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1 Introduction

Since Phillips’ (1989) seminal paper on the consequences of identification failure on

the distribution of point estimators and test statistics a vast literature on partially

or weakly identified models has developed.1 A major finding of this literature is

that in models with possible identification failure, point estimates can be severely

biased and classical tests of parameter hypotheses or overidentifying restrictions can

be extremely size distorted in finite samples.

In response to the unreliability of classical tests of parameter hypotheses in models

with identification failure, such as Wald or likelihood ratio tests, several new tests

for simple full vector parameter hypotheses have recently been introduced whose

rejection probabilities under the null hypothesis are (asymptotically) unaffected by

identification failure.2

However, to the best of our knowledge, no test of overidentifying restrictions, that

is consistent against model misspecification and robust to identification failure, has

been introduced in the literature. Furthermore, generalizations in the literature of

the above mentioned tests of simple full vector parameter hypotheses to more general

parameter hypotheses, either require additional assumptions or are only conservative.

For example, Kleibergen’s (2001, 2004) test can be used to test simple subvector

hypotheses under the additional assumption that the parameters not under test are

strongly identified. Dufour (1997) suggests a projection—based testing procedure for

general parameter hypotheses that works without additional assumptions but leads

to conservative tests. Furthermore, in general the projection idea is computationally

cumbersome.3

In this paper, we address the need for robust tests of general linear hypotheses and

overidentifying restrictions. We introduce a general testing procedure in models with

possible identification failure that has exact asymptotic rejection probability under

the null hypothesis. We then apply the procedure to tests of arbitrary linear parame-

ter hypotheses and to tests of overidentifying restrictions in time series models given

by unconditional moment restrictions. The main idea of our procedure is to apply

1See among others, Nelson and Startz (1990), Choi and Phillips (1992), Dufour (1997), Staiger
and Stock (1997), Stock and Wright (2000), Forchini and Hillier (2003), and for recent reviews of
the weak identification literature see Stock et al. (2002) and Startz et al. (2004). A recent paper by
Chao and Swanson (2003) brings together the many (Bekker, 1994) and weak instruments literature.

2Besides the early contribution of Anderson and Rubin (1949) see among others, Stock and Wright
(2000), Kleibergen (2001, 2002), Caner (2003), Guggenberger (2003), Moreira (2003), Otsu (2003),
Dufour and Taamouti (2004a, 2004b), and Guggenberger and Smith (2004). Andrews et al. (2004)
investigate robust hypothesis testing with optimal power properties when the instrumental variables
might be weak.

3One exception is the Anderson and Rubin (1949) statistic for scalar linear hypotheses where a
closed form solution is available, see Dufour and Taamouti (2004a, 2004b).
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subsampling to classical tests. More precisely, instead of using the tests with critical

values based on asymptotic theory, we compute data—dependent critical values based

on the subsampling technique. The test statistic under consideration is evaluated

on all (overlapping) blocks of the observed data sequence, where the common block

size is small compared to the sample size. The critical value is then obtained as an

empirical quantile of the resulting block (or subsample) test statistics.

We first introduce a general definition of identification failure that brings together

Phillips’ (1989) notion of partial identification with Stock and Wright’s (2000) notion

of weak identification. We then apply the subsampling method to the Wald and

the J test (Hansen (1982), also see Newey (1985)) and show that the resulting tests

have exact asymptotic rejection probabilities under the null hypothesis independent of

identification failure. Furthermore, we show that the subsampling version of the Wald

test is consistent against fixed alternatives under full identification and has the same

local power as the Wald test. The subsampling version of the J test is shown to be

consistent against model misspecification. Our analysis is done in time series models

given by nonlinear moment conditions. Throughout the paper, we use the linear single

equation instrumental variables model as an illustrative example of the general time

series model. Our parameter tests can be applied to general linear hypotheses without

additional identification assumptions. In particular, unlike Kleibergen (2001, 2004),

no additional identification assumptions are required for subvector testing. Also,

in a linear single equation instrumental variables model we can test simultaneous

hypotheses on the coefficients of the exogenous and endogenous variables. A further

advantage of the subsampling approach considered here is its robustness with respect

to the model assumptions. For example, we show that the sizes of the subsampling

tests are not affected (asymptotically) by instrument exclusion in the reduced form of

a linear single equation instrumental variables model. This last advantage also holds

true for the Anderson and Rubin (1949) statistic (in the case of a simple full vector

hypothesis) but not for the tests by Kleibergen (2002, 2004) or Moreira (2003); see

Dufour and Taamouti (2004b).

We assess the finite sample performance of several parameter subvector tests in

a Monte Carlo study using Dufour and Taamouti’s (2004b) linear design with two

endogenous variables on the right side of the structural equation. We find that their

projected Anderson and Rubin test is dominated in terms of power by Kleibergen’s

(2003) test across every single scenario. In all scenarios, where the parameter not

under test is only weakly identified, our subsampled Wald test is the clear winner

among the three statistics and the power gains can be dramatic in these cases. If this

parameter is strongly identified, then Kleibergen’s (2003) test typically has slightly

better power properties than our test. In an additional Monte Carlo experiment we
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assess the power loss of the subsampling procedure in a scenario where subsampling

does not enjoy a comparative advantage, namely when testing a simple full vector

hypothesis in a linear i.i.d. model. We find that even in this disadvantageous setup,

subsampling still performs competitively but is often outperformed in terms of power

by Moreira (2003). Lastly, we conduct an experiment to assess the size properties

of tests of overidentifying restrictions. Again, our Monte Carlo results are consistent

with our theory: While the classical J test oftentimes severely overrejects, we find

that its subsampling version has generally very reliable size properties.

Besides all the advantages of the subsampling technique mentioned above, there

are also general drawbacks. Firstly, compared to tests that are given in closed form, a

relative disadvantage of the subsampling approach is its computational burden. How-

ever, this disadvantage is shared with other popular resampling methods, such as the

bootstrap and the jackknife. Secondly, an application of the subsampling method

requires the choice of a block size b, which can be considered a model parameter.

To overcome that problem, we provide a data—dependent method to automate this

choice. Thirdly, under full identification, weak regularity conditions, and one—sided

alternatives, the error in rejection probability under the null for tests based on sub-

sampling is typically of order Op(b−1/2) compared to the faster Op(n−1/2) of standard

approaches, where b and n denote the block and sample size, respectively, see Politis

et al. (1999, chapter 10.1). This slower rate of convergence under full identification is

the price that has to be paid for making the procedure robust to identification failure.

Lastly, in our specific application, the finite sample power function of a subsampling

version of a test is oftentimes below the one of the original test in strongly identified

situations. However, compared to other tests that are robust to identification fail-

ure, our Monte Carlo study indicates that oftentimes there can be tremendous power

gains of the subsampling approach.

In the Econometrics literature, subsampling has now been suggested in a variety

of situations for the construction of confidence intervals or hypotheses tests where

it is at least questionable whether the bootstrap would work. Some recent exam-

ples include, Romano and Wolf (2001) who use subsampling to construct confidence

intervals for the autoregressive coefficient in an AR(1) model with a possible unit

root. Andrews (2003) introduces a subsampling—like testing method for structural

instability of short duration. Choi (2004) uses subsampling for tests of linear param-

eter constraints in a vector autoregression with potential unit roots and Gonzalo and

Wolf (2005) suggest subsampling for the construction of confidence intervals for the

threshold parameter in threshold autoregressive models with potentially discontinu-

ous autoregressive function.

Related to our paper is Hall and Horowitz (1996) who suggest the bootstrap for
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improved critical values for certain GMM tests. However, their paper is not concerned

with the possibility of identification failure. Kleibergen (2003) derives higher order

expansions of various statistics that are robust to weak instruments and suggests the

bootstrap to further improve on the size properties of tests based on these statistics.

He also provides insight as to why the bootstrap is not expected to improve on the

size distortion of classical tests, like a Wald test, under identification failure. In

an i.i.d. linear model with one endogenous right hand side variable, Moreira et al.

(2004) go one step further by providing a formal proof of the validity of Edgeworth

expansions for the score and conditional likelihood ratio statistics when instruments

may be weak. These statistics are known to be robust to weak instruments. They

show the validity of the bootstrap for the score test and the validity of the conditional

bootstrap for various conditional tests. On the other hand, our paper shows that in

general time series moment condition models subsampling fixes the size distortion of

classical tests of general hypotheses that are not robust to weak identification, like a

Wald test.

The remainder of the paper is organized as follows. In Section 2, the model is

introduced, the testing problems are described, and a general definition of identifi-

cation failure is provided. In order to be self contained, in Section 3 we first briefly

review the basic theory of subsampling for time series data. We then derive the

asymptotic distribution of some classical test statistics under the general asymptotic

framework of identification failure to show that the tests are generally size distorted

under identification failure. We then apply subsampling to those tests in subsections

3.2 (overidentifying restrictions) and 3.3 (general linear parameter hypotheses) to

cure the problem of size distortion. In Section 4 we provide a data—driven choice

of the block size needed to implement the subsampling procedure. Some further ro-

bustness properties of the subsampling method are discussed in Section 5. Section

6 describes the simulation results. All proofs are relegated to Appendix (C) while

Appendices (A) and (B) contain some additional discussion of our assumption on

identification failure and contiguity, respectively.

The following notation and terminology is used in the paper. The symbols “→d ”,

“→p ”, and “⇒ ” denote convergence in distribution, convergence in probability, and

weak convergence of empirical processes, respectively. For the latter, see Andrews

(1994) for a definition. For “with probability 1” we write “w.p.1” and “a.s.” stands

for “almost surely”. By Ci(A,B) we denote the set of functions f : A → B that

are i times continuously differentiable. If B = R, the set of real numbers, we simply
write Ci(A) for Ci(A,B). By id we denote the identity map and by O(i) the group

of orthogonal i× i matrices. By ej ∈ Rp we denote the p—vector (0, ..., 1, ..., 0)0 with
1 appearing at position j. For a matrix M, M > 0 means that M is positive definite
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and [M ]i,j denotes the element of M in row i and column j. By Ii we denote the

i—dimensional identity matrix. Furthermore, vec(M) stands for the column vectoriza-

tion of the k × i matrix M , that is, if M = (m1, ...,mi) then vec(M) = (m01, ...,m
0
i)
0.

By PM we denote the orthogonal projection onto the range space of M. Finally,

||M || equals the square root of the largest eigenvalue of M 0M and “⊗” denotes the
Kronecker product.

2 The Model, Tests, and Identification Failure

2.1 The Model

We consider models specified by a finite number of unconditional moment restric-

tions. Let {zi : i = 1, ..., n} be Rl—valued data and, for each n ∈ N, gn : G×Θ→ Rk,
where G ⊂ Rl and Θ ⊂ Rp denotes the parameter space. The model has a true
parameter θ0 for which the moment condition

Egn(zi, θ0) = 0 (2.1)

is satisfied for all i = 1, ..., n. For gn(zi, θ) we usually simply write gi(θ). For exam-

ple, moment conditions may result from conditional moment restrictions. Assume

E[h(Yi, θ0)|Fi] = 0, where h : H × Θ → Rk1 , H ⊂ Rk2 , and Fi is the information
set at time i. Let Zi be a k3—dimensional vector of instruments contained in Fi. If

gi(θ) := h(Yi, θ) ⊗ Zi, then Egi(θ0) = 0 follows by taking iterated expectations. In
(2.1), k = k1k3 and l = k2 + k3. A second important example of model (2.1) is given

by the following:

Example 2.1 (I.i.d. linear instrumental variable (IV) model): Consider the linear
model with i.i.d. observations given by the structural equation

y = Y β0 +Xγ0 + u (2.2)

and the reduced form for Y

Y = ZΠ+XΦ+ V, (2.3)

where y, u ∈ Rn, Y, V ∈ Rn×v1 , X ∈ Rn×v2, Z ∈ Rn×j, Φ ∈ Rv2×v1 , and Π ∈ Rj×v1 .
Let p := v1 + v2, k := j + v2, θ := (β0, γ0)0, and θ0 := (β00, γ

0
0)
0. The matrix Y

contains the endogenous and the matrix X the exogenous variables. The variables

Z constitute a set of instruments for the endogenous variables Y . For the model to

be identified it is necessary that j ≥ v1. Denote by Yi, Vi, Zi, ... (i = 1, ..., n) the ith

row of the matrix Y, V, Z, ... written as a column vector and similarly for analogous
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expressions. Assume E(Z 0i, X
0
i)
0ui = 0 and E(Z 0i, X

0
i)
0V 0i = 0. The first condition

implies that Egi(θ0) = 0, where for each i = 1, ..., n

gi(θ) := (Z
0
i, X

0
i)
0(yi − Y 0i β −X 0

iγ).

