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We investigate the purchasing power parity hypothesis for a group of 17 countries using a new
panel based test of stationarity that allows for arbitrary cross-sectional dependence. We treat
the short run time series dynamics non-parametrically and thus avoid the need to fit separate,
and potentially misspecified, models for the individual series. The statistic is simple to compute
and uses standard Normal critical values, even in the presence of a wide range of deterministic
components. We also show how the test can be applied using an approximate factor model for
cross sectional dependence. Taken together, these features provide a generally applicable solution
to the problem of testing for stationarity versus unit roots in macro-panel based data. The tests
find significant evidence against the purchasing power parity hypothesis being true.
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1 Introduction

Relatively long time series of many core macroeconomic variables are now available for the major-
ity of developed economies. The use of panel data, and in particular unit root or stationarity tests,
to empirically validate various important macroeconomic theories has become a rapid growth area
of applied econometric research. For example, panel tests have been used to assess the evidence
for the hypotheses of purchasing power parity (PPP), for convergence of growth rates, for mean
reversion of inflation rates and for the real interest rate parity hypothesis. These tests attempt to
exploit the potential power gains that are offered by analyzing a time series panel as opposed to
individual series and, as such, they have the potential to provide more compelling evidence for,
or against, certain models of economic behaviour. Recent tests have been proposed by, inter alia,
O’Connell (1998), Maddala and Wu (1999), Hadri (2000), Choi (2001, 2002), Chang and Song
(2002), Levin, Lin and Chu (2002), Shin and Snell (2002), Chang (2003) and Im, Pesaran and
Shin (2003).

One of the major factors that any panel test needs to be able to address, if reliable inference is
to be made in practical situations, is cross-sectional dependence. Cross-sectional dependencies are
likely to be the rule rather than the exception in studying cross-country data due to the existence
of strong inter-economy linkages. The tests of Hadri (2000), Choi (2001), Levin, Lin and Chu
(2002), Shin and Snell (2002) and Im, Pesaran and Shin (2003) all assume independence across
the panel and their size properties are uncertain when this rather unrealistic assumption does not
hold.2 The test of O’Connell (1998) allows for cross-sectional dependence, but this is restricted
to the innovation term driving an assumed finite order AR process in the model. Choi (2002)
permits cross-sectional dependence but only after imposing a common additive error component
across the panel. The testing approach adopted by Chang and Song (2002) provides, at least
in theory, a general treatment of the problem of cross-sectional dependence but their procedure
relies on user-supplied parameters, whose values are a function of the dependence structure itself,
which rather limits its practical appeal. Maddala and Wu (1999) and Chang (2003) approach
the problem indirectly, relying on bootstrap procedures but the underlying tests are not pivotal.
Regarding time series dynamics, with the exception of the test of Hadri (2000), all of these tests
rely on fitting an appropriately specified time series regression model to each individual series in
the panel (a tedious and error prone undertaking unless the cross-sectional dimension is relatively
small). For tests that allow cross-sectional dependence, this is a doubly vital requirement, as any
notion of these tests’ robustness to cross-sectional dependence is intimately reliant on the correct
modelling of the time series dynamics.

Recently, Bai and Ng (2004a,b) have suggested the use of an approximate factor model to
account for cross sectional dependence in panel data. Their idea is to orthogonally decompose a
panel of time series into a fixed number of independent common factors and remaining idiosyn-
cratic components which are independent or weakly dependent. Bai and Ng (2004a,b) respectively
construct Dickey-Fuller and KPSS tests for estimates of the unobserved components although they
do not explicitly provide tests for the observed series. While the performance of the Dickey-Fuller
approach may be deemed satisfactory, that of the KPSS procedure is much less so due to significant
problems with the size of the tests.

It would seem, then, that none of the extant approaches offers a totally satisfactory solution
to the problem of testing for stationarity, when the cross-sectional dependence structure and time
series dynamics are both unknown. In contrast, the new stationarity test statistic we suggest in
this paper is constructed so as to overcome both these problems. We allow for arbitrary unknown
cross-sectional dependence between the series in the panel; the series may be contemporaneously

2O’Connell (1998) shows that the test of Levin, Lin and Chu (2002) can suffer severe size distortions if applied
to panels where independence does not hold.
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or cross-serially dependent. We also permit a wide range of heterogeneous stationary time series
dynamics, which includes the conventional ARMA class.

Our statistic is based on a vector version of the stationarity test of Harris, McCabe and
Leybourne (2003) (HML) (rather than a KPSS-type stationarity test as in Hadri (2000)). The
statistic is, in essence, the sum of the lag-k sample autocovariances across the panel, suitably
studentized, where we allow k to be a simple increasing function of the time dimension. By
controlling k in such a way, we remove any need to explicitly model the time series dynamics
of each series in the panel, even though their time series dynamics may be quite heterogeneous.
At the same time, the studentization automatically robustifies the statistic to the presence of
any form of cross-sectional dependence. Our statistic is simple to construct and, conveniently,
possesses a limiting null distribution which is standard normal under quite general linear process
assumptions.3 Asymptotic normality also holds when the statistic is calculated using residuals
from deterministic regression models fitted to each series. These may include polynomial trends
or even structural breaks and there is no requirement that the same deterministic model be fitted
to each series. As such, the test can be applied across a range of empirically relevant modelling
situations without reference to model-dependent null critical values, or the need to compute
bootstrap critical values. We also show how our new statistic can be applied to the factor model
should such a model be deemed appropriate. The test, when applied to the factor model, is for
stationarity of the observed series and has significantly more power than the original when the
factor model is correct. We also show how to construct a KPSS test for the observed series (as
opposed to the components) in the factor model and compare its performance with the new test
by means of some Monte Carlo experiments.

The plan of the paper is as follows. In the next section we introduce our statistic by explaining
how it can be used to distinguish between stationarity and unit roots in the panel context. We
also derive its asymptotic properties and show how to incorporate deterministic regression effects.
In Section 3 we show how our test may be applied to the observed series in the context of Bai
and Ng’s (2004a) factor model. We also demonstrate how a KPSS test may be constructed for
the observed data. Section 4 reports the results of a number of Monte Carlo experiments to
gauge the empirical size and power of the tests. The results are very encouraging. In particular,
the robustness of the new test’s size to different patterns of cross-sectional dependence and time
series dynamics stands out as a prominent characteristic. In addition, there are useful power
gains available by using our new statistic in combination with Bai and Ng’s (2004a) factor model
when appropriate. Finally, Section 5 assesses the evidence for PPP in a panel of US Dollar real
exchange rates using the new test. We include the structural breaks version of PPP, as expounded
by Papell (2002), in the analysis and conclude by finding no evidence in favour of the hypothesis.

2 A Panel Test of Stationarity with Cross Sectional Correlation

Consider a panel of N time series {zi,t, t = 1, ..., T} generated by the processes

zi,t = φizi,t−1 + εi,t (1)

i = 1, 2, ..., N , t = 1, 2, ..., T

where each zero mean disturbance term {εi,t, t = 1, ..., T} is I (0) and εi,t and εj,t may be correlated
for any i and j. Throughout, we considerN to be fixed and we shall let T grow in our limit theory.4

3Our asymptotics are based on a fixed cross-section dimension, and passing the time series dimension to infinity.
For many macroeconomic applications, the assumption of a fixed cross-section dimension would appear reasonable.

4 It is possible to allows the number of observations to vary with the individual time series involved but we use
a single T for notational convenience.
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We wish to test the null hypothesis of joint stationarity

H0 : |φi| < 1 for all i

against the unit root alternative

H1 : φi = 1 for at least one i.

