is positive de�nite by condition A4. So � = 0 = � � �0 is indeed a unique local (and global)

minimizer of �S(�) = �S(� � �0); and thus

�̂ !p �0:�
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To generalize this consistency result to nonlinear median regression models

yi = g(xi; �0) + "i;

0 = E[sgnf"igjxi];

the regularity conditions would have to be strengthened, since convexity of the corresponding LAD mini-

mand n�1
P
i jyi � g(xi; �)j in � is no longer assured. Standard conditions would include the assumption

that the LAD criterion is minimized over a compact parameter space B (and not over all of Rp); and a

uniform Lipschitz continuity condition on the median regression function g(xi; �) would typically be im-

posed, with the Lipschitz term assumed to have �nite moments. Finally, the identi�cation condition A4

would have to be strengthened to a global identi�cation condition, such as:

A4.� For some � > 0; the conditional density f(�jxi) > � if j�j < �; and Prfjg(xi; �)� g(xi; �0)j � �g > 0

if � 6= �0:

Asymptotic Normality of LAD

Returning to the linear LAD estimator, while demonstration of consistency of �̂ involves routine appli-

cation of asymptotic arguments for extremum estimators, demonstration of
p
n-consistency and asymptotic

normality is complicated by the fact that the LAD criterion �S(�) is not continuously di¤erentiable in �:

For comparison, consider the �standard�theory for extremum estimators, where the estimator �̂ is de�ned

to minimize (or maximize) a twice-di¤erentiable criterion, e.g.,

�̂ = argmin
�2�

1

n

nX
i=1

�(zi; �);

and (for large n) to satisfy a �rst-order condition for an interior minimum,

0 =
1

n

nX
i=1

@�(zi; �̂)

@�

� 1

n

nX
i=1

 i(�̂);

assuming consistency of �̂ for an (interior) parameter �0 has been established. The true value �0 satis�es

the corresponding population �rst-order condition

0 = E[ i(�0)];
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derivation of the asymptotic distribution of �̂ is based upon a Taylor�s series expansion of the sample

�rst-order condition for �̂ around �̂ = �0 :

0 � 1

n

nX
i=1

 i(�̂) (*)

� 1

n

nX
i=1

 i(�0) +

"
1

n

nX
i=1

@ i(�0)

@�0

#
(�̂ � �0) + op(jj�̂ � �0jj);

hich is solved for �̂ to yield the asymptotic linearity expression

�̂ = �0 +H
�1
0

1

n

nX
i=1

 i(�0) + op

�
1p
n

�
;

where

H0 � �E
�
@ i(�0)

@�0

�
= �E

�
@2�(zi; �0)

@�@�0

�
is minus one times the expected Hessian of the original minimand. From the linearity expression, it follows

that
p
n(�̂ � �0)!d N (0;H�1

0 V0H
�1
0 );

where V0 is the asymptotic covariance matrix of the sample average of  i(�0); i.e.,

1p
n

nX
i=1

 i(�0)!d N (0; V0);

which is established by appeal to a suitable central limit theorem.

In the LAD case (where � � �), the criterion function

�(zi; �) = jyi � x0i�j

is not continuously di¤erentiable at values of � for which yi = x0i�; furthermore, the (discontinuous)

subgradient
@�(zi; �)

@�
= sgnfyi � x0i�gxi

itself has a derivative that is identically zero wherever it is de�ned. Thus the Taylor�s expansion (*) is not

applicable to this problem, even though an approximate �rst-order condition

1

n

nX
i=1

sgnfyi � x0i�̂gxi = op

�
1p
n

�
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can be established for this problem. This condition can be shown to hold by showing that each element of

the subgradient of the LAD criterion, when evaluated at the minimizing value �̂; is bounded in magnitude

by the di¤erence between the right and left derivatives of the criterion, so that����� 1n
nX
i=1

sgnfyi � x0i�̂gxi

����� �
����� 1n

nX
i=1

1fyi = x0i�̂gxi

�����
�

"
nX
i=1

1fyi = x0i�̂g
#
max
i

jjxijj
n

= K � op
�
1p
n

�
;

where K � dimf�g and E[jjxijj2] <1 by A2.

Though the subgradient for the LAD minimization is not di¤erentiable, its expected value

E

�
@�(zi; �)

@�

�
= E

�
sgnfyi � x0i�gxi

�
= E[sgnf"i � x0i�gxi]

= 2E

" Z x0i�

0
f(�jxi)d�

!
xi

#

is di¤erentiable in � = � � �0. The Taylor�s series expansion would thus be applicable if the order of

the expectation (over yi and xi) and di¤erentiation (over �) could somehow be interchanged. To do this

rigorously, a stochastic equicontinuity condition on the sample average moment function

�	n(�) �
1

n

nX
i=1

sgnfyi � x0i�gxi

must be established; speci�cally, the stochastic equicontinuity condition is that, for any �̂ !p �;

p
n
h
�	n(�̂)� �	n(�0)� E

�
�	n(�)� �	n(�0)