Note that in this example gi(θ) depends on n if the reduced form coefficient matrix Π

is modeled to depend on n, see Staiger and Stock (1997).

2.2 Hypothesis Tests

Interest focuses on two separate testing problems in a context that allows for identifi-

cation failure: (i) testing hypotheses involving the unknown parameter vector θ0 (ii)

testing the overidentifying restrictions assumption Egn(zi, θ0) = 0 for some θ0 ∈ Θ
in (2.1), when the model is overidentified, that is when k > p. More precisely, the

testing problems are

(i) H0 : Rθ0 = q versus H1 : Rθ0 6= q, (2.4)

(ii) H0 : ∃θ ∈ Θ, Egi(θ) = 0 versus H1 : ∀θ ∈ Θ, Egi(θ) 6= 0, (2.5)

where in (2.4) R ∈ Rr×p is a matrix of maximal rank r, for some r satisfying 1 ≤ r ≤ p
and q ∈ Rr is an arbitrary vector.4 For testing problem (ii) to make sense, one has

to impose a stationarity assumption on the distribution of zi, which we do below.

Problem (i) with r < p contains as a particular subcase simple subvector tests

in which case the rows of R are a subset of the rows of Ip. Subvector testing in the

context of weak identification has attracted a lot of attention in the recent literature,

see, for example, Kleibergen (2001, 2004), Dufour and Taamouti (2004a, 2004b),

Guggenberger and Smith (2004), and Startz et al. (2004). Note also that we allow

for null hypotheses in (i) that, in the case of the linear model (2.2), may involve both

the unknown parameters of the exogenous and endogenous variables. Many tests in

the literature are designed for the linear model where the included exogenous variables

have been projected out in a first step, thereby ruling out a test of a hypothesis that

involves both parameters of the exogenous and endogenous variables, see for example

Kleibergen’s (2002, 2004) test.

2.3 Identification Failure

As is now widely documented, classical tests of the hypotheses in (2.4) and (2.5),

such as the Wald, likelihood ratio, and J test (Hansen, 1982) can suffer from severe

4While in this paper we only deal with two—sided alternatives, our approach can also be applied
to one—sided alternatives of the form H1 : Rθ0 < q or H1 : Rθ0 > q, if there is only one restriction
under test, that is r = 1. Furthermore, using more complicated assumptions in the theorems below,
our approach could even be adapted to nonlinear parameter hypotheses.
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size distortion in situations where the model is not identified or “close to being not

identified”. In model (2.1) identification failure means that besides θ0 there are other

θ ∈ Θ that satisfy the moment condition. The abstract meaning of weak identification
is that there are other θ ∈ Θ that satisfy the moment condition in the limit n→∞.
The classical identification condition, the so called “rank condition of identification”,

states that the matrix (∂Egi/∂θ)(θ0) has full column rank p. In the linear model,

violation of the rank condition immediately implies that the model is not identified.

Much of the literature on weak identification has focused on the particular case

where the parameter vector θ0 has a decomposition θ0 = (θ01, θ02) into some weakly,

θ01, and some strongly identified components, θ02. Namely, the original definition

of weak identification introduced in Stock and Wright (2000) for nonlinear models

focuses on this case5. Define

bg(θ) := n−1 nP
i=1
gi(θ).

As discussed in Appendix (A), Assumption C, applied to the linear model, implies

that (∂Ebg/∂θ0) = (0,M), where M is a matrix of maximal rank. On the other hand,

Phillips (1989) and Choi and Phillips (1992) allow for a linear model with general

failure of the rank condition in what they call “partial identification”. In their model,

(∂Ebg/∂θ0) can be of non—maximal rank without being of the particular form (0,M).

We now introduce a general version of identification failure in nonlinear models that

brings together this partially identified and Stock and Wright’s (2000) weakly iden-

tified model. We show in the next section that the subsampling tests are robust

against this general version of identification failure. A more detailed discussion of

Assumption ID is relegated to Appendix (A).

Assumption ID: There exist a coordinate change6 T ∈ O(p) such that T (Θ) = Θ,
where Θ is a compact product set Θ = Θ1 ×Θ2 ⊂ Rp1+p2 = Rp, and functions m1n,

5Assumption C, Stock and Wright (2000, p. 1061): Decompose θ = (θ01, θ
0
2)
0, θ0 = (θ001, θ

0
02)

0

and Θ = Θ1 × Θ2. (i) Ebg(θ) = n−1/2m1n(θ) + m2(θ2), where m1n, m1 ∈ C0(Θ,Rk), and m2 ∈
C0(Θ2,Rk), such that m1n(θ) → m1(θ) uniformly on Θ, m1(θ0) = 0 and m2(θ2) = 0 if and only
if θ2 = θ02. (ii) m2 ∈ C1(N ,Rk) for a neighborhood N ⊂ Θ2 of θ02 and (∂m2/∂θ

0
2)(θ02) has full

column rank.
In the linear model with no included exogenous variables, Assumption C boils down to a decompo-

sition for Π into Πn = (n
−1/2ΠA,ΠB), where ΠA and ΠB are fixed matrices with p1 and p2 columns

and ΠB has full column rank, see Stock and Wright (2000, Section 3).
6For notational convenience we denote by T the linear map T : Rp → Rp and the uniquely

defined matrix in Rp×p that defines this map. Assumption ID could be generalized to allow for
possibly nonlinear coordinate changes T .
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m1 : Θ→ Rk, and m2 : Θ2 → Rk such that for

θ : = (θ1, θ2) := T
−1(θ) and θ0 := (θ01, θ02) := T

−1(θ0)bg(·) : = bg(T (·)) : Θ→ Rk

(i) m1 ∈ C0(Θ,Rk), m2 ∈ C0(Θ2,Rk) ∩C1(N ,Rk) for a neighborhood N of θ02,

(ii) Ebg(θ) = n−1/2m1n(θ) +m2(θ2), m1n(θ)→m1(θ) uniformly on Θ,

(iii) m1(θ0) = 0, m2(θ2) = 0 if and only if θ2 = θ02, and M2(θ02) has full column

rank, where M2(θ2) := (∂m2/∂θ
0
2)(θ2) ∈ Rk×p2 .

Assumption ID contains as a subcase the case of a fully identified model (T ≡ id
and p1 = 0) and the case of a totally unidentified model (T ≡ id, p1 = p, and

m1n ≡ 0). T is a change of the coordinate system such that in the new coordinate

system the identified components θ02 of the parameter vector θ0 are singled out.

ID essentially boils down to Assumption C in Stock and Wright (2000) if we set

T ≡ id. If T ≡ id then7, by ID (ii)—(iii), the first components θ01 of θ0 are only

weakly identified. Clearly, no information on θ01 can be gained from the term m2.

Therefore, all the identifying information on θ01 from the condition Ebg(θ) = 0 has to
come from the term n−1/2m1n(θ). But this term vanishes with increasing sample size.

ID is more general than Assumption C in Stock and Wright (2000) because unlike C

it comprises the partially identified model of Phillips (1989). It is more general than

the latter because it allows for nonlinear moment conditions and weak identification.

For every finite sample size n, the model may be fully identified through the term

n−1/2m1n(θ). But the information contained in n−1/2m1n(θ) fades away with n going

to infinity leading to a partially identified model asymptotically.

3 Subsampling Tests Under Weak Identification

The main reason for the size distortion of classical tests (such as Wald, likelihood ra-

tio, and J) under identification failure is that parameter estimates of θ0 have a non—

normal asymptotic distribution which implies that the tests are no longer asymptoti-

cally χ2 under weak identification, see Theorems 3.2(ii) and 3.3 below. Subsampling

can cure the problem of size distortion. Instead of critical values based on asymptotic

theory, it uses data—dependent critical values obtained as follows. The test statistic

7Whenever T = id, the new coordinates are the same as the original ones and therefore, through-
out the paper, we leave out the bars in the notation in this case.

[8]



under consideration is evaluated on all (overlapping) blocks of the observed data se-

quence, where the common block size b is small compared to the sample size. The

critical value is then obtained as an empirical quantile of the resulting subsample

test statistics. In this section we describe in more detail how to use subsampling

to construct tests that have exact (asymptotic) rejection probabilities under the null

hypothesis, both under full identification and identification failure. For a general

reference on subsampling see Politis et al. (1999). Our approach is to present a high

level theorem and then verify/illustrate it in the particular settings we are interested

in.

One observes a stretch of vector—valued data z1, . . . , zn. Denote the unknown

probability mechanism generating the data by P. It is assumed that P belongs to

a certain class of mechanisms P. The null hypothesis H0 asserts P ∈ P0 and the
alternative hypothesis H1 asserts P ∈ P1, where P0,P1 ⊂ P, P0 ∩ P1 = ∅, and
P0 ∪ P1 = P. The goal is to construct a test with exact asymptotic rejection

probability under the null hypothesis based on a given test statistic

Dn = Dn(z1, . . . , zn).

Let Cn(P ) denote the sampling distribution of Dn under P , that is,

Cn(x,P ) := ProbP {Dn(z1, . . . , zn) ≤ x}.

It will be assumed that under the null hypothesis Cn(P ) converges in distribution to

a continuous limit law C(P ). The 1− α quantile of this limit law is denoted by

c(1− α, P ) := inf{x : C(x,P ) ≥ 1− α}.

To describe the subsampling test construction, denote by Q1, . . . ,QN the N :=

n − b + 1 blocks of size b of the observed data stretch {z1, . . . , zn}; that is, Qa :=
{za, . . . , za+b−1} for a = 1, . . . , N . The model parameter b is called the block size.
We will discuss its choice in Section 4. Let Db,a be equal to the statistic Db evaluated

at the block Qa. The sampling distribution of Dn is then approximated by8

bCn,b(x) := N−1 NX
a=1

1{Db,a ≤ x}.

The data—dependent critical value of the subsampling test is obtained as the 1 − α

quantile of bCn,b, that is
bcn,b(1− α) := inf{x : bCn,b(x) ≥ 1− α}

8 In the special case of i.i.d. data, one could theoretically use all
¡
n
b

¢
blocks of size b rather than

only the N blocks used in the general time series context. Computationally however, it is generally
not feasible to use all

¡
n
b

¢
blocks.
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and the test arrives at the following decision:

Reject H0 at nominal level α if and only if Dn > bcn,b(1− α). (3.6)

If our only concern was to construct a test with correct null rejection probability,

it could be achieved trivially: generate a uniform (0,1) variable and reject the null

hypothesis if the outcome is smaller than α. But, obviously, we also want to achieve

power when the model is identified. To formally establish power, we make the further

assumption that the test statistic can be written as

Dn(z1, . . . , zn) = n
βdn(z1, . . . , zn) for some β > 0, (3.7)

where

dn(z1, . . . , zn)→p d(P ) satisfying
½
d(P ) = 0 if P ∈ P0
d(P ) > 0 if P ∈ P1

. (3.8)

We then have the following theorem.

Theorem 3.1 Assume the sequence {zi} is strictly stationary and strongly mixing9

and that the block size satisfies b/n→ 0 and b→∞ as n→∞.

(i) Assume that for P ∈ P0, Cn(P ) converges weakly to a continuous limit law
C(P ) whose cumulative distribution function is C(·, P ) and whose 1−α quantile
is c(1− α, P ). Then, if P ∈ P0, bcn,b(1− α)→p c(1− α, P ) as n→∞ and

ProbP {Dn > bcn,b(1− α)}→ α.

(ii) If (3.7) and (3.8) hold and P ∈ P1, then as n→∞

ProbP{Dn > bcn,b(1− α)}→ 1.

(iii) Suppose Pn is a sequence of alternatives such that, for some P ∈ P0, {P [n]n }
is contiguous to {P [n]}.10 Here, P [n]n denotes the law of the finite segment

{z1, . . . , zn} when the law of the infinite sequence {. . . , z−1, z0, z1, . . . } is given
by Pn. The meaning of {P [n]} is analogous. Then, ĉn,b(1 − α) → c(1 −
α, P ) in P [n]n -probability. Hence, if Dn converges in distribution to D under

Pn and C(·, P ) is continuous at c(1− α, P ) then as n→∞

Prob
P
[n]
n
{Dn > ĉn,b(1− α)}→ Prob{D > c(1− α, P )}.

9Alternatively, strongly mixing is sometimes called α-mixing, see Politis et al. (1999, p. 315) for
a definition.
10 In Appendix (B) we provide some background information on contiguity.
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The theorem shows that the subsampling approach is consistent and has exact

asymptotic rejection probability under the null. The interpretation of part (iii) is the

following. Suppose that instead of using the subsampling construction, one could use

the “oracle” test that rejects when Dn > cn(1−α, P ), where cn(1−α, P ) is the exact
1− α quantile of the true sampling distribution Cn(·, P ), where P ∈ P0. Of course,
this test is not available in general because P is unknown and so is cn(1 − α, P ).