2.1 Motivation

To motivate our statistic, fix i and suppose for simplicity that {εi,t, t = 1, ..., T} in (1) is i.i.d. with
variance σ2i and, following Section 2.1 of HML, consider a test statistic for the variable zi,t based
on the scaled first order sample autocovariance Ci,1 = T−1/2

PT
t=2 zi,tzi,t−1. Suitably centered and

studentized, this is the Dickey-Fuller statistic for testing the null hypothesis φi = 1. However,
for testing H0 : |φi| < 1, the difficulty is that E (Ci,1) ' T 1/2σ2iφi/

¡
1− φ2i

¢
, so that the null

distribution depends on φi. We consider instead the corresponding k
th order autocovariance

Ci,k = (T − k)−1/2
TX

t=k+1

zi,tzi,t−k.

If k is chosen so that k →∞ and k/T → 0 as T →∞ then E (Ci,k) ' T 1/2σ2iφ
k
i /
¡
1− φ2i

¢
→ 0 as

T →∞, so that the dependence of E (Ci,k) on φi disappears asymptotically. It is shown in Section
5 of HML that Ci,k is asymptotically standard normal when suitably studentized and hence any
dependence of the null distribution on φi (and σ2i ) is removed. When φi = 1, E (Ci,k) ' T 3/2σ2i
and it can be shown the studentized statistic is divergent. Hence, for a single zi,t, a consistent
test with standard normal asymptotic null distribution can be based on Ci,k with k →∞.

To construct a joint test ofH0 : |φi| < 1 for all i, we follow the literature on panel Dickey-Fuller
tests and consider the sum of the individual test statistics

Ck =
NX
i=1

Ci,k.

Under H0, it is easily seen that

E [Ck] ' T 1/2
NX
i=1

σ2iφ
k
i /(1− φ2i )

and, setting k as before, E [Ck]→ 0 as T →∞ since N is fixed. This eliminates the dependence of
E (Ck) on all of the φi simultaneously. In fact Ck, when suitably studentized, has an asymptotic
standard normal distribution under H0. Under H1, suppose without loss of generality that φi = 1
for i = 1, . . . , sN for some s ≤ 1 and |φi| < 1 for any i such that sN < i ≤ N . Then

E [Ck] ' T 3/2
sNX
i=1

σ2i + T 1/2
NX

i=sN+1

σ2iφ
k
i /(1− φ2i ),

so that the leading right hand side term once more suggests that the test should be consistent.
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2.2 The Test Statistic and its Distribution Theory

We assume that εt = (ε1,t, ..., εN,t)
0 follows the stationary linear process assumption (Assumption

LP) of HML. This assumption permits cross-sectional correlation of any form between the series
in the panel; this correlation may be contemporaneous or cross-serial. In addition, it allows for
heterogeneity in the dynamics and variation across the panel. The series may exhibit a range of
individual temporal dependence structures, including those of stationary ARMA processes.

Defining ak,t =
PN

i=1 zi,tzi,t−k, the statistic Ck can be written Ck = T−1/2
PT

t=k+1 ak,t. The
studentized version of Ck is then given by

Sk =
Ck

ω̂ {ak,t}
,

where ω̂2 {at} is the generic long-run variance estimator (LRV) of a sequence of variables a1, ..., aT :

ω̂2{at} = γ̂0{at}+ 2
lX

j=1

µ
1− j

l + 1

¶
γ̂j{at}, γ̂j{at} = T−1

TX
t=j+1

atat−j . (2)

Written this way, the statistic Sk can be seen to be the standardized mean of the constructed series
ak,t divided by its long run standard deviation, which provides some intuition for the following
result.

Lemma 1 If the conditions of Theorems FCLT and LRV of HML hold and k = O
¡
T 1/2

¢
then,

as T →∞,
(i) Sk ⇒ N [0, 1] under H0,
(ii) Sk diverges to +∞ under H1.

The Lemma is a special case of Theorem 1 below and so its proof is omitted. Theorems FCLT
and LRV of HML impose conditions on the choice of k and l, the truncation parameter of the
LRV. In this paper, we require k =

l
(δT )1/2

m
for some constant δ > 0 and l/k → 0 as T →∞.

The role of the appropriate specification of k and ω̂2 {ak,t} is to remove the effects of the
temporal dependence in individual series from the asymptotic null distribution of Sk. Since
Sk depends on zi,t and zi,t−k only through the cross section sum ak,t =

PN
i=1 zi,tzi,t−k, any

valid estimate of the long run variance of {ak,t} will automatically correct for any pattern of
cross sectional dependence in zi,t. Hence, there is no need to parametrically model the dynamic
structure of each series or their cross-sectional dependencies. A similar LRV approach is adopted
by Driscoll and Kraay (1998) to GMM inference for panel data with cross sectional dependence
but without the added complication of k→∞.

2.3 Deterministic Regression Effects

The statistic Sk is generally not feasible because in practice each zi,t will be estimated from a
regression on some deterministic terms. Such vectors of deterministics are denoted xi,t and may
be different for each i if required. In place of (1), we consider the model given by

yi,t = β0ixi,t + zi,t. (3)

zi,t = φizi,t−1 + εi,t

i = 1, 2, ..., N , t = 1, 2, ..., T.

Let ẑi,t denote an OLS residual from the regression (3) i.e. ẑi,t = yi,t− β̂
0
ixi,t where β̂i is the usual

OLS estimator. It is desirable that the statistic be invariant to relative rescaling of the series, so
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in place of zi,t in the definition of Sk we will use instead the standardized residuals

z̃i,t = ẑi,t/si, (4)

where si is the sample standard deviation of ẑi,t. The resulting statistic is

Ŝk =
C̃k

ω̂ {ãk,t}

where C̃k = T−1/2
PT

t=k+1 ãk,t and ãk,t =
PN

i=1 z̃i,tz̃i,t−k.

It can be shown that Ŝk has an asymptotic standard normal null distribution and, when
dealing with a small number of series, this often proves to be an adequate approximation for the
finite sample distribution. However, if the panel dimension is not relatively small, individual finite
sample errors that arise from the estimation of the regression models combine in the construction
of the aggregate numerator C̃k =

PN
i=1 C̃i,k and can significantly affect the finite sample null

distribution of Ŝk. To see how this arises, write the numerator of Ŝk as C̃k =
PN

i=1 C̃i,k where
C̃i,k = T−1/2

PT
t=k+1 z̃i,tz̃i,t−k . After some manipulation, C̃i,k may be expressed as

C̃i,k =
1

s2i
T−1/2

TX
t=k+1

zi,tzi,t−k

−T−1/2
⎡⎣ 1
s2i
T−1/2

TX
t=1

zi,tx
0
i,t

Ã
T−1

TX
t=1

xi,tx
0
i,t

!−1
T−1/2

TX
t=1

xi,tzi,t

⎤⎦+ op(T
−1/2) (5)

The first term in this expression is asymptotically normal under the null and the effect of the
regression estimation error is captured by (5). Under H0, the term in square brackets in (5) is
Op(1) and so the whole term is Op(T

−1/2). Because the term (5) is clearly negative it induces
a negative finite sample error into each individual statistic and the amplification of this problem
is obvious when we subsequently consider C̃i,k summed over N . Since we are conducting upper
tail tests, ceteris paribus, the effect of this is to reduce the finite sample size of the test5. It is
possible to produce a finite sample correction for this regression estimation error by subtracting
an estimate of the term (5) from C̃i,k. It is shown in the proof of Theorem 1 below that the
expectation of the term in square brackets in (5) can be consistently estimated by

c̃i = tr

⎡⎣ÃT−1 TX
t=1

xi,tx
0
i,t

!−1
Ω̂{xi,tz̃i,t}

⎤⎦ (6)

where for any vector sequence a1, ..., aT ,

Ω̂{at} = Γ̂0{at}+
lX

j=1

µ
1− j

l + 1

¶³
Γ̂j{at}+ Γ̂j{at}0

´
, Γ̂j{at} = T−1

TX
t=j+1

ata
0
t−j . (7)

This is the usual matrix version of the scalar long run variance ω̂ {.}2. Specializing to the case
of a constant, xi,t = 1, we can compute c̃i = ω̂{z̃it}2 and in the case of xi,t = [1, wi,t]

0, c̃i =
ω̂{z̃it}2 + ω̂{z̃itw̃i,t}2 where w̃i,t = (wi,t − w̄i) /sw,i and sw,i is the standard deviation of the
variable wi,t.

