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Abstract

A set of su¢ cient conditions for computing the asymptotic distribution of es-
timators which are de�ned via moment conditions with in�nite dimensional
parameters are presented. When the conditions hold, the main theorem re-
duces the computation of the asymptotic distribution to computing limits
of a few moments.



1 Introduction

Andrews (1994), Newey (1994), Sherman (1994) and Ai and Chen (2003)
have extended the �nite dimensional asymptotic analysis to include in�nite
dimensional parameters and clari�ed the structure of the computation of
asymptotic analysis greatly. However, when given an estimator, either their
framework is limited or the conditions put forward are not necessarily easy
to verify.

This paper presents a set of su¢ cient conditions for computing the as-
ymptotic distribution of estimators which are de�ned via moment conditions
with in�nite dimensional parameters. The conditions are hoped to be easy
to verify in many applications. When the conditions hold, the main theorem
reduces the computation of the asymptotic distribution to computing limits
of a few moments.

2 Model

Let � � Rp, Z � Rk, X� � Rd, and for each �,  (�; �) be a function from
X� into R`. We consider a mapping g (z; �;  (�; �)) from Z � (�;  (�; �))�2�
into Rm. Generally we consider a Banach space of functions � on Rd with
some properties such as given degree of di¤erentiability and assume that g
is well de�ned over Z � � � �. The norm on � is denoted by k�k�. When
the domain of such functions are restricted to X�, we denote it by � (X�).
We assume for each � 2 �,  (�; �) 2 � (X�). For brevity we sometimes write
� instead of  (�; �) and, when z is evaluated at zi, write gi (�; �) instead
of g (zi; �;  (�; �)).

Often gi (�; �) = g (zi; �; h1 (h2 (zi; �) ; �)) for an unknown function h1
into R` and a known function h2 so that g can be regarded as a function from
Z ���R` into Rm. The added generality is useful to handle applications
where � is a conditional expectation of an unknown variable which needs
to be estimated, for example. The generality is also useful in applications
where individuals�decisions depend on the entire distribution of a variable,
which in turn is estimated. This is the case for individual decisions in auction
models, for example, or more generally any decision under explicitly stated
expectation which is to be estimated.

Let

Gn (�; �) =
1

n

nX
i=1

gi (�; �) :
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This paper considers a set of su¢ cient conditions which imply asymptotic
normality of a �nite dimensional component � at the rate the square root
of the sample size in a class of the generalized method of moment (GMM)
estimator which is de�ned as a solution to the following problem:

inf
�2�

Gn (�; ̂�)
T ÂGn (�; ̂�)

where ̂� is an estimator of � and Â is an m �m matrix which converges
in probability to a positive de�nite matrix A.

3 Asymptotic Distribution

Our approach is a direct application of the standard analysis of the GMM es-
timators. Like the standard analysis, the basic result appeals to the Taylor�s
series expansion.

Let B be a Banach space equipped with norm k�kB and let k�k be a
norm on RK . First we state a Taylor�s series expansion theorem for a general
mapping F from an open subset of space B into RK .1 To state this theorem,
we �rst need to de�ne the concept of Fréchet di¤erentiability of a mapping
from an open subset O of a normed space X into another normed space Y .
Let k�kX and k�kY be the norms of X and Y , respectively.

De�nition 1 (Fréchet Di¤ erentiability) A mapping f : O ! Y is Fréchet
di¤erentiable if and only if at x 2 O there is a continuous linear operator
Lx such that for any " > 0 there exists �" > 0 such that for any khkX < �"
the following inequality holds:

kf (x+ h)� f (x)� LxhkY � " � khkX :

We write this as f (x+ h)� f (x)� Lxh = o (h) :
Next we discuss second order di¤erentiability of mapping f or di¤eren-

tiability of Lx. Note that Lx can be regarded as a mapping from X into
L (X;Y ), a space of linear operators from X into Y . Because X is a normed
space and L (X;Y ) is a normed space, we can discuss Fréchet di¤erentiabil-
ity of this mapping Lx when f is Fréchet di¤erentiable over O.2 When Lx

1See for example Kolmogorov and Fomin (1957), Fourth edition Chapter 10.
2For any L 2 L (X;Y ) the norm of L (X;Y ) is de�ned by

sup
khkX�1

kLhkY :
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is Fréchet di¤erentiable, we have

Lx+h � Lx �Qxh = o (h)

for some linear operator Qx. We regard this linear operator as the second
derivative of f . Note that Qx is an element of L (X;L (X;Y )). Because
L (X;L (X;Y )) can be identi�ed with a space of bilinear operators B

�
X2; Y

�
via

B (x1; x2) = A (x1)x2;

where A 2 L (X;L (X;Y )) and B 2 B
�
X2; Y

�
, we will regard Qx as an

element of B
�
X2; Y

�
.

Analogously one can de�ne the nth order derivative of mapping f and
will regard them as an element of the space of the rth order linear operators
R (Xr; Y ). From now on, we will denote the derivative of f (x) by f 0 (x),
the second derivative by f 00 (x), the rth derivative by f (r) (x). As discussed
above, for each x, f 0 (x) is a linear operator, f 00 (x) is a bilinear operator,
and in general f (r) (x) is the rth order linear operator into Y . Thus for any
element h 2 X, f 0 (x) (h), f 00 (x) (h; h), and in general f (r) (x) (h; :::; h) are
all well de�ned and take values in Y .