Then, the limiting power of the subsampling test against a sequence of contiguous

alternatives {Pn} to P with P ∈ P0 is the same as the limiting power of this fic-
titious “oracle” test against the same sequence of alternatives. Hence, to the order

considered, there is no loss in efficiency in terms of power.

3.1 Classical Test Statistics

We next introduce subsampling based testing procedures for the testing problems

(2.4) and (2.5) that, unlike various classical tests, have exact (asymptotic) rejection

probabilities under the null, independent of possible identification failure. The An-

derson and Rubin (1949) statistic, recently reinvestigated by Dufour and Taamouti

(2004b), has an F—distribution in the linear model under normality and a simple

null hypothesis H0 : θ0 = q in (2.4) and therefore, under normality, leads to a test

with exact null rejection probability independent of identification failure. However,

for tests of more general hypotheses, the (projected) Anderson and Rubin test is

only conservative, even asymptotically. Other recent tests, for example Kleibergen’s

(2001, 2004) test, are not available for tests of general linear hypotheses. They can

be generalized however to tests of simple subvector hypotheses with exact asymptotic

null rejection probabilities but require the additional assumption that the parameters

not under test are strongly identified. In contrast, our testing approach, based on

subsampling classical statistics, like for example the Wald, LR, and J statistic, has

exact (asymptotic) null rejection probabilities without further assumptions and is

applicable to general linear hypotheses and overidentifying restrictions, respectively.

In this subsection, we introduce the test statistics, focusing on the J and the Wald

statistic11.

As in Stock and Wright (2000), we focus on a GMM setup. Let

Sn(θ) := n||An(en(θ))1/2bg(θ)||2
11A similar analysis can be done for the LR test. We focus on the Wald statistic here because it does

not involve the restricted estimator of θ0 under the null hypothesis which simplifies the exposition.
We experimented with a subsampled version of the LR statistic in our simulations but did not find
any systematic advantage over the Wald approach for linear hypotheses tests. To test overidentifying
restrictions, other test statistics besides the J test could be considered. See, for example, Imbens
(1997), Kitamura and Stutzer (1997) or Imbens et al. (1998) who investigate several Lagrange
multiplier and criterion function tests based on generalized empirical likelihood methods.
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be the GMM criterion function that is pinned down by some data—dependent weight-

ing matrix An(en(θ))1/2 ∈ Rk×k for a (possibly stochastic) function en(·) : Θ → Θ.
More precisely, we allow for three different cases, namely one—step, two—step, and

continuous updating (CU) GMM, see Hansen et al. (1996) for the latter. For one—

step GMM An(en(θ)) is typically chosen to be Ik or some other fixed positive definite

nonstochastic matrix. Furthermore,

en(θ) :=

½
en for two—step GMM
θ for CU GMM,

(3.9)

for some preliminary estimator en of θ0. Therefore, for two—step GMM, en(·) does
not depend on θ and for CU, en(·) is the nonstochastic identity map id.

Define the GMM estimator as a sequence of random variables bθn satisfying
bθn ∈ Θ and Sn(bθn) ≤ arg inf

θ∈Θ
Sn(θ) + op(1). (3.10)

We usually write bθ for bθn. Let
Ψn(θ) : = n

1/2(bg(θ)−Ebg(θ)),
Ω(θ, θ+) : = lim

n→∞
EΨn(θ)Ψn(θ

+)0, and Ω(θ) := Ω(θ, θ) ∈ Rk×k.

As before in Assumption ID, a bar denotes expressions in new coordinates. For

example, we write, Ψn(·) := Ψn(T (·)), Ψ(·) := Ψ(T (·)), Ω(·, ·) := Ω(T (·), T (·)),
A(·) := A(T (·)), and An(·) := An(T (·)) for functions and en(θ) := T−1(en(θ)) for

vectors, and similarly for other expressions. Note that by writing functions in new

variables, for example, Ψ(θ) instead of Ψ(θ), we do not change the value of the func-

tion, that means Ψ(θ) = Ψ(θ); what we achieve by using the new coordinates is to

single out identified from unidentified components in the parameter vector θ0.

For testing problem (2.4) we now define the classical Wald statistic Wn based on

the GMM estimator and for problem (2.5) we define the J statistic Jn (Hansen (1982))

as the GMM criterion function evaluated at the GMM estimator. More precisely,

Wn : = n(Rbθn − q)0[R bB−1n bΩn bB−1n R0]−1(Rbθn − q), (3.11)

Jn : = Sn(bθn), (3.12)

where

bGn : = n−1Pn
i=1

∂gi
∂θ0
(bθn) ∈ Rk×p, (3.13)bBn : = bG0nAn(en(bθn)) bGn ∈ Rp×p,bΩn : = bG0nAn(en(bθn))Kn(bθ)An(en(bθn)) bGn ∈ Rp×p, (3.14)

[12]



andKn(·) is a Rk×k—valued (stochastic) function on Θ andKn(bθn) an estimator of the
long—run covariance matrix Ω(θ0). For example, in an i.i.d. model, a natural choice

would be Kn(θ) := n−1
Pn
i=1 gi(θ)gi(θ)

0 ∈ Rk×k, whereas in a time series model
one would typically use some version of a heteroskedasticity and autocorrelation

consistent (HAC) estimator, see Andrews (1991).

From now on, we distinguish the following two polar—opposite cases of identifica-

tion.

• Full identification: Assume ID with p1 = 0 and T = id.

• Identification failure: Assume ID with p1 > 0 and m1n ≡ 0.

In the next two subsections, we show that the classical J test of overidentifying

restrictions and the Wald test of parameter hypotheses are generally size distorted

under Assumption ID. In contrast, we establish that the subsampling versions of the

J and Wald test have (asymptotically) exact rejection probabilities under the null hy-

pothesis, both under full identification and identification failure. Extrapolating from

these polar—opposite cases of identification and identification failure, we interpret this

as evidence that the tests based on subsampling continue to have this property in the

intermediate case of weak identification (where m1n 6= 0) as defined in Assumption
ID.

3.2 Testing Overidentifying Restrictions

In this subsection, we first derive the asymptotic distribution of the classical J statis-

tic under Assumption ID and conclude that the J test is potentially size distorted

under identification failure. We then use this asymptotic result to show that the

subsampling version of the J test has exact (asymptotic) rejection probability under

the null. To derive the asymptotic distribution of the J statistic under Assumption

ID we first need the one of the estimator bθn. We essentially make the same “high
level” assumptions as Stock and Wright (2000, see Assumptions B and D).

Assumption PE (parameter estimates):12 Assume ID. Suppose there exists a neigh-
borhood U2 ⊂ Θ2 of θ02, such that for Θ12 := Θ1 ×U2

(i) Ψn ⇒ Ψ, where Ψ is a Gaussian stochastic process on Θ12 with mean zero,

covariance function EΨ(θ)Ψ(θ
+
)0 = Ω(θ, θ

+
) for θ, θ

+ ∈ Θ12, sample paths
that are continuous w.p.1, and supθ∈Θ ||n−1/2Ψn(θ)||→p 0;

12Weak convergence here is defined with respect to the sup—norm on function spaces and the
Euclidean norm on Rk. Also, note that Assumption PE could alternatively be stated in original
coordinates.
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(ii) for some A(·) ∈ C0(Θ,Rk×k), supθ∈Θ ||An(θ) − A(θ)|| →p 0, A(θ) > 0, and

An(θ) > 0 for all θ ∈ Θ w.p.1;

(iii) en(·)⇒ e(·) jointly with the statement in (i).13

Assumption PE states that after a coordinate change the Assumptions B, D, and

Assumptions made in Theorem 1 in Stock and Wright (2000) hold. Our assumption

is slightly weaker because in PE(i) we do not require that convergence holds on the

whole parameter space Θ but only on Θ12. For the J statistic we now have the

following theorem.

Theorem 3.2 Suppose Assumption PE holds. Let bθ = (bθ1,bθ2) := T−1(bθ) and as-
sume that S in (7.23) in the Appendix satisfies the “unique minimum”14 condition

in (7.24). Then,

(i) (Asymptotic distribution of parameter estimates)

(bθ1, n1/2(bθ2 − θ02))→d θ
∗
:= (θ

∗
1, θ

∗
2),

where the nonstandard limit θ
∗
is defined in (7.25) and (7.26) and

(ii) (Asymptotic distribution of the J statistic) assuming k > p

Jn →d J
∗ := S(θ

∗
1, θ

∗
2).

Part (i) shows that some components of the estimator in new coordinates, bθ2,
are root—n consistent for θ2 yet are not asymptotically normally distributed due

to the inconsistent estimation of the remaining components θ1 by bθ1. Under full
identification (T ≡ id and p1 = 0) and assuming that en →p θ0 for the two—step

GMM case, equation (7.26) shows that n1/2(bθ − θ0) →d θ∗ which is distributed

as N(0, (M 0
2AM2)

−1(M 0
2AΩ(θ0)AM2)(M

0
2AM2)

−1), where M2 := M2(θ0) and A :=

A(θ0). Choi and Phillips (1992) and Stock and Wright (2000) (Theorem 1 (ii)) derive

the limit distribution of the parameter estimates in the linear model under partial

identification and in the nonlinear model under ID with T ≡ id, respectively.
13By definition

en(θ) =

½
en for two—step GMM
θ for CU GMM

and therefore, for two—step GMM PE(iii) means en →d e for some random variable e while for CU
PE(iii) boils down to the trivially satisfied condition en(·) = e(·) := id(·).
14The “unique minimum” condition is used in the proof when we apply Lemma 3.2.1 in van der

Vaart and Wellner (1996), as in Stock and Wright’s (2000) proof of Theorem 1(ii).
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Part (ii) corresponds to Corollaries 4 (i) and (j) in Stock and Wright (2000), where

the asymptotic distribution of the J statistic is derived under their Assumption C.

Part (ii) shows that in general the J statistic has a nonstandard asymptotic distribu-

tion while under full identification and A = Ω(θ0)−1 we obtain the well known result

that Jn →d χ2(k − p). Therefore, generally, under identification failure, the J test
does not have correct rejection probability under the null if inference is based on χ2

critical values. As we show now, subsampling overcomes that problem. To formally

establish power, we have to make the following assumption under the alternative H1.

Assumption MM (misspecified model):

(i) the parameter space Θ is compact;

(ii) Egi(·) ∈ C0(Θ,Rk) and supθ∈Θ ||bg(θ)−Egi(θ)||→p 0;

(iii) there exists a nonstochastic functionA(·) ∈ C0(Θ,Rk×k) such that supθ∈Θ ||An(θ)−
A(θ)||→p 0 and A(θ) > 0 for θ ∈ Θ w.p.1;

(iv) for en(θ) defined in (3.9) we have en(θ)→p e(θ), where e(θ) is nonstochastic;15

(v) eθ := argminθ∈Θ ||A(e(θ))1/2Egi(θ)|| exists and is unique.
Given the previous theorem, the next statement is a corollary of Theorem 3.1.

The test is H0 : ∃θ ∈ Θ, Egi(θ) = 0 versus H1 : ∀θ ∈ Θ, Egi(θ) 6= 0.

Corollary 3.1 Suppose k > p and that the sequence {zi} is strictly stationary and
strongly mixing. Assume b/n→ 0 and b→∞ as n→∞. Let Dn = Jn of (3.12) and
define the subsampling test by (3.6).

(i) Under H0 assume PE and that J∗ in Theorem 3.2 is continuously distributed.

Then the rejection probability of the subsampling test converges to α as n→∞
both under full identification and identification failure.

(ii) Under H1 and Assumption MM the rejection probability converges to 1 as

n→∞.

The corollary shows that the subsampling test of overidentifying restrictions is

consistent against model misspecification. It also shows that the test has asymptoti-

cally exact rejection probabilities under the null hypothesis both under full identifi-

cation and identification failure. The test therefore improves on the classical J test
15 In other words, for 2-step GMM we assume that the preliminary estimator en converges in

probability to an element e ∈ Θ.
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or the tests of overidentifying restrictions suggested in Imbens et al. (1998) that are

all size distorted under identification failure.

3.3 Testing Parameter Hypotheses

In this subsection, we derive the asymptotic distribution of the Wald statistic under

Assumption ID and conclude that the Wald test is size distorted under identification

failure. We then use this asymptotic result to show that the subsampling version of

the Wald test has exact (asymptotic) rejection probability under the null.