5Simulation results, available from the authors, emphatically confirm this for moderate values of N and T .
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To summarize, our recommended statistic for application is

S̃k =
C̃k + c̃

ω̂ {ãk,t}
(8)

where c̃ = (T − k)−1/2
PN

i=1 c̃i, c̃i is given in (6), C̃k = (T − k)−1/2
PT

t=k+1 ãk,t where ãk,t =PN
i=1 z̃i,tz̃i,t−k and z̃i,t is obtained from (4) and ω̂ {ãk,t} is obtained from (2). The proof of the

following theorem is given in the Appendix.

Theorem 1 If the conditions of Theorem RES of HML hold and k = (δT )1/2 (for some constant
δ > 0) then as T →∞
(i) S̃k ⇒ N (0, 1) under H0,
(ii) S̃k diverges to +∞ under H1.

Theorem RES of HML specifies quite general conditions on xi,t, allowing for a wide range of deter-
ministic regression functions including constants, linear and polynomial trends, dummy variables,
structural breaks and various other models. The theorem shows that a consistent test is obtained
by rejectingH0 for values of S̃k greater than the appropriate upper tail critical value from the stan-
dard normal distribution. We implement the test in Sections 4 and 5 using l =

l
12 (T/100)1/4

m
in ω̂ {ãk,t} and k =

l
(3T )1/2

m
.

3 Panel Tests for Stationarity in Factor Models

An alternative approach to panel stationarity testing in the presence of cross sectional correlation
is based on the factor model of Bai and Ng (2004a,b). Instead of the nonparametric model (1),
consider the factor model

yi,t = µi + zi,t, (9)

zi,t = λ0ift + ei,t, (10)

where µi is a constant term
6, ft is an r× 1 vector of latent factors, λi is an r× 1 vector of loading

parameters and ei,t is an idiosyncratic component for each i. It is assumed that ft = (f1,t, . . . , fr,t)
0

and ei,t satisfy

fj,t = αjfj,t−1 + uj,t, j = 1, . . . , r, (11)

ei,t = ρiei,t−1 + vi,t, i = 1, . . . , N, (12)

for t = 1, . . . , T , where {uj,t, t = 1, ..., T} and {vi,t, t = 1, ..., T} are mutually independent I (0)
disturbances7 for all i and j.

Bai and Ng (2004a) give a detailed analysis of the estimation of the unobserved components
fj,t and ei,t by principal components, showing that it is necessary to carry out the principal com-
ponents analysis on ∆zi,t rather than zi,t for consistent estimation under both null and alternative
hypotheses8. To briefly summarize their estimation method, let ∆Y be the (T − 1)×N matrix of
observations on ∆yi,t and let d∆F be the (T − 1)× r matrix of eigenvectors corresponding to the

6Other deterministic components may be included, with some complications noted below.
7The asymptotic theory of the tests based on this model allows weak correlation among uj,t and εi,t, see

Assumption C of Bai and Ng (2004a). Independence is maintained here for ease of interpretation and is imposed
in the simulations below.

8 In contrast to our asymptotic theory for the S̃k test, this consistency follows as both N and T go to infinity.
Although this consistency is not required for our results, we adopt their estimation strategy as it provides a test
with good finite sample properties.
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largest r eigenvalues of ∆Y∆Y 0 (i.e. the r largest principal components of ∆Y ). The estimated
idiosyncratic components d∆E in first difference form are the residuals from an OLS regression
of ∆Y on d∆F . Letting d∆fj,t and d∆ei,t denote the individual elements of d∆F and d∆E respec-
tively, the estimated components are found by partial summation, that is f̂j,t =

Pt
s=2

d∆fj,s and
êi,t =

Pt
s=2

d∆ei,s for t = 2, . . . , T (j = 1, . . . , r and i = 1, . . . , N ). Since r is unknown in practice,
it is estimated using the Bai and Ng (2002) BIC type criterion

r̂ = arg min
0≤r≤rmax

½
log σ̂2 (r) + r log

µ
NT

N + T

¶µ
N + T

NT

¶¾
(13)

where σ̂2 (r) = (NT )−1
PT

t=2

PN
i=1 ê

2
i,t to give an estimate of r. Bai and Ng (2002) prove consis-

tency of r̂ when r ≤ rmax and N,T →∞.
Bai and Ng (2004a) construct unit root tests for the estimated components and Bai and

Ng (2004b) provide stationarity tests based on the well known univariate stationarity test of
Kwiatkowski, Phillips, Schmidt and Shin (1992, KPSS). By testing the unit root or stationarity
properties of the components rather than the observable series, Bai and Ng are able to avoid the
problems arising from cross sectional correlations among the series and to deduce much detailed
information about the time series properties of the panel. However, in this paper we aim to find
a single test for the null hypothesis that the series {zi,t, t = 1, ..., T} are stationary for all i.

The null hypothesis for the panel stationarity test based on (9)—(12) is

H0 : |αj | < 1, |ρi| < 1 for all i, j,

against the alternative hypothesis

H1 : αj = 1 for at least one j and/or ρi = 1 for at least one i.

The approach is apply a stationarity test to all of the estimated components jointly.

3.1 A Stationarity Test for the Estimated Components

The S̃k test can be calculated for the estimated components f̂j,t and êi,t. Let f̃j,t and ẽi,t denote
f̂j,t and êi,t each individually demeaned and standardized to have unit standard deviation. The
statistic (8) can be calculated for these standardized estimated components by redefining z̃i,t to

be the ith element of the (N + r̂)×1 vector
³
f̃1,t, . . . , f̃r̂,t, ẽ1,t, . . . , ẽN,t

´0
and the resulting statistic

is denoted S̃F
k . The asymptotic properties of S̃

F
k follow from Theorem 2 below, which shows that

a consistent test is obtained by rejecting H0 for values of S̃F
k greater than the appropriate upper

tail critical value from the standard normal distribution.
Equation (9) can be extended to a general deterministic regression of the form

yi,t = β0ixi,t + zi,t. (14)

This deterministic formulation extends that of Bai and Ng (2004a) who allowed only for a constant
and trend. For example, xi,t in Section 5 contains trend functions with structural breaks whose
dates differ for each i. The computation of S̃F

k is outlined where xi,t = xt for all i, while details
of how to handle fully general deterministic terms are available in Appendix 6.2. The estimation
of the factor model (14), (10)—(12) in first differences begins with the estimation of the OLS
regressions of ∆yi,t on ∆xt9 for each i = 1, . . . , N to obtain residuals ∆ẑi,t which are arranged in
the (T − 1)×N matrix d∆Z. Equation (10) is estimated by principal components as discussed in

9 If xt contains a constant then the corresponding element of ∆xt is deleted.

8



the previous section, with ∆Y replaced byd∆Z. The resulting estimated components, f̂j,t and êi,t
for j = 1, . . . , r̂ and i = 1, . . . , N are individually regressed on xt to give residuals which are each
standardized to have unit variance. Again z̃i,t is redefined to be the ith element of the (N + r̂)×1
vector

³
f̃1,t, . . . , f̃r̂,t, ẽ1,t, . . . , ẽN,t

´0
of standardized residuals, and the statistic (8) is calculated

from this vector to give S̃F
k .

Theorem 2 Under the conditions of Theorem 1,
(i) S̃F

k ⇒ N (0, 1) under H0,
(ii) S̃F

k diverges to +∞ under H1.