�
j�=�̂

i
!p 0;

or, written alternatively,

p
n
h�
�	n(�)� E[ �	n(�)]

�
j�=�̂ �

�
�	n(�0)� E[ �	n(�0)]

�i
!p 0: (**)

Intuitively, while we would expect the normalized di¤erence
p
n
�
�	n(�)� E[ �	n(�)]

�
to have a limiting

normal distribution for each �xed value of � by a central limit theorem, the stochastic equicontinuity

condition speci�es that the normalized di¤erence, evaluated at the consistent estimator �̂; is asymptotically

equivalent to its value evaluated at �0 = plim �̂:
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Such a condition can be established for this LAD (and related quantile regression) problems using

empirical process theory; once it has been established, it can be used to derive the asymptotic normal

distribution of �̂: Inserting the previous results that

�	n(�̂) �
1

n

nX
i=1

sgnfyi � x0i�̂gxi = op

�
1p
n

�
and

E[ �	n(�0)] � E
�
sgnfyi � x0i�0gxi

�
= E[sgnf"igxi]

= 0

into (**), it follows that
p
n
h
�	n(�0)� E[ �	n(�)]j�=�̂

i
!p 0;

and a mean-value expansion of E[ �	n(�)]j�=�̂ around �̂ = �0 yields

p
n
�
�̂ � �0

�
= H�1

0

p
n�	n(�0) + op (1)

= H�1
0

1p
n

nX
i=1

sgnf"igxi + op (1) ;

where now

H0 � @E[ �	n(�)]

@�0
j�=�0

=
@E [sgnfyi � x0i�gxi]

@�0
j�=�0

= 2E[f(0jxi)xix0i]

� 2C;

assumed positive de�nite in A4 above. Application of the Lindeberg-Levy central limit theorem to
p
n�	n(�0) yields the asymptotic distribution of the LAD estimator �̂ as

p
n(�̂ � �0)!d N (0; 1

4
C�1DC�1);

for

D = E
��
sgnfyi � x0i�gxi

�
�
�
sgnfyi � x0i�gxi

�0�
= E

��
sgnfyi � x0i�g

�2 � xix0i�
= E[xix

0
i]:
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In the special case where "i is independent of xi; so the conditional density f(0jxi) equals the marginal

density f(0); the asymptotic distribution simpli�es to

p
n(�̂ � �0)!d N (0; 1

[2f(0)]2
D�1):

Alternatively, for the nonlinear median regression model

yi = g(xi; �0) + "i;

0 = E[sgnf"igjxi];

the relevant matrices C and D would be de�ned as

C � E

�
@g(xi; �0)

@�

@g(xi; �0)

@�0

�
;

D � E

�
f(0jxi)

@g(xi; �0)

@�

@g(xi; �0)

@�0

�
;

which reduce to the previous de�nitions when g(xi; �) � x0i�:

Asymptotic Covariance Matrix Estimation

To use the asymptotic normality of �̂ to do the usual large-sample inference on �0, consistent estimators

of the matrices C � E[f(0jxi)xix0i] and D � E[xix
0
i] must be constructed. The latter is easy; clearly

D̂ � 1

n

nX
i=1

xix
0
i

! pD:

Consistently estimating the matrix C is trickier, due to the presence of the unknown conditional density

function f(0jxi); while the error density might be parametrized, and its (�nite-dimensional) parameter

vector consistently estimated using standard methods, this would run counter to the spirit of the LAD

theory so far, which does not rely upon a parametric form for the error terms. An alternative, nonparametric

estimation strategy can be based upon kernel estimation methods for density functions. A speci�c form

for an estimator is

Ĉ � 1

n

nX
i=1

h
h�11f

���yi � x0i�̂��� � h=2g
i
xix

0
i;

where h = hn is a user-chosen �bandwidth� term that is assumed to tend to zero as the sample size n

increases. The term h�11fjuj � h=2g (which is evaluated at u = yi � x0i�̂) is essentially a numerical

derivative of the function sgnfug, based upon the small perturbation h: It can be shown that Ĉ !p C as
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n ! 1; provided that h = hn ! 0 in such a way that n
p
hn ! 1; using the sorts of mean and variance

calculations used to demonstrate consistency of the standard kernel density estimator. A generalization of

this estimator would be

Ĉ� � 1

n

nX
i=1

"
h�1K

 
yi � x0i�̂

h

!#
xix

0
i;

where the kernel function K(�) satis�es Z
K(u)du = 1

(for example, K(u) could be a density function for a continuous random variable). The estimator Ĉ

is a special case with K(u) = 1 fjuj � 1=2g ; the density for a uniform random variable on the interval

[�1=2; 1=2]: And both the estimators for C and D can be extended to the nonlinear median regression

model by replacing the terms �xix0i�with the more general �[@g(xi; �̂)=@�]
h
@g(xi; �̂)=@�

i0
:
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