To derive the asymptotic distribution of the Wald statistic we need the following

additional assumption besides Assumption PE. If they exist, denote by (∂gi/∂θ
0
1)(θ) ∈

Rk×p1 and (∂gi/∂θ
0
2)(θ) ∈ Rk×p2 the partial derivatives of gi with respect to the first

p1 and last p2 components of θ, respectively, where we use the notation of Assumption

ID. Define

N := diag(njj) ∈ Rp×p, (3.15)

where njj = n1/2 if j ≤ p1 and njj = 1 otherwise for j = 1, ..., p.

Assumption WS (Wald statistic): Assume ID and suppose there exists a neighbor-
hood U2 ⊂ Θ2 of θ02, such that for Θ12 := Θ1 ×U2

(i)

Φn(θ) := [(n
−1/2Pn

i=1 vec
∂gi

∂θ
0
1

(θ))0,Ψn(θ)
0]0 ⇒ Φ(θ)

holds jointly with PE(iii), where Φ is a k(p1+1)—dimensional Gaussian stochas-

tic process on Θ12 with sample paths that are continuous w.p.1, a certain (possi-

bly nonzero) mean function, and covariance function ∆(θ, θ
+
) := EΦ(θ)Φ(θ

+
)0

for θ, θ
+ ∈ Θ12;

(ii)

sup
θ=(θ1,θ2)∈Θ12

||n−1
Pn
i=1

∂gi

∂θ
0
2

(θ)−M2(θ2)||→p 0

and M2(θ2) has maximal column rank for all θ ∈ Θ12;

(iii) by (i), (ii), and Theorem 3.2 (n−1
Pn
i=1(∂gi/∂θ

0
)(bθ))N ∈ Rk×p converges in

distribution to a random variable with realizations in Rk×p. Assume the real-
izations have full column rank a.s.;
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(iv) there exists a nonstochastic function Λ : T (Θ12)→ Rk×k such that

sup
θ∈T (Θ12)

||Kn(θ)− Λ(θ)||→p 0 (3.16)

for Kn(θ) defined in (3.14); Λ(θ) has full rank for all θ ∈ T (Θ12).

We now discuss Assumption WS. WS(i) generalizes PE(i) by including a portion

of the first derivative matrix into the functional central limit theorem (FCLT). Joint

CLTs of gi and (portions of) its derivative matrix have also been assumed by Kleiber-

gen (2001, Assumption 1) and Guggenberger and Smith (2004, Assumption Mθ(vii)).

However, instead of a FCLT, these papers only require a joint CLT at θ0.We require

a FCLT because instead of evaluating our test statistic at a fixed hypothesized pa-

rameter vector, our test statistic is evaluated at an estimated parameter vector. As

shown in Theorem 3.2, this estimator is in general not consistent. Note that we do

not have to subtract off the mean in the FCLT from the derivative component; under

weak technical conditions that allow the interchange of differentiation and integra-

tion, ID(ii) implies that n−1/2
Pn
i=1E(∂gi/∂θ

0
1)(θ) → M1(θ), where M1(θ) ∈ Rk×p1

denotes the derivative of m1(θ) with respect to the first p1 coordinates. Then the

mean function of Φ(θ) equals [(vecM1(θ))
0, 00]0.

Assumptions WS(ii) and (iv) state uniform law of large numbers. In WS(ii), the

series converges toM2(θ2) which assumes that one can interchange the order of inte-

gration and differentiation. We make this assumption to economize on notation, but

everything that follows would go through if convergence was instead to a different full

rank non—stochastic function, G2(θ2) say, instead ofM2(θ2). On the other hand, note

that in (iv) we do not require that Λ(θ0) is the long—run covariance matrix Ω(θ0) of

gi(θ0). Our theory goes through in the general time series context, even if a simple

sample average Kn(θ) = n−1
Pn
i=1 gi(θ)gi(θ)

0 is used, as long as Kn(θ) converges

uniformly to a full rank nonstochastic matrix.

Example 2.1 (cont.): In the linear model, the upper—left kp1—dimensional square
submatrix of ∆(·, ·) and M2(·) from Assumptions WS(i) and (ii) do not depend on

the argument θ. This implies an easy sufficient condition for WS(iii) as stated in the

next Lemma. Furthermore, WS(i)—(ii) hold automatically.

Lemma 3.1 In the linear model of Example 2.1 assume i.i.d. data, E(Z 0i, X
0
i)
0(ui, V 0i )

= 0, E||(Z0i,X 0
i)
0(Z0i,X

0
i, ui, V

0
i )||2 <∞, and set Kn(θ) := n−1

Pn
i=1 gi(θ)gi(θ)

0. Then,

under Assumption ID, it follows that WS(i)—(ii) hold. If, in addition, the upper—

left kp1—dimensional square submatrix of ∆ is positive definite, then WS(iii) holds.

Finally, WS(iv) holds if limn→∞Egi(θ)gi(θ)0 is positive definite for all θ ∈ Θ.
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Besides mild additional assumptions the lemma states the main assumptions that

are needed for the subsampling approach to work when applied to the Wald test

and parameter hypotheses in the linear model; see Corollary 3.2 below. We can now

formulate the following theorem that derives the asymptotic distribution of the Wald

statistic under ID.

Theorem 3.3 (Asymptotic distribution of the Wald statistic) Assume the assump-
tions of Theorem 3.2 and Assumption WS hold. Then, under the null hypothesis

Rθ0 = q, we have Wn →d W
∗, where the limit W ∗ is defined in (7.29) in the Ap-

pendix.

Theorem 3.3 generalizes an analogous result about the Wald statistic in Staiger

and Stock (1997, Theorem 1(c)) from the linear model with only weakly identified

parameters to the GMM setup under ID. Phillips (1989) and Choi and Phillips (1992)

derive the asymptotic distribution of the Wald statistic that tests hypotheses on

the coefficients of either the exogenous or endogenous regressors in the linear model

under partial identification. For example, they show that in the totally unidentified

case, the Wald statistic converges to a random variable that can be written as a

continuous function of random variables that are distributed as noncentral Wishart

and multivariate t (Phillips (1989, Theorem 2.8.)).

Theorem 3.3 shows that the Wald statistic has a nonstandard asymptotic distri-

bution under identification failure. On the other hand, under full identification and

assuming that Λ(θ0) = Ω(θ0), the proof of the theorem contains the well known result

that the Wald statistic is asymptotically distributed as χ2(r). A test based on the

Wald statistic using critical χ2—values is likely to be size distorted when identification

fails. On the other hand, as we will show now, the subsampling test has rejection

probabilities under the null that are asymptotically exact even under identification

failure. What is crucial (and sufficient under very mild additional assumptions) for

the subsampling approach to have exact (asymptotic) rejection probabilities under

the null, is that the test statistics we apply subsampling to, converge to an asymptotic

distribution independent of the particular assumption in ID; see part (i) of Corollaries

3.2 and 3.1.

Given the previous theorem the following statement is a corollary of Theorem

3.1. The hypothesis under test is H0 : Rθ0 = q versus the two—sided alternative

H1 : Rθ0 6= q.

Corollary 3.2 Assume PE, WS, and that W ∗ in Theorem 3.3 is continuously dis-

tributed. Suppose the sequence {zi} is both strictly stationary and strongly mixing.
Assume b/n → 0 and b → ∞ as n → ∞. Let Dn = Wn of (3.11) and define the

subsampling test by (3.6). Then
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(i) Under H0 the rejection probability converges to α as n → ∞ both under full

identification and identification failure.

(ii) Under H1 the rejection probability converges to 1 as n →∞ under full identi-

fication.

(iii) Consider a sequence of contiguous alternatives under full identification. Then

the limiting rejection probability of the subsampling test (3.6) is equal to that of

the Wald test.

The corollary shows that the subsampling test of parameter hypotheses is consis-

tent against fixed alternatives under full identification and has asymptotically exact

rejection probabilities under the null hypothesis both under full identification and

identification failure. Furthermore, it has the same limiting power against contigu-

ous alternatives under full identification as the original Wald test. As a special case

for this last statement consider again Example 2.1. Assume a parametric distribution

for zi indexed by θ, {Pθ : θ ∈ Θ}, that is differentiable in quadratic mean around
a particular parameter θ0 which satisfies Rθ0 = q (see Appendix (B)). Denote by

χ21−α(r) the 1− α quantile of a χ2 distribution with r degrees of freedom and let W

be a random variable that follows a noncentral χ2(r, δ) distribution for some non-

centrality parameter δ. Furthermore, assume the data is generated according to a

Pitman drift θn = θ0 + h/
√
n for some h ∈ Rp. Assuming various regularity condi-

tions given in Newey and West (1987, Theorem 2), Λ(θ0) = Ω(θ0) = A(θ0)
−1, and

en →p θ0 in the two—step GMM case, the corresponding limiting power for both

the classical Wald and the subsampling test is given by P{W > χ21−α(r)}, where
δ := h0R0[R{M2(θ0)Ω(θ0)

−1M2(θ0)
0}−1R0]−1Rh.

4 Choice of the Block Size

An application of the subsampling method requires a choice of the block size b.

Unfortunately, the asymptotic requirements b/n → ∞ and b → ∞ as n → ∞ offer

little practical guidance. We propose to select b by a calibration method, an idea

dating back to Loh (1987).

It is our goal to construct a test with nominal size α. However, generally, this

can only be achieved exactly as the sample size tends to infinity. The actual size

in finite sample, denoted by λ, typically differs from α. The crux of the calibration

method is to adjust the block size b in a manner such that the actual size λ will

hopefully be close to the nominal size α. To this end consider the calibration function

h(b) = λ. This function maps the block size b onto the actual size of the test, given
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the underlying probability mechanism and a fixed sample size. If h(·) were known,
one could construct an “optimal” test by finding b̃ that minimizes |h(b)−α| and use
b̃ as the block size; note that |h(b)− α| = 0 may not always have a solution in b.

In principle, we could simulate h(·) if in return P were known by generating data
of size n according to P and constructing subsampling hypothesis tests for H0 for a

number of different block sizes b. This process is then repeated many times and for

a given b one estimates h(b) as the fraction of tests that reject the null. The method

we propose is identical except that P is replaced by an estimate P̂n that is consistent

for P , at least under the null. The choice of P̂n should be made on a case—by—case

analysis; further details are given below.

Algorithm 4.1 (Choice of the Block Size)

1. Fix a set B of reasonable block sizes b, where blow := minB and bup := maxB.

2. From the original data, z1, . . . , zn, generate L pseudo sequences z∗l,1, . . . , z
∗
l,n,

l = 1, . . . , L according to P̂n. For each sequence, l = 1, . . . , L, and for each

b ∈ B, construct a subsampling hypothesis test for H0, φl,b say, in the way
described in the beginning of Section 3. In particular, φl,b = 1 if H0 is rejected

and φl,b = 0 otherwise. Note that the specific form of H0 is allowed to depend

upon P̂n here.

3. Define ĥ(b) := L−1
PL
l=1 φl,b.

4. Use the block size b̃:=argminb∈B |ĥ(b)− α|.

We recommend to use L ≥ 1, 000 in practice. In step 2 of the algorithm it is

noted that H0 may depend upon P̂n. See subsection 4.1 for an example.

Remark 4.1 Strictly speaking, Theorem 3.1 and, as consequence, Corollaries 3.1

and 3.2, assume an a priori determined sequence of block sizes b as n → ∞. In
practice, however, the choice of b will typically be data—dependent, such as given

by Algorithm 4.1. As discussed in Politis et al. (1999, Section 3.6), such a data—

dependent choice of block size does not affect the asymptotic validity of subsampling

inference with strong mixing data as long as blow →∞ and bup/n1/2 → 0 as n→∞.

We now give some further details of the block size choice for the two main applica-

tions in the paper, namely, parameter testing and tests of overidentifying restrictions.
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4.1 Choice of the Block Size for Testing Parameter Hypotheses

For simplicity, our proposal for P̂n is to resample from the observed data {z1, . . . , zn}
via the stationary bootstrap of Politis and Romano (1994). In the special case of i.i.d.

data one should use the i.i.d. bootstrap of Efron (1979) instead.16 The corresponding

null hypothesis in Algorithm 4.1 then is H0 : Rθ0 = Rθ̂n. Since we resample from

the observed data, the parameter θ corresponding to P̂n, denoted by θ(P̂n), is given

by θ̂n. But even if the null hypothesis is true, Rθ̂n 6= q in general. This explains why
one should use Rθ̂n instead of q as the hypothesized value in step 2 of the algorithm.