Note that the theorem is proved for general deterministic regressions as outlined in Appendix
6.2. It follows essentially because S̃F

k is computed on a linear transformation (determined by
the principal components analysis) of the observed data, provided the linear transformation is
appropriately de-trended. The asymptotic theory is not informative about the relative merits of
S̃F
k and S̃k, but the simulations in Section 4 reveal that S̃F

k has superior finite sample power in
the factor model.

3.2 A KPSS Test for the Estimated Components

A point of comparison for the S̃F
k and S̃k tests is provided by a simple adaptation of the pooled

KPSS test of Bai and Ng (2004b)10. It is also a variation of Hadri (2000) where the pooled KPSS
test was applied directly to yi,t assuming no cross sectional correlation. For the factor model
(9)—(12), let f̃j,t and ẽi,t be standardized versions of f̂j,t and êi,t obtained from the principal
components estimation. The individual KPSS statistics for the estimated components are

ηf,j =
T−2

PT
t=2

³Pt
s=2 f̃j,s

´2
ω̂2
n
f̃j,t

o , ηe,i =
T−2

PT
t=2

¡Pt
s=2 ẽi,s

¢2
ω̂2 {ẽi,t}

for j = 1, . . . , r̂ and i = 1, . . . , N . The pooled test of H0 : |αj | < 1, |ρi| < 1 for all i, j is

η̄µ =
1

c2
√
N + r̂

⎛⎝ r̂X
j=1

¡
ηf,j − c1

¢
+

NX
i=1

¡
ηe,i − c1

¢⎞⎠ (15)

where c1 = 0.167 and c2 = 0.149 are asymptotic constants whose values are taken from Hadri
(2000). The µ subscript denotes the inclusion of a constant in (9). It follows from Theorem 1 of
Bai and Ng (2004b) and Theorem 1 of Hadri (2000) that η̄µ has an asymptotic standard normal
null distribution as N and T approach infinity. Under the alternative, those individual statistics
corresponding to nonstationary components diverge to +∞, so the pooled test is defined to reject
the null when η̄µ is larger than the appropriate upper tail critical value from the standard normal
distribution.

The consistency of the test when both N and T approach infinity requires consideration. If
an individual component (fj,t or ei,t) is I (1) then its corresponding statistic diverges to +∞ at
rate11 Op (T/l) where l is the bandwidth parameter in the long run variance ω̂2 {.}. If any of
10Bai and Ng (2004b) provide a test of the stationarity of the individual factors and a separate pooled test for the

idiosyncratic components, but testing the components separately obviously introduces a multiple testing problem
for our null.
11This follows from the consistency of the component estimates under the alternative shown by Bai and Ng

(2004a) and then from the well known divergence rate of the KPSS statistic.

9



Table 1: Finite sample constants for η̄µ statistic

ĉ1,T ĉ2,T
T 30 50 75 150 300 30 50 75 150 300

QS 0.312 0.235 0.207 0.184 0.175 0.182 0.105 0.108 0.121 0.130
Parzen 0.211 0.190 0.182 0.174 0.170 0.098 0.109 0.116 0.127 0.137

fj,t are I (1) or if a fixed number of ei,t are I (1) then η̄µ is of order Op

³
T/
³
l
√
N
´´
, which thus

provides a condition on T , N and l for the consistency of the test against a fixed number of I (1)
components. We impose l = O

¡
T 1/4

¢
in this paper, so consistency against a fixed number of I (1)

components requires T and N to satisfy T 3/2/N →∞. In practical terms, a sufficiently long time
series relative to the cross section dimension is required to consistently detect individual I (1)
components. An important motivating economic problem for the panel unit root and stationarity
testing literature is the PPP hypothesis, and panel data sets for this problem typically have T
considerably larger than N ; for example, the data set analyzed in Section 5 below has T = 312
and N = 17. We conjecture that η̄µ should have non-negligible power against fixed numbers of
I (1) components in such panels, and we evaluate this conjecture in the simulations of Section 4.

If a fixed fraction of the ei,t are I (1) then η̄µ is of order Op

³
T
√
N/l

´
, so it is clearly consistent

against such an alternative and should exhibit some power advantage over univariate tests.
In common with the experience of Yin and Wu (2000), we find it necessary to replace the

asymptotic constants c1 and c2 in η̄µ with finite sample estimates to obtain reasonable finite
sample properties. We obtain these constants by generating 2000 samples from (10) — (12) with
r = 0 and ρi = 0 for all i, so that zi,t ∼ i.i.d.N (0, 1) for all i and t. The Parzen and Quadratic
Spectral (QS) lag windows were used (following Yin and Wu (2000) and Bai and Ng (2004b)
respectively). For each combination of sample sizes N and T , constants were computed from the
means and standard deviations of the sampling distributions of η̄µ. The constants have important
variation with T (and also with the choice of lag window and l), but little variation over the values
of N considered here. The constants, denoted ĉ1,T and ĉ2,T , are reported in Table 1 because the
test cannot reasonably be applied with the asymptotic constants.

In principle, the η̄µ test could be extended to allow general deterministic regression of the form
(14). For example, if xi,t = (1, t)

0 for each i then the required principal components estimation is
summarized in Section 2.2 of Bai and Ng (2004b) and the statistics ηf,j and ηe,i use detrended
versions of f̂j,t and êi,t. The asymptotic constants in the resulting pooled statistic η̄τ are c1 = 0.067
and c2 = 0.042 (Hadri, 2000, equation 25), although in practice these constants would need to
be replaced by finite sample ones analogous to those in Table 1. The inclusion of more general
deterministics would require the computation of further constants and could become unwieldy
in practical situations. For example, if structural breaks were to be included then the constants
would depend on the number of breaks and the break dates. Allowing different deterministic
specifications for each i (e.g. different break dates for each i as in Section 5 below) would be
possible by computing constants c1,T,i and c2,T,i for standardization of individual ηe,i statistics,
although it is not clear how best to handle the ηf,j statistics

12. As a result of this difficulty, and
also because of the inferior finite sample performance of the η̄µ test reported in Section 4, we do
not pursue the KPSS approach in our application in Section 5.

12Asymptotically, the standardisation of the ηf,j does not matter since r̂ is bounded as N →∞. Obviously, there
would be some finite sample effect.
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3.3 Comparison of the two approaches

A theoretical difference between testing via S̃k (or S̃F
k ) and η̄µ is that S̃k and S̃

F
k use an asymptotic

approximation with T →∞ and N fixed, while η̄µ uses both T and N approaching infinity. We
consider the resulting difference in interpretation of how each approach handles the cross sectional
correlation.

Since S̃k holds N fixed, it may be regarded as being parametric with respect to cross sectional
correlation since there are a fixed number (N (N − 1) /2) of correlations13. However, these cor-
relations have no structure imposed upon them so the approach is otherwise completely flexible.
Any lagged cross correlations between individual series are modelled nonparametrically within
the multivariate linear process assumption (HML, Assumption LP) and their effects on the test
statistic are implicitly catered for by the long run variance in the denominator.

Since η̄µ is based upon a factor model with a fixed number of factors, it may also be regarded
as being parametric with respect to the cross sectional correlation, although there is also a non-
parametric aspect to the approach since the factor loadings are unrestricted for each i = 1, . . . , N .
The requirement that N →∞ is important for the consistent estimation of the factors and idio-
syncratic components in model (9). Compared to S̃k and S̃F

k , we believe the parametric aspect
of the η̄µ test imposes the more restrictive assumption because model (9) can potentially be mis-
specified if insufficient factors are included or if a factor model is inappropriate. Note that S̃F

k

remains valid in the presence of misspecification of the factor model. We include some simulations
in Section 4 that address the possible practical consequences of such a misspecification.