Another possibility would be to generate pseudo data from a distribution P̂n,0 that

satisfies the constraints of the null hypothesis, namely, Rθ(P̂n,0) = q, where θ(P̂n,0)

denotes the parameter vector θ that corresponds to the probability mechanism P̂n,0.

In that case the null hypothesis for use in Algorithm 4.1 would be H0 : Rθ0 = q.

However, this approach is more cumbersome and in some simulations that we tried

in the context of Example 2.1, it did not work any better than resampling from the

observed data as described above.

4.2 Choice of the Block Size for Testing Overidentifying Restrictions

Here the null hypothesis is not expressed in terms of the parameter vector θ0. There-

fore, we have to go through the effort of resampling from a distribution P̂n that

satisfies the constraints of H0. The reason is that the simpler solution of resam-

pling from the observed data in conjunction with adjusting the parameter vector for

Algorithm 4.1 to θ̂n is not available.

Unfortunately, the particular form of imposing H0 onto P̂n depends on the sit-

uation at hand. The general idea is to transform the observed data “as little as

possible” to satisfy the constraints of H0 in the empirical distribution of the trans-

formed data and then to resample from the transformed data. We give here a specific

description for Example 2.1. The observed data are (y, Y,X,Z). The null hypothesis

states that E(Z 0i,X
0
i)
0ui = 0. Let θ̂n = (β̂

0
n, γ̂

0
n)
0 be the 2SLS estimator of θ0 and

let û := y − Y β̂n −Xγ̂n be the vector of corresponding residuals. By construction,

û0X = 0 (in case there are any included exogenous variables to begin with). On

the other hand, û0Z 6= 0 in general. So the empirical distribution of the observed

data does not satisfy the constraints of H0. Therefore, we transform û in the least

possible way to make it orthogonal to Z by projecting it onto the null space of [X

Z]. The thus transformed residuals, in return, imply a transformed y vector. So let

ũ := (I−P[X Z])û and let ỹ := Y β̂n+Xγ̂n+ ũ. The transformed data set from which

16Efron’s bootstrap is a special case of the stationary bootstrap, namely when the (expected) block
length of the stationary bootstrap is set equal to one.
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we resample using Efron’s bootstrap then is (ỹ, Y,X,Z). Since (ỹ − Y β̂n −Xbγn)0[X
Z] = 0, the constraints of H0 are satisfied by the empirical distribution of the trans-

formed data set.17

5 Extension: Instrument Exclusion

One important advantage of subsampling methods consists in their robustness with

respect to the assumptions of the model. We illustrate this by focusing on the example

of “instrument exclusion” in the linear model, see Dufour (2003). Consider the linear

model with structural and reduced form equations given by

y = Y β0 +Xγ0 + u, (5.17)

Y = ZΠ+XΦ+ V ∗,

V ∗ = Z∗Π∗ + V,

where the dimensions of all variables are as in Example 2.1 (2.2)—(2.3), Z∗ ∈ Rn×j∗ ,
and Π∗ ∈ Rj∗×v1 . In this model, a subset of the instruments, namely Z∗, is left
out of the analysis or “excluded” from use. For example, in practice, Z∗ may be

unobservable or simply overlooked by the applied researcher. Therefore, Z∗ is in-

cluded in the reduced form error term V ∗ which may lead to correlation between V ∗

and Z and X. The moment function has the same form as in Example 2.1, namely,

gi(θ) := (Z
0
i,X

0
i)
0(yi − Y 0i β −X 0

iγ). Such a model of “instrument exclusion” has been

investigated by Dufour (2003, Section 6.1) and Dufour and Taamouti (2004b, Section

2). They show that the Anderson and Rubin (1949) test has exact size (for simple full

vector hypotheses H0 : θ0 = q) under “instrument exclusion” while other tests, such

as Kleibergen’s (2002) or Moreira’s (2003) test, are generally size—distorted. We show

that the subsampling testing approach has exact asymptotic size for general linear

hypotheses tests in this model of instrument exclusion under weak assumptions.

The next lemma states assumptions for the linear model with possibly excluded

instruments that essentially imply the conditions needed in Corollary 3.2 above for

the subsampling approach to work when applied to parameter testing.

Lemma 5.1 In model (5.17), assume i.i.d. data, E(Z0i,X
0
i)
0(ui, V 0i ) = 0, E||(Z 0i,X 0

i)
0

(Z 0i, X
0
i, Z

∗0
i , ui, V

0
i )||2 < ∞, and set Kn(θ) := n−1

Pn
i=1 gi(θ)gi(θ)

0. Then, under

Assumption ID, it follows that WS(i)—(ii) hold. If, in addition, the upper—left kp1—

dimensional square submatrix of ∆ in WS(i) is positive definite, then WS(iii) holds.

WS(iv) holds if limn→∞Egi(θ)gi(θ)0 is positive definite for all θ ∈ Θ.
17 If there are no included exogenous variables in the model, the modifications are the obvious ones.

Let û := y − Y β̂n, ũ := (I − PZ)û, and ỹ := Y β̂n + ũ. The transformed data set then is (ỹ, Y, Z).
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Under mild additional assumptions including a continuous limit distribution of

the Wald statistic W ∗, Corollary 3.2 shows that under the conditions of Lemma

5.1, subsampling still leads to exact asymptotic null rejection probabilities even un-

der instrument exclusion. On the other hand, Kleibergen’s (2001, 2002, 2004) and

Moreira’s (2003) tests are size distorted under instrument exclusion, see Dufour and

Taamouti (2004b). Moreira’s (2003) test relies on the consistent estimation of the

covariance matrix of Vi, which generally is not possible if instruments are excluded.

6 Monte Carlo Experiments

To assess the finite sample performance of the subsampling tests introduced above,

we conduct a series of Monte Carlo experiments.

6.1 Experimental Designs

(I) In the first experiment we look at a simple full vector parameter hypothesis. The

data generating process (DGP) is given by model (2.2) and (2.3), where

v1 = 1, v2 = 0 (that is one endogenous, no exogenous variable)

β0 = 0 (structural parameter value)

for j = 1 or 3, Z is a (n× j)—matrix of i.i.d. N(0, 1) variables,
n = 100 (sample size), and

(ui, Vi)
0 ∼ i.i.d. N(0,Σ),where Σ =

µ
1 .25
.25 1

¶
.

The j—vector Π equals (π, ...,π)0, where π equals 0, .01, .05, .1, .5, or 1. Interest focuses

on testing the scalar null hypothesis

H0 : β0 = 0 versus H1 : β0 6= 0.

We also explore the impact of conditional heteroskedasticity on the performance of

the test statistics by replacing ui by eui := ||Zi||ui. In total we are looking at 24
different DGPs (different j and π values and homo/heteroskedasticity). We compare

the size and power performance of the following four statistics:

• The subsampling method (3.6) is applied to the standard homoskedastic ver-
sion of the Wald statistic W . This approach is denoted Sub. Empirical null

rejection probabilities are obtained via the data—dependent choice of block size

of Algorithm 4.1.18

18 In Algorithm 4.1, we use B := {4, 6, 8, 10, 15, 20, 25, 30, 35} as the set of input block sizes, L = 250
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• The K test by Kleibergen (2001), based on the White-type heteroskedasticity

robust estimator of the covariance matrix.

• The empirical likelihood based test LMEL by Guggenberger and Smith (2004).

• The conditional likelihood ratio test by Moreira (2003), denoted by LRM .

See Guggenberger and Smith (2004, Section 5.2) for a precise definition of the

latter three tests. The case of a simple full vector hypothesis test is not an application

where we expect subsampling to have a comparative advantage over other tests robust

to weak identification recently introduced in the literature, on the contrary. However,

while subsampling is applicable to tests of general linear hypotheses, these other tests

are not. This experiment is used to investigate the premium price (in terms of power

loss) for the robustness of the subsampling approach, in a scenario, where we expect

the performance of the test to be at its worst relative to these other statistics. For

that reason we include the LRM test: this test is size distorted under conditional

heteroskedasticity but is known to be uniformly most powerful unbiased for two sided

alternatives in the case j = 1, normal reduced form errors with known covariance

matrix, and nonstochastic exogenous variables, see Andrews et al. (2004).

(II) The second experiment looks at a simple subvector hypothesis test, which is

a scenario where we recommend application of the subsampling approach. The DGP

is given by model (2.2) and (2.3) considered in Example 2.1 above and the parameter

specifications are very similar to the setup in Dufour and Taamouti (2004b), viz. in

Example 2.1 we choose

v1 = 2, v2 = 1 (that is two endogenous, one exogenous variable) (6.18)

β0 = (0, 0)0, γ0 = 0, Φ = (.1, .5) (parameter values)

X = 1n, an n—column of ones, Z is a (n× 2)—matrix of i.i.d. N(1, 1) variables,
n = 100 (sample size), and

(ui, V
0
i )
0 ∼ i.i.d. N(0,Σ), where Σ :=

⎛⎝ 1 .8 .8
.8 1 .3
.8 .3 1

⎞⎠ . (6.19)

as the number of repetitions, and Efron’s (1979) i.i.d. bootstrap to resample the data. Even though
we have i.i.d. data, we only use the n− b+ 1 blocks of consecutive data rather than all the possible¡
n
b

¢
subsamples to approximate the sampling distribution of the Wald statistic.

When calculating power curves it is too computer intensive to implement Algorithm 4.1. Therefore,
empirical power was obtained by using the fixed block size b ∈ B that resulted in the empirical size
closest to the empirical size obtained by the data—dependent block choice method. Also, while
we recommend to use L ≥ 1, 000 for a practical application, this choice was not feasible for the
computational demands of a large—scale simulation study.
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Our simulation study varies over different Π matrices thereby investigating the ef-

fects of weak identification or identification failure. More specifically, for π1,π2 =

0, .01, .05, .1, .5, 1 we take all 71 possible combinations of Π matrices defined as19

Π̄ =

µ
π1 2π2
2π1 π2

¶
or Π̃ =

µ
2π1 π2
π1 2π2

¶
. (6.20)

Interest focuses on testing the scalar null hypothesis

H0 : β01 = 0 versus the alternative hypothesis H1 : β01 6= 0.

We compare the size and power performance of the following four test statistics:

• The classical Wald statistic based on the two stage least squares (2SLS) esti-
mator bθ = (bβ1, bβ2, bγ)0 of θ0 = (β00, γ0)

0 = 0 using a homoskedastic covariance

matrix estimator

W = nbβ21[(Y,X)0P[Z X](Y,X)]1,1/bσ2, (6.21)

where bσ2 := (n−3)−1Pn
i=1(yi−(Y 0i , Xi)bθ)2 denotes the sum of squared residuals

divided by n− 3.20

• The subsampling method (3.6) is applied to the Wald statistic W in (6.21).

This approach is denoted Sub. Again, empirical null rejection probabilities are

obtained via the data—dependent choice of block size of Algorithm 4.1, with the

set of input block sizes given by B = {6, 8, 10, 15, 20, 25, 30, 35} and with the
number of repetitions given by L = 250. Empirical power was calculated as

noted above in experiment (I).

• Kleibergen’s (2004) subvector statistic, denotedK, defined in his equation (17)21.

• A projected version of the Anderson and Rubin (1949) statistic, denoted ARP ,
as suggested in Dufour and Taamouti (2004b).

We investigate the subvector case rather than a more general linear hypothesis to

have the K test available as a competitor. Recall that the K test can not be applied

in the latter case. No instruments are excluded from the reduced form to satisfy a

main assumption for the K test to work properly. We look at only two endogenous

19The case π1 = π2 = 0 leads to the same Π matrix in both designs.
20We also experimented with the classical likelihood ratio statistic and its subsampling counterpart

but did not find an advantage over the Wald statistic approach.
21Kleibergen’s (2004) subvector statistic is defined in a linear model with no exogenous variables.

In case there are exogenous variables, he suggests to project them out. Therefore, in our study, we
project out the constant X when calculating the K statistic.

[25]



variables because the power properties of the ARP test are likely to be better in this

case than in a scenario where one has to “project out” more dimensions. Therefore,

if anything, we believe that this Monte Carlo design works in favor of the competitors

of Sub. Note that Moreira’s (2003) test can not be applied in this scenario.

(III) In the third experiment we investigate the performance of tests of overiden-

tifying restrictions. The DGP is as in experiment (II), (6.18)—(6.19), except that we

add two additional excluded exogenous variables, that is, Z is now a (n× 4)—matrix
of i.i.d. N(1, 1) variables. Instead of n = 100, we work with n = 200. Again, the

study varies over different Π matrices. More specifically, for π1 and π2 as in (II) we

take all 36 possible combinations of Π matrices defined as

Π =

⎛⎜⎜⎝
π1 2π2
2π1 π2
.0001 .0001
.0001 .0001

⎞⎟⎟⎠ . (6.22)

The hypothesis under test is

H0 : ∃θ ∈ Θ, Egi(θ) = 0 versus H1 : ∀θ ∈ Θ, Egi(θ) 6= 0.