4 Finite Sample Properties

In this section we report the results of a simulation experiment to evaluate the finite sample
properties of the three tests considered in this paper. To our knowledge there is no other existing
panel test for stationarity that is valid in the presence of cross sectional correlation that can
be included in the experiment. All experiments include a constant term in the deterministic
specification.

For all experiments the data generating process is the factor model (9) — (12) with disturbances
(u1,t, . . . , ur,t, ε1,t, . . . , εN,t)

0 drawn from the N (0, IN+r) distribution. The sample sizes are N =
10, 20, 30, 40 and T = 30, 50, 75, 150, 300, which are chosen to include realistic sample sizes for
macroeconometric applications. The number of factors included are r = 0, 2 and 7. The estimation
of the factor model is implemented using rmax = 6 when choosing the number of factors, so the
factor model can be correctly specified when r = 0 or 2, but is misspecified when r = 7. We
include the r = 7 case to give some idea of the consequences of misspecifying the factor model,
which in practice could be due to underspecification of the number of factors or to a model with
a fixed number of factors being inappropriate. There is no cross sectional correlation when r = 0.
When r = 2, 7 we consider λi ∼ i.i.d.N

¡
κ, κ2

¢
(fixed across replications) with κ = 3, which is the

same as used by Bai and Ng (2004b) except for the multiplicative constant κ. Since uj,t and εi,t
are standard normal variates, κ is used to control the relative standard deviations of the factors
compared to the idiosyncratic components. The value of κ turns out to be unimportant for r = 2,
but is important for r = 7 when the factor model is misspecified because it determines the relative
magnitude of the factor14 that is omitted. The choice of κ = 3 is within the range of empirical
standard deviation ratios reported in Table 4 of Bai and Ng (2004b) for a panel of quarterly real
13We conjecture that the approach remains valid if N → ∞ sufficiently slowly as T → ∞, and hence may be

classed fully nonparametric, but we defer this technical issue for other research.
14We find that r̂ = 6 in every replication in this case, so one factor can be considered to be omitted. Obviously

finding r̂ = rmax in practice would lead to some model respecification, with at least an increase in rmax. The point
here is to evaluate the effect of a model misspecification.
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exchange rates. Predictably, unreported simulations reveal that the consequences of the model
specification are worse when κ is increased from 3, and better when κ is decreased.

After preliminary experimentation, we implement the S̃k and S̃F
k statistics using k =

l
(3T )1/2

m
and the long run variances are estimated using a Bartlett lag window with l =

l
12 (T/100)1/4

m
.

Following Bai and Ng (2004b), the long run variances are computed using the Quadratic Spectral15

lag window with l =
l
12 (T/100)1/4

m
giving η̄QSµ .

All tests are taken to reject the null hypothesis at the 5% significance level when the test
statistic is larger than 1.65. All experiments use 5000 replications.

4.1 Size

Under the null hypothesis, the values of αi and ρj in (11) and (12) considered are (αj , ρi) = (0, 0),
(0.4, 0), (0.8, 0), (0, 0.4), (0, 0.8) for all i and j. Any difference in the effect of autocorrelation in
the factors and idiosyncratic components can be evaluated. We also consider αj and ρi drawn from
independently from a U [0, 0.8] distribution for all i and j (fixed across replications) to include
some heterogeneity across the components.

Table 2(a) contains estimated finite sample sizes for r = 0; the case of no cross-correlation.
The results for ρi = 0 reveal actual sizes near to the asymptotic 0.05 level. The only exception
is some mild oversizing for the S̃k and S̃F

k tests for T = 30, although it is not surprising that an
asymptotic approximation based on T → ∞ with N fixed is not very accurate when T is small
and N is about the same magnitude. Increasing ρi to introduce idiosyncratic autocorrelation
reveals that S̃k and S̃F

k are well behaved for ρi = 0.4 and somewhat undersized for small T and
ρi = 0.8. The η̄

QS
µ test is undersized for ρi = 0.4 and small T and displays a worrying mixture of

undersizing and oversizing when ρi = 0.8.
Table 2(b) gives the results for the cross-correlated case where r = 2. The S̃k and S̃F

k tests
have good size properties in all cases and quickly approach correct levels for realistic macro-
economic sample sizes. The η̄QSµ is somewhat undersized for small T in the presence of strong
autocorrelation, then becomes oversized as T increases, even with T = 300.

Table 2(c) gives the results for r = 7. The properties of S̃k and S̃F
k are essentially the same

as for r = 2, illustrating the robustness to cross correlation and factor model misspecification
of these tests. The interest is in η̄QSµ since it relies on the correct specification of the model –
across all values of the autoregressive parameters, it is clear that η̄QSµ becomes progressively very
oversized as T increases. This gives some quantitative idea of the possible price of relying on a
misspecified model for this testing problem.

In summary, it is clear that S̃k and S̃F
k provide generally much superior finite sample size

properties across a range of data generating processes.

4.2 Power

Under the alternative hypothesis, we set ρi = 1 for i = 1, . . . , sN and ρi = 0 for i = sN+1, . . . , N
where s = 0.1, 0.2, 0.4 and 0.6. When r = 2, we also consider an alternative of the form
α1 = α2 = 1 with ρi = 0 for all i. Results for r = 7 are not reported for brevity and since
the model for computing η̄QSµ is misspecified and size control for that test is poor. Powers are
reported in Table 3. Table 4 reports size adjusted powers (using the finite sample critical values
calculated with s = 0 and α1 = α2 = 0 in the case of r = 2), which may have some theoretical
interest but very limited practical relevance since they are based on infeasible tests.

15Unreported simulations show the Parzen lag window suggested by Yin and Wu (2000) for the test of Hadri
(2000) to be inferior to the QS lag window in this case.
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Table 3(a) reports powers for the non cross-correlated case r = 0. The results for S̃k and S̃F
k

reveal power increasing with T as expected, and interestingly power also increasing with N . The
pattern is similar for η̄QSµ , although the effect of increasing N is not as uniform. Table 2(a) shows
the sizes of all three tests for ρi = 0 are very similar for T = 150 and 300, so comparing powers
for these sample sizes reveals a considerable power advantage for the S̃k and S̃Fk tests. There is
little difference between these latter two tests.

Table 3(b) reports powers for r = 2, and shows a significant change from the results in Table
3(a). The S̃k test is now least powerful by some margin against idiosyncratic unit roots while S̃F

k

is occasionally most powerful and η̄QSµ is frequently most powerful. The S̃k test does, however,
have highly competitive against common factors with unit roots (the s = 0, αj = 1 alternative).
Overall though, these results show a clear power advantage for S̃F

k over S̃k, so it is well worth the
preliminary estimation of the factor model to calculate S̃F

k . The size adjusted powers in Table 4
again confirm the superiority of S̃F

k over S̃k when r = 2.
Overall, the size and power results show S̃F

k to be the preferred panel stationarity test for
factor models. The S̃k has good size properties but inferior power against idiosyncratic unit
roots in the presence of stationary common factors. The η̄QSµ test has poor size control in the
presence of strongly autocorrelated idiosyncratic components in any model and is susceptible to
misspecification of the factor model, so it cannot be recommended for use from this comparison.

5 Testing the Purchasing Power Parity Hypothesis

In this section, we empirically test the purchasing power parity hypothesis, which is a fundamental
ingredient of macroeconomic models of bilateral exchange rate behaviour. The validity of the PPP
hypothesis has been an issue that has attracted a vast amount of attention in recent times and
has been tested extensively using different panel unit root tests. In general, little evidence in
support of PPP has been uncovered. For example, Papell (1997), Cheung and Lai (2000), Wu
and Wu (2001) and Chang and Song (2002) are unable to provide strong evidence against the unit
root null.16 A failure to reject this null does not, however, provide compelling evidence against
the PPP hypothesis, not least because low test power may be an issue here since real exchange
rates tend to be highly correlated as they are typically constructed using a common numeraire
currency and price index. Conversely, even if a rejection of the unit root null were to be obtained,
this could not be interpreted as evidence for PPP holding in the entire panel because it may be
that only a subset of the real exchange rates are stationary. In view of this, it makes some sense
to apply our panel stationarity tests, S̃k and S̃F

k , in this context. Here, the PPP hypothesis is
represented by the stationary null and a rejection can, ceteris paribus, fairly unambiguously be
interpreted as evidence against the PPP hypothesis being true.