We compare the size performance of the following two statistics:

• The classical J statistic J = nĝ(θ̂)0[σ̂2(Z,X)0(Z,X)/n]−1ĝ(θ̂) based on the

2SLS estimator bθ = (bβ1, bβ2, bγ)0 of θ0 = (β00, γ0)
0 = 0 using a homoskedastic

covariance matrix estimator, where bσ2 := n−1
Pn
i=1(yi − (Y 0i ,Xi)bθ)2 denotes

the sum of squared residuals divided by n.

• The subsampling method (3.6) applied to this J statistic. This approach is
denoted Sub. Again, empirical null rejection probabilities are obtained via the

data—dependent choice of block size of Algorithm 4.1, with the set of input block

sizes given by B = {10, 30, 50, 70, 90, 110} and with the number of repetitions
given by L = 250.

6.2 Size and Power Comparison

In all experiments sizes are calculated at the 5% nominal level. We use R = 2, 000

repetitions for experiments (I) and (II) and R = 1, 000 for (III).

(I) We first discuss the results for experiment (I) starting with size. The results

for j = 1 and j = 3 are not qualitatively different and therefore, we only report the

results for j = 3, see Table 1, where the empirical rejection probabilities (ERP) under

the null hypothesis are summarized. The size results can be quickly summarized.
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As discussed above already, the version of LRM employed here is not robust to

conditional heteroskedasticity and consequently, the test overrejects severely under

conditional heteroskedasticity. Theory says that the ERPs under the null of all other

tests should not be affected by the strength of identification and indeed all the ERPs

under the null come close to the nominal level across all scenarios we looked at, for

example, the ERPs of Sub, K, and LMEL across the scenarios in Table 1 fall into

the intervals [4.3%, 7.3%], [4.5%, 6.5%], and [4.3%, 6.1%], respectively.

We now discuss the power results of experiment (I). ERPs for the four test statis-

tics are calculated for the true β0 being an element of {−1,−0.9,−0.8, . . . , 0.9, 1}
and the null hypothesis being H0 : β0 = 0. There is no qualitative difference in the

power results for j = 1 and j = 3 and we therefore focus on the latter. Figures

I(a)—(d) contain power curves for the cases j = 3, π = .1 and 1 under both homo—and

heteroskedasticity. For π = 0, .01, and .05 we obtain essentially flat power curves at

the empirical null rejection probability of each test. The case π = .5 is qualitatively

similar to π = 1 with lower power for all tests. While for π = .1 the power curves

are still relatively flat, especially under heteroskedasticity (see Figures I(a)—(b)), the

tests have high power and are U—shaped for π = 1 (see Figures I(c)—(d)). In the case

π = 1, the Sub test is dominated by the other tests for most β0. The power loss is

higher for positive β0 and under heteroskedasticity. In fact, for negative β0 < −.5,
Sub has higher power than LMEL and K under homoskedasticity. These results are

rather encouraging for the subsampling approach because they indicate that even in

a scenario where the competitors are known to perform best relative to Sub, their

power advantage over Sub is not overwhelming.

(II) We now discuss the results for experiment (II) starting with size. There are

no significant differences in the results for the two different designs of the Π matrix

and therefore we only report results for the first design, where Π = Π̄, see Table

2.22 Theory predicts that the Wald statistic is size distorted if at least one of the

parameters π1 or π2 is small, that the K statistic is size distorted if the parameter

not under test is only weakly identified, that is π2 is small, and that ARP is generally

conservative. On the other hand, the subsampling approach, Sub, should lead to exact

sizes (at least asymptotically) under all scenarios considered. The ERP, summarized

in Tables 2, are consonant with this prediction. Across all experiments, ERPs for

the Wald test fall into the interval [.6%, 41.9%]. The test severely overrejects in cases

where π1 is (relatively) small, and typically underrejects when π2 is small and π1 is

large. The K test leads to reliable size results except for cases where π2 is small,

where the test severely underrejects; for example, in all experiments with π2 = 0 or

22The column for the test denoted Sub∗ will be explained and discussed in (IV) below.
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π2 = .01 the ERP is .4%. TheARP test severely underrejects. Across all experiments,

ERPs fall into the interval [.0%, 1.5%]! Finally, the subsampling procedure seems to

have the best overall size properties; there is no clear pattern of size—distortion, but

still, the size results for Sub are not perfect either and there are various under— and

overrejections for certain parameter combinations. For example, for π1 = .05 and

π2 = 0 the ERP is about 2% for both designs of the Π matrix. This is also consonant

with theory that states that (for one—sided alternatives) under the null the error

in rejection probability of tests based on the subsampling approach is typically of

order Op(b−1/2) compared to the faster Op(n−1/2) of standard approaches (and a

qualitatively analogous statement holds for two—sided alternatives).

The potentially severe size distortion of the Wald test under weak identification

rules out its application in situations where the strength of identification is under

doubt. We still include the Wald test into the following power study as a benchmark

that allows us to quantify how much power tests, that are robust to weak identifi-

cation, lose with respect to classical procedures that are size distorted under weak

identification.

We now discuss the 71 power results of experiment (II). ERPs for the four test

statistics are calculated for the true β01 being an element of {−1,−0.9,−0.8, . . . , 0.9, 1}
and the null hypothesis being H0 : β01 = 0. As for the size results there are no qual-

itative differences for the two designs of the Π matrix and we therefore focus our

discussion on the first design Π̄. A subset of the power results for the five parameter

combinations (π1 = 0, .05, .5 and π2 = 0) and (π1 = .1, 1 and π2 = 1) is given in

Figures II(a)—(e).

If the parameter under test is not or very weakly identified, π1 = 0 or .01, then

the power curves of Sub, K, and ARP are essentially horizontal lines through the

ERPs under the null; in particular, the value of the ARP power curve is typically

far below 5% in all these cases while the one of the power curve based on Sub is

close to 5%. It is intuitive that these tests do not have any power for small π1: if

the parameter under test is not or only very weakly identified, we can not expect to

learn much about it from the data. The power curve of the Wald test has an entirely

different shape. It is a convex function that takes on its minimum for β01 < −.5
and then grows as β01 increases, taking on values far bigger than 5% under the null

and reaching ERP of up to about 65% as β01 reaches 1. The Wald test is therefore

severely biased but seems to be symmetric about its argmin. A representative figure

for these cases is Figure II(a) where π1 = π2 = 0.

If the strength of identification of the parameter under test is increased further and

π1 equals .05 or .1, these observations are still true with the following modifications.

The power curve of the Wald test still takes on its minimum value at a negative β01
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but this β01 is now closer to zero in absolute value. While still being flat for positive

β01 values, the power curve of the Sub test has a peak at about β01 = −.5 for small
π2 values. See Figure II(b), where π1 = .05 and π2 = 0, for a representative case. For

larger π2 values the K and ARP test also pick up power for negative β01 with the K

test outperforming Sub and ARP , the latter being the worst in terms of power. See

Figure II(c), where π1 = .1 and π2 = 1, where these features are displayed.

Finally, we discuss the cases where π1 = .5 or 1. The main power advantage of

the Sub test appears in those many cases where the parameter under test is strongly

identified relative to the parameter not under test, that is, all the cases where π1 ≥ .5
and π2 < .5. In these scenarios, the power curves of the K and ARP statistics are still

relatively flat (with the former always uniformly outperforming the latter in terms

of power) with power well below 20% in most cases while Sub takes on power of up

to 60%! See Figure II(d), where π1 = .5 and π2 = 0. In these cases, the Wald test

is the best procedure, with a U—shaped power curve centered at β01 = 0 and power

reaching up to 80% if |β01| = 1. Finally, if the parameter not under test is strongly
identified, that is π2 is large, π2 ≥ .5, the power of the K test improves dramatically

and its power curve then almost coincides with the one of the Wald test, see Figure

II(e), where π1 = π2 = 1. In these cases all power curves are U—shaped and centered

at β01 = 0 with ARP and Sub outperformed by K.

In summary, the ARP test is dominated by theK test across every single scenario

and based on this Monte Carlo study we can not recommend its use. In all scenarios

where the parameter not under test is only weakly identified, π2 < .5, the Sub test

is the clear winner among the three statistics that are robust to weak instruments.

The power gains over the K test can be dramatic in these cases, as shown in Figure

II(d). If π2 increases further, then the K test sometimes has slightly better power

properties than the Sub test. If both π1 and π2 are large, the Wald test is very

competitive; however, in cases of weak identification, the Wald test is biased and

severely size distorted.

(III) Finally, we discuss the size results for the tests of overidentifying restrictions

of experiment (III) summarized in Table 3. The classical J test experiences size

distortion, especially but not exclusively, in some of the weakly identified scenarios.

The ERP is bigger than 15%, 10%, and 8% in 5, 9, and 16 of the 36 scenarios,

respectively. Subsampling almost uniformly improves on the size properties of the J

test. In particular, its ERP is bigger than 15%, 10%, and 8% in 0, 1, and 2 of the

36 scenarios, respectively. As to be expected from our theoretical results, there is

no pattern in the results that would indicate that the size properties of Sub depend

on the degree of identification. As in our previous experiments we find that, while

subsampling successfully improves the size problems of classical tests, it does not fully
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cure them in finite samples due to the slower rate of convergence to zero of the ERP.

Still, the improvements are tremendous in many scenarios. For example for π1 = .05,

the ERPs of the J test over the different π2—values are 16.2, 16.1, 17.0, 10.1, 7.4, and

4.7%. On the other hand, the corresponding numbers for the subsampling version

are 8.2, 6.4, 4.7, 3.8, 5.1, and 4.6%! To the best of our knowledge, subsampling is the

first approach to testing overidentifying restrictions that is robust to identification

failure. In particular, the tests suggested in Imbens et al. (1998) are not robust to

identification failure.

(IV) Assessment of the performance of the data-driven block size choice: Lastly,

we discuss the finite-sample performance of Algorithm 4.1 by comparing the ERPs

of the data-driven block size test to the ERPs of the (infeasible) test that does

subsampling with fixed block size b. Here, for each parameter constellation, b is the

block size in B that yields the ERP under the null that comes closest to the nominal

level of 5% in our simulations. The conclusions are similar across experiments (I)-

(III) and we therefore focus on (II). In Table 2, we report the ERPs of subsampling

with fixed blocksize b in the column Sub∗. The ERPs of Sub∗ fall into the interval

[2.3%, 6.6%] across the 36 scenarios while this interval is [1.9%, 7.3%] for Sub. While

in general the ERPs of Sub are slightly more dispersed than the ones of Sub∗ across

the different scenarios, quite surprisingly, the ERPs of Sub oftentimes are closer to

the nominal level than the ones of Sub∗. In summary, in general the data-driven

method Sub has ERPs that are very competitive with the “optimal” ERPs of the

Sub∗ approach.

7 Conclusion

We introduce new subsampling based tests of parameter hypotheses and overidenti-

fying restrictions that are robust to weak identification. The tests are applicable in

a time series context given by unconditional moment restrictions. To the best of our

knowledge, there are no other tests of overidentifying restrictions in the literature

that are robust to weak identification and consistent against model misspecifica-

tion. Furthermore, there are no other tests of general linear parameter hypotheses

in the literature that are consistent under full identification and have exact (asymp-

totic) rejection probabilities under the null; for example, projection based tests are

only conservative and our Monte Carlo study indicates that they typically have poor

power properties under weak identification compared to the subsampling approach.

In a linear single equation model, our approach can be used to simultaneously test

hypotheses on the coefficients of the exogenous and endogenous variables. On the

other hand, this can not be done with test procedures where the exogenous variables
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are projected out in a first step, see for example, Kleibergen (2002, 2004).

Besides the applicability of the tests in a general time series context, a further

advantage of the subsampling tests seems to be their robustness with respect to the

model assumptions. As an example, we show that in the linear single equation model

the tests have exact (asymptotic) rejection probability under the null even under

instrument exclusion.

Roughly speaking, what is required for the subsampling approach to work, is

that asymptotically, under the null hypothesis, the subsampling test statistic obeys

a continuous limit law. Given this weak assumption, it seems very likely that the

subsampling tests would also be robust to the so called “many instrument problem”,

see Bekker (1994), Hahn and Inoue (2002), and Hansen et al. (2004). This question is

currently under our investigation. The subsampling method is very general and could

be applied to other testing problems in the context of weak and or many instruments,

for example, to tests of exogeneity, see Staiger and Stock (1997, p.567).
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Appendix

(A) Discussion and Motivation of Assumption ID:
The linear model serves as a motivating example for Assumption ID.

Example 2.1 (cont.; based on Phillips (1989, p. 185—6)): In the above linear model
simple calculations using E(Z 0i,X

0
i)
0ui = 0 and E(Z 0i, X

0
i)
0V 0i = 0 yield

Ebg(θ) = QF (θ0 − θ), (∂Ebg/∂θ0) ≡ −QF ∈ R(j+v2)×(v1+v2),
where we set

F :=

µ
Π 0
Φ Iv2

¶
∈ R(j+v2)×(v1+v2), Q := E(Z0i,X 0

i)
0(Z0i,X

0
i) =

µ
QZZ QZX
QXZ QXX

¶
,

and assume that the matrix Q has full rank. In the linear model the rank condition

for identification is that Π has full column rank. Indeed, θ0 is identified if and

only if Π has full column rank. In the polar opposite case, Π = 0, β0 is totally

unidentified, while certain linear combinations of γ0 may still be identified depending

on the rank of the matrix Φ. More precisely, if P = (P1, P2) ∈ O(v2) and P1 spans
the null space of Φ0, then P 01γ0 is identified while P

0
2γ0 is totally unidentified; for

example, if Φ = 0, then γ0 is fully identified! Similarly, for general rank of Π, choose

S = (S1, S2) ∈ O(v1) such that S2 spans the null space of Π. Then S01β0 is identified.
Therefore, in the partially identified model the identifiable linear combinations of θ0
can be retrieved after a rotation of the coordinate system.

Stock andWright’s (2000) Assumption C is a special case of the partially identified

model in the sense that, according to C, in the original coordinates the components

of θ0 are either identified or (asymptotically) unidentified. Putting it differently, the

matrix (∂Ebg/∂θ0) ∈ Rk×p in Phillips (1989) can be of non—maximal rank without
necessarily being of the particular form (∂Ebg/∂θ0) = (0,M), where M is a matrix of

maximal rank. On the other hand, such a decomposition into (0,M) is implied by

Assumption C in Stock and Wright (2000) as n→∞ (for M = (∂m2/∂θ
0
2) under the

weak technical assumption that n−1/2(∂m1n/∂θ0)(θ) → 0 uniformly), where in the

limit the derivative of Ebg(θ) with respect to the weakly identified variables has to be
constantly equal to 0. In the linear model (∂Ebg/∂θ0) = −QF has a decomposition

into (0,M) ∈ Rk×(p1+p2) if and only if the first p1 columns of F equal zero which

holds if and only if the first p1 columns of Π and Φ are zero. This is one particular

case of, but does not account for the general case of identification failure. Therefore,

Assumption ID is motivated by Phillips’ (1989) treatment of the linear model that

allows for more general forms of rank deficiency of Π and Θ. We finally discuss the
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coordinate change T in the example of the linear model.

Example 2.1 (cont.): In the linear partially identified model choose a matrix T =
(T1, T2) ∈ O(p1 + p2) such that T1 spans the null space of QF. Then

Ebg(θ) = QFT (θ0 − θ) = QFT2(θ02 − θ2),

m2(θ2) := QFT2(θ02 − θ2), and m1n ≡ 0. It follows that M2(θ2) ≡ −QFT2 has full
column rank and that m2(θ2) = 0 if and only if θ2 = θ02. The orthogonal map T

transforms the coordinate system in Rp1+p2 in such a way that in the decomposition
θ0 := (θ01, θ02) of the new variables, the first components θ01 are unidentified while

the remaining components θ02 are identified.

(B) Some Words on Contiguity:
The notion of contiguity is a very useful tool to compute the limiting power

of statistical tests against a certain class of “local” alternatives. Consider two se-

quences of probability measures {Pn} and {Qn} defined on a common probability
space. Then the sequence {Qn} is contiguous to the sequence {Pn} if Pn(En) → 0

implies Qn(En) → 0 for every sequence of (measurable) events {En}. Therefore,
contiguity can be considered as an asymptotic version of one probability measure

being absolutely continuous with respect to another one. Assume one knows the lim-

iting distribution of a sequence of test statistic Dn under Pn but the behavior of Dn
under Qn is also required. Contiguity provides a means of performing the required

calculation.

To verify contiguity in a particular setting, several high level conditions are avail-

able. One of them, and of particular interest to us, is the following. Consider a

parametric family {Pθ : θ ∈ Θ} with corresponding densities pθ(·) with respect to a
σ—finite measure. Assume θ0 is an interior point of Θ and let θn = θ0+h/

√
n for some

h ∈ Rp. Denote by Pnθ the joint distribution of {z1, . . . , zn} when the zi are i.i.d. from
Pθ. Then, under general smoothness conditions, {Pnθn} is contiguous to {P

n
θ0
}. One

such sufficient condition is that the parametric family {Pθ : θ ∈ Θ} be differentiable
in quadratic mean in a neighborhood of θ0. For example, this condition is satisfied

by most exponential families, including the multivariate normal distribution.

For a detailed treatment of contiguity, differentiability in quadratic mean, and

corresponding applications to compute the limiting power of tests against “local”

alternatives, the reader is referred to Hájek et al. (1999, Chapter 7), van der Vaart

(1998, Chapters 6, 7, 14, and 15), and Lehmann and Romano (2005, Chapter 12).

Contiguity, arguably, provides the most elegant tool to compute the limiting power

against “local” alternatives, even though sometimes the calculations can be performed

by direct means. However, in doing so one has to account for the fact that the

probability mechanism changes with n (using Lindeberg’s central limit theorem, say).
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(C) Proofs:
Proof of Theorem 3.1. See Theorem 3.5.1 of Politis et al. (1999). ¥

Proof of Theorem 3.2. (i) We apply the proof of Theorem 1 in Stock and Wright
(2000) to the model in new coordinates.23 Set

Sn(θ) := n||An(en(T (θ)))1/2bg(θ)||2
and note that the sequence bθn = T−1(bθn) satisfies bθn ∈ Θ and Sn(bθn) ≤ arg infθ∈Θ Sn(θ)+
op(1). Set

Aθ1
:= A(e(T (θ1, θ02))).

By assumption, the function

S(θ1, b) := ||A
1/2

θ1
[Ψ(θ1, θ02) +m1(θ1, θ02) +M2(θ02)b]||2 (7.23)

defined for (θ1, b) ∈ Θ1 ×Rp2 satisfies the condition: There exists a random element

(eθ1,eθ2) ∈ Θ1 ×Rp2 such that a.s. θ02 + n−1/2eθ2 ∈ Θ2 and
S(eθ1,eθ2) < inf

(θ1,θ2)∈Θ1×Rp2\G
S(θ1, θ2) (7.24)

for every open set G in Θ1×Rp2 that contains (eθ1,eθ2). (This condition is needed when
applying Lemma 3.2.1 in van der Vaart and Wellner (1996) in Stock and Wright’s

(2000) Theorem 1(ii).) Therefore, using ID and PE, by the proof of Theorem 1 in

Stock and Wright (2000) it follows that (bθ1, n1/2(bθ2 − θ02))→d (θ
∗
1, θ

∗
2), where

θ
∗
1 : = arg min

θ1∈Θ1
S
∗
(θ1), (7.25)

θ
∗
2 : = −[M2(θ02)

0Aθ
∗
1
M2(θ02)]

−1M2(θ02)
0Aθ

∗
1
[Ψ(θ

∗
1, θ02) +m1(θ

∗
1, θ02)], (7.26)

S
∗
(θ1) : = [Ψ(θ1, θ02) +m1(θ1, θ02)]

0{Aθ1
−Aθ1

M2(θ02)[M2(θ02)
0Aθ1

M2(θ02)]
−1

×M2(θ02)
0Aθ1

}[Ψ(θ1, θ02) +m1(θ1, θ02)].

(ii) The J statistic expressed in new coordinates reads Jn = Sn(bθn) = Sn(bθn).
Therefore, the statement follows from careful inspection of Corollaries 4(i) and (j) in

Stock and Wright (2000) applied to Sn(bθn). ¥
23For notational simplicity we write from now on Ψ(θ1, θ02) for Ψ((θ

0
1, θ

0
02)

0) and similarly in other
expressions. Sn(θ) plays the role of ST (θ; θT (θ)) and S(θ1, b) the role of S(α, b; θ(α,β0)) in Stock
and Wright (2000). For simplicity, we do not index these expressions by an argument that indicates

which GMM estimator, two—step or CU, is used. Note that en(T (θ)) equals θ in the case of CU and
en for two—step GMM. Note that Stock and Wright’s (2000) proof can be adapted to our slightly
different definition of the GMM estimator as only an approximate (up to order op(1)) minimizer; all
that changes is that on the right hand side of their equation (A.1) we have an op(1) term rather than
0.
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Proof of Corollary 3.1. By Theorem 3.2(ii) and assumption, the test statistic

Dn = Jn has a continuous limit distribution J∗ both under full identification and

identification failure. So the proof of (i) follows from part (i) of Theorem 3.1.

To prove (ii), let β = 1 and dn = Jn/n in (3.7). Using Assumption MM, Newey

and McFadden (1994, Theorem 2.1) implies that bθn is consistent for eθ. Therefore by
Assumption MM, dn converges in probability to d(P ) := ||A(e(eθ))1/2Egi(eθ)||. Clearly,
d(P ) > 0 under H1. On the other hand, under H0, eθ, as the unique minimizer of
||A(e(θ))1/2Egi(θ)||, has to satisfy Egi(eθ) = 0 and therefore d(P ) = 0. Part (ii) of

Theorem 3.1 therefore proves the result. ¥

Proof of Lemmas 3.1 and 5.1. The proof of Lemma 5.1 contains the proof of
Lemma 3.1 as the subcase in which Π∗ = 0. Therefore, we only deal with the general

case of model (5.17). We have

gi(θ) = Q
∗
iF

∗(θ0 − θ) + (Z 0i,X
0
i)
0(V 0i (β0 − β) + ui), Egi(θ) = Q

∗F ∗(θ0 − θ), for

Q∗i : = (Z
0
i, X

0
i)
0(Z 0i, X

0
i, Z

∗0
i ), F

∗0 :=

µ
Π0 Φ0 Π∗

0

00 Iv2 00

¶
, and

Q∗ : = EQ∗i =

µ
QZZ QZX QZZ∗

QXZ QXX QXZ∗

¶
.

Set

bG∗n := n−1Pn
i=1

∂gi

∂θ
0 (
bθn) ∈ Rk×p (7.27)

and note that by the chain rule and linearity of T we have bG∗n = bGnT, where T =
(T1, T2) ∈ O(p1 + p2) is chosen such that T1 spans the null space of Q∗F ∗ and bGn is
defined in (3.13). Clearly, in the linear model bG∗n does not depend on bθn.

First, we show the validity of the FCLT in WS(i). By the proposition on p.

2251 in Andrews (1994), a sufficient condition for the FCLT is finite dimensional

(fidi) convergence and stochastic equicontinuity. For the latter, we have to show that

∀ε > 0 and η > 0, ∃δ > 0 such that

lim sup
n→∞

P [ sup
θ,θ

+∈Θ,||θ−θ+||<δ
||Φn(θ)−Φn(θ

+
)|| > η] < ε. (7.28)

Because bG∗n does not depend on θ we have

||Φn(θ)−Φn(θ
+
)|| = ||Ψn(θ)−Ψn(θ

+
)|| =

||n−1/2
Pn
i=1[(Q

∗
i −Q∗)F ∗T (θ

+ − θ) + (Z 0i,X
0
i)
0V 0i T (β

+ − β)]||.

Given the i.i.d. and moment assumptions, a CLT can be applied to each component of

n−1/2
Pn
i=1(Q

∗
i −Q∗) and n−1/2

Pn
i=1(Z

0
i,X

0
i)
0V 0i showing that these expressions are
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in Op(1). This immediately establishes (7.28). Regarding fidi convergence, note that

we do not have to subtract off the mean in the first kp1 components of Φn(θ), because

n−1
Pn
i=1 ∂gi/∂θ

0
1(
bθn) = bGnT1 has mean zero by construction. Fidi convergence to

a multivariate normal distribution follows by a standard CLT from the i.i.d. and

moment assumptions.