We consider monthly real exchange rates against the US Dollar for the following countries:
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, Nether-
lands, Norway, Portugal, Spain, Sweden, Switzerland and the UK. The real exchange rate data
was constructed from raw nominal exchange rate and consumer price index data taken from the
IMF International Financial Statistics database. It covers the period of the recent float, 1973.01
to 1998.12. We have N = 17 and T = 312. In our notation we take yi,t to be the natural log of
the real exchange rate, each standardized to have unit variance17.

16 In fact, what little empirical evidence there is in support of PPP has mainly arisen from application of tests
that do not account for cross-sectional dependence at all; see Oh (1996) and Wu (1996).
17The data files and Gauss program for this application may be downloaded from

www.economics.unimelb.edu.au/dharris
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5.1 PPP with a Mean

As usual in PPP analysis, we first hypothesize that yi,t has a constant mean represented by

yi,t = µi + zi,t,

where the null hypothesis of PPP requires that zi,t is I (0) and the alternative hypothesis is that
zi,t is I (1). The S̃k test statistics for each of the 17 series individually (i.e. each test has N = 1)
are given in Table 5 under the “Constant” heading, together with the p-value of each test. At
the 0.05 and 0.10 levels, the null hypothesis is rejected for 4 and 10 countries respectively, so the
evidence against PPP is mixed.

The panel S̃k statistic pooled across the 17 countries gives S̃k = 1.93 (p = 0.027). The esti-
mation of the factor model (9)—(12), for this data, gives r̂ = 2 when rmax = 5, and the resulting
test statistic is S̃F

k = 3.75 (p = 0.000). Thus the panel tests clearly reject the null hypothesis of
PPP.

5.2 PPP with Structural Breaks

Papell (2002) suggests that rejections of PPP, such as that we have just found, are due to an
unusual one-off episode in the 1980’s when there was a large unexplained appreciation of the US
dollar followed by an equally large offsetting depreciation. In econometric terms, this translates
to a generalization of the deterministic specification so that

yi,t = µi,t + zi,t, (16)

where

µi,t =

⎧⎪⎪⎨⎪⎪⎩
β1,i, t ≤ τ1,i,
β2,i + β3,it, τ1,i ≤ t ≤ τ2,i,
β4,i + β5,it, τ2,i ≤ t ≤ τ3,i,
β1,i, τ3,i ≤ t,

(17)

and all the βj,i and τ j,i have to be estimated. Papell (2002) suggests that PPP holds around a
constant long run real exchange rate before break point τ1,i and after break point τ3,i; note that
the same mean, β1,i, applies in these two time periods and that this restriction is imposed on
our test. The middle two time periods correspond to the great appreciation (τ1,i ≤ t ≤ τ2,i) and
the great depreciation (τ2,i ≤ t ≤ τ3,i). The null hypothesis of PPP in this setting is that yi,t has
representation (16) where µi,t satisfies (17) and zi,t is I (0).

As in Papell (2002), note that the representation of µi,t in (17) is constrained to be continuous
in t and it is therefore convenient to reparameterize µi,t as

µi,t = α1,i + α2,ix1,i,t + α3,ix2,i,t + α4,ix3,i,t,

where for h = 1, 2, 3
xh,i,t = (t− τh,i) · 1 (t > τh,i) ,

subject to the additional restrictions that α2,i + α3,i + α4,i = 0 (so that there is no trend for
t > τ3,i) and α2,i (τ3,i − τ1,i) + α3,i (τ3,i − τ2,i) (so that the constant means for t ≤ τ1,i and
t ≥ τ3,i are equal). The substitution of these restrictions gives

µi,t = α1,i + α2,ixi,t. (18)

where

xi,t =

µ
x1,i,t −

τ3,i − τ1,i
τ3,i − τ2,i

x2,i,t +
τ2,i − τ1,i
τ3,i − τ2,i

x3,i,t

¶
. (19)
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To implement the test it is first necessary to estimate the break dates τ1,i, τ2,i and τ3,i for each i.
The number of breaks is set to three by the null hypothesis and does not need to be estimated,
so it is computationally possible to use a three dimensional grid search to consistently estimate
the break dates by least squares on the first difference of (16) where µi,t is given by (18). The
estimated break dates for each country are shown in Table 518 and the estimated trend functions
are shown graphically in Figures 1—3. Using the estimated break dates for each country i, denoted
τ̂1,i, τ̂2,i and τ̂3,i, regressors x̂i,t as in (19) can be constructed. This gives a regression19 of the
form yi,t = α1,i + α2,ix̂i,t + zi,t for each i, which can be used to calculate S̃k and S̃F

k .
The results from this analysis are given in Table 5 under the heading “Structural breaks”. The

individual tests do not reject the null hypothesis and the S̃k panel test gives S̃k = 1.12 (p = 0.132).
However, estimation of the factor model (with r̂ = 2 again found) gives S̃F

k = 3.20 (p = 0.001), so
that the null hypothesis is rejected. A quite plausible interpretation of this result, arising from
our simulation evidence above, is that the S̃k test may have relatively low power in the presence
of cross correlation (recall r̂ = 2) while the S̃F

k test retains rather better power in this case.
Finally, we note that a deterministic specification such as (17) nicely illustrates the versatility

of the S̃k and S̃F
k tests. The approach used by Papell (2002) requires that the break dates be the

same for all countries and even then requires bootstrap critical values for the panel unit root test.
In contrast, the S̃k and S̃F

k tests permit arbitrary regression functions for each i with asymptotic
critical values in all cases taken from the standard normal distribution.

18The break date estimates τ̂1,i for Canada and τ̂3,i for Japan lie outside the observed sample. Such estimates
are possible because the means for t ≤ τ1,i and τ3,i ≤ t are constrained to be equal.
19Strictly speaking, this is not a deterministic regression because the break points are estimated. However, under

the null hypothesis the estimated break points can be reexpressed as estimated break fractions in the usual way,
and these are consistent. Theorem RES of HML can then be adapted in a straightforward manner to show that x̂i,t
may be replaced by xi,t which is defined in terms of the true breaks τ1,i,τ2,i,τ3.i without change to the asymptotics
of Theorems 1 and 2.
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Figure 1. Real exchange rates with fitted structural breaks.
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Figure 2. Real exchange rates with fitted structural breaks.

17



Figure 3. Real exchange rates with fitted structural breaks.
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6 Appendix

6.1 Proof of Theorem 1.

(i) Let ẑt = (ẑ1,t, ..., ẑN,t)
0 and z̃t = (z̃1,t, ..., z̃N,t)

0. Then C̃k can be written

C̃k = d
0 vec

"
T−1/2

TX
t=k+1

z̃tz̃
0
t−k

#

for a selector vector d defined as d = vec[IN2 ]. Now,

vec

"
T−1/2

TX
t=k+1

z̃tz̃
0
t−k

#
= vec

"
T−1/2Ĝ−10

TX
t=k+1

ẑtẑ
0
t−kĜ

−1
0

#

= (Ĝ−10 ⊗ Ĝ−10 ) vec
"
T−1/2

TX
t=k+1

ẑtẑ
0
t−k

#

where Ĝ0 = diag[γ̂0{ẑ1,t}1/2, ..., γ̂0{ẑN,t}1/2]. It follows from HML, Theorem 8, that

vec

"
T−1/2

TX
t=k+1

ẑtẑ
0
t−k

#
⇒ N [0,Ω]

on noting that ηt = diag[(1−φ1L)−1, .., (1−φNL)−1]εt also satisfies the conditions of Assumption
LP of HML. Moreover, since Ĝ0

p→G0 = diag[E(ηtη
0
t)
1/2],

C̃k ⇒ N [0,d0(G−10 ⊗G−10 )Ω(G−10 ⊗G−10 )d]

by the continuous mapping theorem (CMT). Next, with at =
PN

i=1 z̃i,tz̃i,t−k and bt = vec[z̃tz̃
0
t−k]

and ct = vec[ẑtẑ0t−k], we may write

ω̂{at}2 = d0Ω̂{bt}d = d0(Ĝ−10 ⊗ Ĝ−10 )Ω̂{ct}(Ĝ−10 ⊗ Ĝ−10 )d

where Ω̂{.} is given in (7). From HML, Theorem 8, for a specified matrix Ω, Ω̂{ct}
p→ Ω and

hence, by the CMT,
ω̂{at}2

p→ d0(G−10 ⊗G−10 )Ω(G−10 ⊗G−10 )d
so that

C̃k

ω̂{at}
⇒ N [0, 1]. (20)

To deal with the bias correction c̃, the expectation of the estimation error under H0 using the
standardized residuals z̃i,t can be written

ci = trE

⎡⎣ 1
s2i

Ã
T−1/2

TX
t=1

x̃i,tzi,t

!Ã
T−1/2

TX
t=1

x̃i,tzi,t

!0⎤⎦
20



where x̃i,t =
³
T−1

PT
t=1 xi,tx

0
i,t

´−1/2
xi,t. In this form ci is clearly O (1) and moreover by Theorem

1 of Andrews (1991) ci is consistently estimated by c̃i. Thus S̃k = ω̂{at}−1
³
C̃k +

PN
i=1 T

−1/2c̃i
´
=

ω̂{at}−1C̃k +Op

¡
T−1/2

¢
⇒ N [0, 1] from (20).

(ii) Suppose, without loss of generality, that φi = 1 for i = 1, ..., sN, 0 < s ≤ 1 and φi < 1 for
i = sN + 1, ...,N (with the obvious modification for s = 1). Now

T−1/2C̃k =
sNX
i=1

T−1
TX

t=k+1

z̃i,tz̃i,t−k +
NX

i=sN+1

T−1
TX

t=k+1

z̃i,tz̃i,t−k,

and the second term is Op

¡
T−1/2

¢
from the proof of Theorem 1. Noting that T−1γ̂0{ẑi,t} = Op (1)

for i = 1, . . . ,M , the first term satisfies

sNX
i=1

T−1
TX

t=k+1

z̃i,tz̃i,t−k =
sNX
i=1

1

T−1γ̂0{ẑit}
T−2

TX
t=k+1

ẑi,tẑi,t−k

=
sNX
i=1

1

T−1γ̂0{ẑi,t}
T−2

TX
t=1

ẑ2i,t + op (1)

= sN + op (1) .

Thus,
C̃k = T 1/2sN + op

³
T 1/2

´
. (21)

Next, with at =
PN

i=1 z̃i,tz̃i,t−k,

l−1ω̂{at}2 = l−1

⎛⎝γ̂0{at}+ 2
lX

j=1

µ
1− j

l

¶
γ̂j{at}

⎞⎠ ≤ 3γ̂0{at} (22)

where γ̂0{at} = T−1
PT

t=k+1

³PN
i=1 z̃i,tz̃i,t−k

´2
.Thus

γ̂0{at} ≤
NX
i=1

NX
j=1

T−1
TX
t=1

z̃2i,tz̃
2
j,t = Op (1) (23)

since for i, j = sN + 1, . . . , N ,

T−1
TX

t=k+1

z̃2i,tz̃
2
j,t =

1

γ̂0{ẑi,t}.γ̂0{ẑj,t}
T−1

TX
t=k+1

ẑ2i,tẑ
2
j,t = Op (1)

for i, j = 1, . . . , sN ,

T−1
TX

t=k+1

z̃2i,tz̃
2
j,t =

1

T−1γ̂0{ẑi,t}.T−1γ̂0{ẑj,t}
T−3

TX
t=k+1

ẑ2i,tẑ
2
j,t = Op (1)

and for i = sN + 1, . . . , N and j = 1, . . . , sN,

T−1
TX

t=k+1

z̃2i,tz̃
2
j,t =

1

γ̂0{ẑi,t}.T−1γ̂0{ẑj,t}
T−2

TX
t=k+1

ẑ2i,tẑ
2
j,t = Op (1) .
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(and similarly for j = sN + 1, . . . , N and i = 1, . . . , sN). Combining (21), (22) and (23) we find
for any critical value c, as T →∞,

P

"
C̃k

ω̂{at}
> c

#
= P

"
sN + op(1)

l
T 1/2

Op(1)
> c

#
→ 1

since l = o(T 1/2). The bias correction c̃ obviously does not affect test consistency since each
T−1/2c̃i is non-negative.

6.2 Deterministic Regressions in the Factor Model

In standard notation, the model (14) (where xi,t is an mi× 1 vector of regressors) can be written

y
(NT×1)

= X
(NT×m)

β
(m×1)

+ z
(NT×1)

, (24)

where y = (y01, . . . ,y
0
N )

0, X = diag (X1, . . . ,XN), β =
¡
β01, . . . ,β

0
N

¢0, z = (z01, . . . , z
0
N)

0, m =PN
i=1mi and yi = (yi,1, . . . , yi,T )

0, Xi = (xi,1, . . . ,xi,T )
0, zi = (zi,1, . . . , zi,T )

0. The factor model
(10) can be written

Z
(T×N)

= F
(T×r)

Λ
(r×N)

+ E
(T×N)

(25)

where Z = (z1, . . . , zN), F = (f1, . . . , fr)
0, Λ = (λ1, . . . ,λN ) and E = (e1, . . . , eN ) where ei =

(ei,1, . . . , ei,T )
0 for each i = 1, . . . , N .

The estimation of the factor model in first differences proceeds as follows. The first difference
of equation (24) can be written

∆y
(N(T−1)×1)

= (∆XC)
(N(T−1)×m∆)

βC
(m∆×1)

+ ∆z
(N(T−1)×1)

,

where βC = (C
0C)−1C0β and C is an m×m∆ matrix chosen to exclude columns of ∆X corre-

sponding to constant terms in X so that ∆XC has full column rank m∆ ≤ m. The residuals from
this regression can be written c∆z = ∆y− (∆XC) β̂C , where β̂C = (C

0∆X0∆XC)−1C0∆X0∆y is

the usual OLS estimator, and the (T − 1) ×N matrix d∆Z is defined to satisfy c∆z = vec³d∆Z´.
The estimated factors can then be writtend∆F =d∆ZΓ̂ where Γ̂ is the N×r matrix of eigenvectors
corresponding to the largest r eigenvalues of d∆Z0d∆Z. The estimated idiosyncratic components
are thend∆E =d∆Z−d∆FΛ̂ where Λ̂ = ³d∆F0d∆F´−1d∆F0d∆Z. Taking the partial sums ofd∆F andd∆E gives the component estimates F̂ and Ê, with corresponding r (T − 1)× 1 and N (T − 1)× 1
vectors f̂ = vec

³
F̂
´
and ê = vec

³
Ê
´
.