Next, we show WS(ii). We have n−1
Pn
i=1 ∂gi/∂θ

0
2(
bθn) = bGnT2 which does not

depend on bθn, and which, by the weak law of large numbers, converges in probability
to (E∂gi/∂θ0)T2 = Q∗F ∗T2. The latter matrix has maximal column rank because

T = (T1, T2) ∈ O(p1 + p2) was chosen such that T1 spans the null space of Q∗F ∗.
We next show WS(iii). The proof is similar to the one in Guggenberger and

Smith (2004, proof of Theorem 4). From WS(ii) we know that the last p2 columns of

the limit of bG∗nN equal M2 which has full column rank by assumption and does not

depend on θ. Define O := {o ∈ Rkp1 : ∃eo ∈ Rk×p1 , such that o = vec(eo) and the k×p—
matrix (eo,M2) has linearly dependent columns}. Clearly, O is closed and therefore

Lebesgue—measurable. Furthermore, O has empty interior and thus has Lebesgue—

measure 0. The first p1 columns of the limit of bG∗nN stacked as a vector equal the

first kp1 components of Φ, Φ|kp1 say, which by assumption is normally distributed
with full rank covariance matrix (which in the linear model does not depend on θ).

This implies that for any measurable set O∗ ⊂ Rkp1 with Lebesgue—measure 0, it
holds that Pr(Φ|kp1 ∈ O∗) = 0, in particular, for O∗ = O. This proves the full rank
claim.

Finally, note that by the weak law of large numbers Λ(θ) = limn→∞Egi(θ)gi(θ)0

in the linear model and convergence of n−1
Pn
i=1 gi(θ)gi(θ)

0 to Λ(θ) is uniform by

compactness of the parameter space. ¥

Proof of Theorem 3.3. In new coordinates, Assumption ID implies that (in the

terminology of Stock and Wright (2000)) the first p1 components of the parameter

vector θ0 are weakly identified while the remaining p2 components are strongly iden-

tified and are root n—consistently estimated as shown in Theorem 3.2. Therefore,

when deriving the asymptotic distribution of the Wald statistic, we have to renor-

malize certain expressions that have different convergence rates than others. To do

that we use two matrices N ∈ Rp×p defined in (3.15) and M ∈ Rr×r. To define M,
let L ⊂ Rr be the linear subspace spanned by the first p1 columns of the matrix
RT ∈ Rr×p. Set p11 := rank(L), for which p11 ≤ min(r, p1), and assume w.l.o.g. that
the first p11 columns of RT form a basis B1 of L. Because RT has maximal rank r,

there are r−p11 columns among the last p−p11 columns of RT that together with B1
form a basis for Rr.W.l.o.g. assume the last r−p11 columns of RT can be taken and
call them B2. Let (B⊥2 , B

⊥
1 ) be another basis of Rr, B⊥2 ∈ Rr×p11 , B⊥1 ∈ Rr×(r−p11)
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such that the columns of B⊥i are orthogonal to the columns in Bi, i = 1, 2. Define

M := (n−1/2B⊥2 , B
⊥
1 ) ∈ Rr×r. Note that in the case of full identification M = Ir.

Using n−1
Pn
i=1(∂gi/∂θ

0
)(bθn) = bGnT , the Wald statistic (3.11) under the null

hypothesis reads in renormalized form and in new coordinates

Wn = ξ∗0n [R
∗
nB

∗−1
n Ω∗nB

∗−1
n R∗0n ]

−1ξ∗n,

where, for bG∗n defined in (7.27), we set
R∗n : =M

0RTN ∈ Rr×p,
ξ∗n : = R

∗
nN

−1n1/2(bθn − θ0) ∈ Rr,
B∗n : = N bG∗0nAn bG∗nN ∈ Rp×p,
Ω∗n : = N bG∗0nAnKn(bθ)An bG∗nN ∈ Rp×p, and
An : = An(en(T (bθn))) ∈ Rk×k.

By construction of M it follows that (the nonstochastic matrix) NT 0R0M ∈ Rp×r

converges to a matrix that has maximal rank r; namely, the first p11 and last r− p11
rows of NT 0R0M span Rr0 and do not depend on n because the normalizations n1/2

from N and n−1/2 from M cancel out. In the other rows of NT 0R0M the normal-

izations have either cancelled out each other as well or the components of NT 0R0M

are in O(n−1/2), that is, they converge to zero. Therefore, R∗n ∈ Rr×p converges to
a matrix that has maximal rank r. Regarding the second factor in ξ∗n, Theorem 3.2

implies that N−1n1/2(bθn − θ0)→d (θ
∗0
1 − θ

0
0, θ

∗0
2 )
0.

Now, let θ12 := (θ
∗0
1 , θ

0
02)

0 for θ
∗
1 defined in (7.25) and set A := A(e(T (θ12))). By

Assumptions WS(i)—(ii) and Theorem 3.2(i) we have e0iB
∗
nej →d Φ

0
i(θ12)AΦj(θ12) if

both i, j ≤ p1, where here by Φj(·) ∈ Rk we denote the subvector of Φ(·) from WS(i)

containing the components k(j − 1) + 1 to kj, e0iB∗nej →d Φ
0
i(θ12)AM2(j−p1)(θ12)

if i ≤ p1 and j > p1, where by M2j(·) ∈ Rk we denote the jth column of the
matrix M2(·) in WS(ii), e0iB∗nej →d M

0
2(i−p1)(θ12)AΦj(θ12) if i > p1 and j ≤ p1, and

e0iB
∗
nej →d M

0
2(i−p1)(θ12)AM2(j−p1)(θ12) if both i, j > p1. Similar statements hold for

e0iΩ
∗
nej ; for example, by WS(iv) we have e

0
iΩ
∗
nej →d Φ

0
i(θ12)AΛ(θ12)AΦj(θ12) if both

i, j ≤ p1. Note that all the above limits hold jointly.
Denote by ξ∗, R∗, B∗, and Ω∗ the just described limits of ξ∗n, R

∗
n, B

∗
n, and Ω

∗
n. Then

by the continuous mapping theorem the asymptotic distribution of the Wald statistic

is given by the distribution of W ∗

Wn →d W
∗ := ξ∗0[R∗B∗−1Ω∗B∗−1R∗0]−1ξ∗, (7.29)

if we can show that R∗nB
∗−1
n Ω∗nB

∗−1
n R∗0n converges to a random variable (with real-

izations in Rr×r) whose realizations are invertible a.s.. We have shown already that
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R∗ has full rank and it thus remains to show that B∗n and Ω
∗
n converge to random

variables that have full rank a.s.. But this holds by Assumptions WS(iii)—(iv) and

PE(ii) that establish that Λ(θ12), A, and the limit of bG∗nN ∈ Rk×p have full rank a.s..
¥

Proof of Corollary 3.2. By Theorem 3.3 and assumption, the test statisticDn =Wn

has a continuous limit distributionW ∗ both under full identification and identification

failure. So the proof of (i) follows from part (i) of Theorem 3.1.

To prove (ii), assume full identification. In (3.7) let β = 1 and dn =Wn/n. Then

dn converges in probability to d(P ) := (Rθ0−q)0[RB∗−1Ω∗B∗−1R0]−1(Rθ0−q), where
B∗ := plim( bBn) and Ω∗ := plim(bΩn), defined before (7.29), are the probability limits
under full identification. Obviously, d(P ) = 0 if and only if the null hypothesis is

true. Now apply part (ii) of Theorem 3.1.

To prove (iii), assume full identification and consider a sequence of alternatives Pn
that are contiguous to P ∈ P0. Denote by θn the parameter corresponding to Pn
and by θ0 the parameter corresponding to P . We have Rθ0 = q. A test based on

the Wald statistic Wn has exact asymptotic rejection probability under P when the

critical value is the 1− α quantile of the χ2(r) distribution, denoted by χ21−α(r). So

in the notation of Theorem 3.1, C(P ) = χ2(r). Now let W be a random variable

whose distribution is the limiting distribution of Wn under Pn. Then the asymptotic

power of the Wald test is given by Prob{W > χ21−α(r)}. An application of part (iii)
of Theorem 3.1 with Dn =Wn, D =W , and c(1−α, P ) = χ21−α(r), now implies that

the limiting power of the subsampling test against the sequence Pn is also given by

Prob{W > χ21−α(r)}. ¥
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Table 1: Empirical null rejection probabilities in Monte Carlo experiment (I) for
various tests with nominal size α = 5%. The number of repetitions is 2,000 per
scenario.

π Sub K LMEL LRM

j = 3, Homoskedastic
0 5.3 5.3 5.2 5.7
.01 5.2 5.6 5.4 6.2
.05 4.9 5.5 5.1 5.9
.1 6.0 5.0 4.9 5.8
.5 5.6 4.7 4.5 5.9
1 4.3 4.9 4.7 5.9

j = 3, Heteroskedastic
0 5.4 4.8 4.9 20.0
.01 5.8 5.4 5.3 21.4
.05 5.9 5.3 5.1 19.8
.1 7.3 4.9 4.9 18.7
.5 7.2 6.5 6.1 17.9
1 4.5 4.5 4.3 14.5
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Table 2: Empirical null rejection probabilities in Monte Carlo experiment (II) for
various tests with nominal size α = 5%. The design of the Π matrix is Π of (6.20).
The number of repetitions is 2,000 per scenario.

π1 π2 W Sub Sub∗ K ARP

0 0 41.9 3.2 5.4 0.4 0.0
0 .01 39.2 3.1 4.5 0.4 0.1
0 .05 21.2 2.5 4.4 2.1 0.2
0 .1 15.1 3.4 4.1 4.7 1.4
0 .5 12.9 3.7 4.3 5.0 1.3
0 1 10.0 4.0 4.6 5.5 1.5
.01 0 38.2 3.2 4.8 0.4 0.0
.01 .01 30.0 3.1 3.5 0.4 0.1
.01 .05 21.2 2.5 3.6 2.1 0.2
.01 .1 12.5 3.0 3.7 4.7 0.5
.01 .5 13.3 3.7 4.4 5.0 1.3
.01 1 12.7 3.8 5.1 5.3 1.5
.05 0 11.3 1.9 2.3 0.4 0.0
.05 .01 7.6 2.0 2.3 0.4 0.0
.05 .05 3.0 2.4 2.7 1.9 0.3
.05 .1 4.2 2.9 4.3 4.4 1.2
.05 .5 10.0 3.2 5.2 5.0 1.3
.05 1 11.0 2.9 5.3 5.7 1.4
.1 0 4.5 2.2 3.1 0.4 0.0
.1 .01 3.4 3.1 3.6 0.4 0.1
.1 .05 0.6 5.1 4.8 1.7 0.2
.1 .1 1.3 5.2 5.9 4.7 1.0
.1 .5 7.9 4.1 4.8 4.9 1.3
.1 1 8.5 3.7 5.5 5.3 1.5
.5 0 0.9 4.5 4.3 0.4 0.0
.5 .01 1.1 4.9 5.1 0.4 0.1
.5 .05 1.1 7.1 5.5 2.1 0.4
.5 .1 2.8 7.3 4.3 4.7 1.0
.5 .5 3.5 6.4 4.0 5.0 1.3
.5 1 4.7 6.2 5.7 5.3 1.5
1 0 0.9 4.1 5.7 0.4 0.0
1 .01 1.0 4.9 5.6 0.4 0.1
1 .05 2.1 7.3 5.4 1.7 0.3
1 .1 5.0 7.3 5.7 4.7 1.0
1 .5 4.4 6.5 6.6 5.0 1.3
1 1 4.6 5.4 5.0 5.3 1.5
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Table 3: Empirical null rejection probabilities in Monte Carlo experiment (III) for
various tests with nominal size α = 5%. The design of the Π matrix is Π of (6.22).
The number of repetitions is 1,000 per scenario.

π1 π2 J Sub

0 0 1.0 2.3
0 .01 4.9 5.9
0 .05 16.2 7.2
0 .1 6.8 3.4
0 .5 2.8 2.1
0 1 2.1 3.5
.01 0 4.6 5.5
.01 .01 13.3 11.8
.01 .05 15.4 7.1
.01 .1 8.0 3.6
.01 .5 2.8 2.4
.01 1 2.2 4.3
.05 0 16.2 8.2
.05 .01 16.1 6.4
.05 .05 17.0 4.7
.05 .1 10.1 3.8
.05 .5 7.4 5.1
.05 1 4.7 4.6
.1 0 8.4 3.9
.1 .01 9.0 3.0
.1 .05 12.0 2.5
.1 .1 8.5 2.7
.1 .5 10.3 6.1
.1 1 8.8 7.5
.5 0 2.6 2.6
.5 .01 2.7 2.4
.5 .05 6.1 4.3
.5 .1 8.4 5.8
.5 .5 5.9 4.4
.5 1 5.5 4.3
1 0 2.8 3.2
1 .01 2.4 3.5
1 .05 6.1 6.1
1 .1 9.7 7.7
1 .5 6.1 4.5
1 1 5.2 4.0
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