The deterministic regressions for the estimated factors f̂ proceed as follows. Since f̂ can
be written f̂ =

³
Γ̂0 ⊗ IT−1

´ c∆z, it is necessary to regress f̂ on ³Γ̂0 ⊗ IT−1´X. However this
regressor matrix may not have full column rank, in which case it is sufficient to regress f̂ on
Xf =

³
Γ̂0 ⊗ IT−1

´
XCf where Cf is a matrix chosen such that Xf has full column rank and its

columns form a basis for the vector space containing the columns of
³
Γ̂0 ⊗ IT−1

´
X. In practice,

if
³
Γ̂0 ⊗ IT−1

´
X has less than full column rank, a simple choice for Cf is the matrix of eigen-

vectors corresponding to the non-zero eigenvalues of X0
³
Γ̂Γ̂

0 ⊗ IT−1
´
X. The residuals from the

regression of f̂ on Xf are denoted
b̂
f . The corresponding (T − 1)× r matrix b̂F is defined to satisfy
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b̂
f = vec

³b̂
F
´
. Each of the r columns of b̂F is standardized by its sample standard deviation to give

the (T − 1)×r matrix F̃, whose individual elements are denoted f̃j,t, j = 1, . . . , r and t = 2, . . . , T .
The deterministic regressions for the estimated idiosyncratic components ê proceed similarly.

We can write d∆E = d∆Z −d∆Z³Γ̂Λ̂´ since d∆F = d∆ZΓ̂, so ê = ³
IN(T−1) −

³
Λ̂0Γ̂0 ⊗ IT−1

´´
ẑ .

Therefore it is necessary to regress ê on
³
IN(T−1) −

³
Λ̂0Γ̂0 ⊗ IT−1

´´
X. If this regressor matrix

does not have full rank then it is replaced by Xe =
³
IN(T−1) −

³
Λ̂0Γ̂0 ⊗ IT−1

´´
XCe where, like

Cf , Ce is chosen (by principal components or other means) so that the columns of Xe provide a

basis for those of
³
IN(T−1) −

³
Λ̂0Γ̂0 ⊗ IT−1

´´
X. The residuals from the regression of ê on Xe are

denoted b̂e and the columns of the corresponding matrix b̂E (i.e. b̂e = vec³b̂E´) and standardized
by their respective standard deviations to give Ẽ with individual elements ẽi,t.

To calculate the statistic (8), define ãk,t =
Pr

j=1 f̃j,tf̃j,t−k +
PN

i=1 ẽi,tẽi,t−k. Then C̃k and
ω̂ {ãk,t} are calculated as described following equation (8). The bias correction term c̃ in (8) is
given by

c̃ = (T − k)−1/2 tr
h¡
X0fXf/T

¢−1
Ω̂ {wf,s}+

¡
X0eXe/T

¢−1
Ω̂ {we,s}

i
,

where wf = Xf ¯ f̂ι
0
mf

=
n
w0f,s

or(T−1)
s=1

and we = Xe ¯ êι0me
=
©
w0e,s

ªN(T−1)
s=1

, where ¯ is the

Hadamard product, ιm is an m× 1 vector of ones, mf and me are the column dimensions of Xf

and Xe respectively.

6.3 Proof of Theorem 2

In the notation defined in Section 6.2, the residuals c∆z can be written
c∆z = ∆z−∆XC ¡C0∆X0∆XC¢−1C0∆X0∆z.

Taking partial sums of c∆z gives
ẑ = z−XC

¡
C0∆X0∆XC

¢−1
C0∆X0∆z

apart from some asymptotically negligible initial value effects, so that z andX now haveN (T − 1)
rows.

The partial sum of c∆f = vec³d∆F´ = ³Γ̂0 ⊗ IT−1´ c∆z gives
f̂ =

³
Γ̂0 ⊗ IT−1

´
z−XfBf

where Xf =
³
Γ̂0 ⊗ IT−1

´
XCf and Bf =

³
C0fCf

´−1
C0fC (C

0∆X0∆XC)−1C0∆X0∆z. Thus

regressing f̂ on Xf will remove the XfBf term from the residuals, giving

b̂
f = P̄f f̂ = P̄f

³
Γ̂0 ⊗ IT−1

´
z, (26)

where P̄f = Ir(T−1) −Xf

³
X0fXf

´−1
X0f = Ir(T−1) − Pf . The corresponding matrix

b̂
F satisfiesb̂

f = vec
³b̂F´ and the standardized matrix F̃ is found by F̃ = b̂FĜ−1f , where Ĝf is an r×r diagonal

matrix containing the sample standard deviations of the columns of b̂F on the diagonal. Thus

f̃ =
³
Ĝ−1f ⊗ IT−1

´b̂
f .
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The partial sum of c∆e = Âc∆z where Â = IN(T−1) −
³
Λ̂0Γ̂0 ⊗ IT−1

´
gives

ê = Âz−XeBe

whereXe =
³
IN(T−1) −

³
Λ̂0Γ̂0⊗IT−1

´´
XCe andBe = (C

0
eCe)

−1C0eC (C
0∆X0∆XC)−1C0∆X0∆z

so regressing ê on Xe will remove Xe. This leavesb̂e = P̄eê = P̄eÂz (27)

where P̄e is the orthogonal projection on Xe. The corresponding matrix
b̂
E satisfies b̂e = vec³b̂E´

and the standardized matrix Ẽ is found by Ẽ =
b̂
EĜ−1e , where Ĝe is an r × r diagonal matrix

containing the sample standard deviations of the columns of b̂E on the diagonal. These steps
show that the appropriate regressions of f̂ on Xf and ê on Xe remove the effects of the initial
deterministic regression in first differences.

Since the model is estimated in differences, it follows that under both null and alternatived∆Z0d∆Z/T = Σ∆∆+Op

¡
T−1/2

¢
and hence Γ̂ = Γ+Op

¡
T−1/2

¢
where Γ is the matrix of eigenvec-

tors corresponding to the largest r eigenvalues of Σ∆∆. Thus Λ̂ =
³
Γ̂0d∆Z0d∆ZΓ̂´−1 Γ̂0d∆Z0d∆Z =

(Γ0Σ∆∆Γ)
−1ΓΣ∆∆+Op

¡
T−1/2

¢
. Recalling the definitions of b̂f and b̂e in (26) and (27) respectively,

consider f̄ =
³
Γ̂0⊗IT−1

´
z and ē = Âz. We can write

¡
f̄ 0, ē0

¢0
= vec

³
WĈ

´
whereW = ZΣ

−1/2
∆∆

and Ĉ = Σ
1/2
∆∆

³
Γ̂, P̂

´
where P̂ = IN−Γ̂Λ̂ and Σ∆∆= E (∆zt∆z

0
t). Now Ĉ = C + Op

¡
T−1/2

¢
where C = Σ

1/2
∆∆ (Γ,P) and P = IN−Γ (Γ0Σ∆∆Γ)

−1ΓΣ∆∆. Note that C has rank N since (i)
Γ has full column rank r, (ii) P has rank20 N − r and (iii) Γ0Σ∆∆P = 0. This shows that¡
f̄ 0, ē0

¢0
= vec

³
WĈ

´
is, even asymptotically, a rank N linear transformation of Z and hence that

all series of
¡
f̄ 0, ē0

¢0 are I (0) if all series of Z are I (0) and also that
¡
f̄ 0, ē0

¢0 must contain I (1)

elements if Z does. Therefore Theorem 1 can be applied to
¡
f̄ 0, ē0

¢0. The effect of the detrending
regressions represented by the projections P̄f and P̄e can be handled as in Theorem RES of HML.
The preceding arguments hold for every r = 0, 1, . . . , rmax and hence hold when r is replaced by
r̂ ∈ {0, 1, . . . , rmax}.

20P 0 = Σ
1/2
∆∆P

∗Σ
−1/2
∆∆ where P ∗ = IN − Σ

1/2
∆∆Γ (Γ

0Σ∆∆Γ)
−1

Γ0Σ
1/2
∆∆ is idempotent with trP ∗ = N − r and hence

has rank N − r.
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