Using these notations, we can state the Taylor�s series expansion theo-
rem: See Kolmogorov and Fomin (1976).3

Theorem 2 (Taylor�s Series Expansion) Let F be a mapping from B
into RK and let F be de�ned over an open subset O of B. If F (r) (x) exists
for any x 2 O and is uniformly continuous, then

F (x+ h) = F (x)+F 0 (x) (h)+
1

2!
F 00 (x) (h; h)+� � �+ 1

r!
F (r) (x) (h; :::; h)+! (x; h)

where k! (x; h)kB = o (khkrB). If the rth derivative satis�es the Lipschitz
condition with exponent � > 0, then k! (x; h)kB = O

�
khkr+�B

�
:

We prove asymptotic distribution of the semiparametric GMM estimator
under the following assumptions.

Condition 3 fzigni=1 are independent and identically distributed.

Condition 4 (�0; 0 (�; �0)) is an interior point of f(�;��)g�2�.
3Chapter 10, Theorem 2.
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Condition 5 g (z; �; ) is Fréchet di¤erentiable with respect to (�; ) in �
and the Fréchet derivatives satis�es the Lipschitz continuity conditions: for
Cj (z) > 0 E fCj (z)g <1 (j = 1; 2; 3; 4)@g (z; �; ) =@� � @g �z; �0; 0� =@�

Rmp
� C1 (z)

� � �0
Rp
+ C2 (z)

 � 0
�@g (z; �; ) =@ � @g �z; �0; 0� =@L(�;L(�;Rm)) � C3 (z)

� � �0
Rp
+ C4 (z)

 � 0
�

We shall denote the Fréchet derivative with respect to � inclusive of the
e¤ect of � on  by rg (z; �;  (�; �)). Note that

rg (z; �;  (�; �)) = @g (z; �;  (�; �)) =@�+@g (z; �;  (�; �)) =@ �@ (�; �) =@�:

Condition 6 sup�2� k@g (z; �;  (�; �)) =@kL(�;L(�;Rm))+sup�2� k@g (z; �;  (�; �)) =@�kRmp �
C0 (z) and E fC0 (z)g <1.

Condition 7 E frg (z; �0; 0 (�; �0))g � rG is �nite and has full rank.

Condition 8 plimn!1Â = A where A is symmetric and positive de�nite.

Condition 9 � 7�! 0 (�; �) as a mapping from � into � is continuous at
�0.

We de�ne the concept of asymptotic linearity. Let n denote a sample
size and frng be a deterministic sequence which converges to 0. We consider
a general estimator �̂n of an element �0 in a Banach space B with norm
k�kB.

De�nition 10 A statistic �̂n in B is asymptotically linear for �0 in B with
the residual rate rn if there exist a stochastic sequence f nigni=1 with  ni 2 B
and E ( ni) = 0 and a deterministic sequence fbng with bn 2 B such that�̂n � �0 � n�1

nX
i=1

 ni � bn


B

= op (rn) :

In our application, for each i, typically  ni is a function of some argu-
ments.

Condition 11 sup�2� k̂ (�; �)� 0 (�; �)k� = op (1) and that ̂ (�; �) is as-
ymptotically linear for 0 (�; �) in � with rate n�1=2.

We impose the following condition as well:
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Condition 12 plimn!1n�3=2
Pn
i=1 @gi (�0; 0) =@

0 ni = 0.

Condition 13 plimn!1n�1=2
Pn
i=1 @gi (�0; 0) =@

0bn = gb.

Typically we will �nd conditions under which gb = 0. Under the condi-
tions, the term can be bounded:n�1=2

nX
i=1

@gi (�0; 0) =@
0bn


Rm

� 1

n

nX
i=1

C0 (zi)
p
n kbnk� :

Thus if
p
n kbnk� = o (1), then gb = 0.

We also assume that the nonparametric estimator is smooth and the
derivative behaves as expected.

Condition 14 ̂ (�; �) is continuously di¤erentiable and sup�2� k@̂ (�; �) =@� � @0 (�; �) @�k� =
op (1).

For asymptotic normality, the two conditions above are needed only in
the neighborhood of �0. For consistency, however, that is not enough, but
perhaps not as strong as the condition above. Let  ni = �ni � E f�nig.

Condition 15 E f�nig 2 � and that
n�1Pn

i=1  ni

�
+ kE f�nigk� =

o
�
n�1=4

�
.

Let H = (rG)T A (rG) and denote the expectation conditional on zi
by E f�jzig. Let


n = V ar
�
g (z1; �0; 0) + E

�
@g (z1; �0; 0) =@

0 n2jz1
	
+ E

�
@g (z2; �0; 0) =@

0 n1jz1
	�

and for any c 2 Rp, �c = limn!1 c0H�1 (rG)T A
nArGH�1c.

Theorem 16 Suppose �̂ is consistent to �0. Under the conditions above,
for any c 2 Rp for which �c is positive and �nite,

p
nc0
�
�̂ � �0

�
converges

in distribution to a normal random variable with mean 0 and variance �c.

The proof makes use of the following two lemmas.

Lemma 17 rGn (�;  (�; �)) �rGn (�0; 0 (�; �0)) = op (1) in the neighbor-
hood �0 and 0 (�; �0).
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Proof. To see this, just note that

krGn (�;  (�; �))�rGn (�0; 0 (�; �0))kRmp
� krGn (�;  (�; �))�rGn (�0;  (�; �))kRmp + krGn (�0;  (�; �))�rGn (�0; 0 (�; �0))kRmp

� n�1
nX
i=1

[C1 (zi) k� � �0kRp + C3 (zi) k@ (�; �) =@�k� k� � �0kRp ]

+n�1
nX
i=1

C2 (zi) [k (�; �)� 0 (�; �)k� + k0 (�; �)� 0 (�; �0)k�]

+n�1
nX
i=1

C4 (zi) [k (�; �)� 0 (�; �)k� + k0 (�; �)� 0 (�; �0)k�] k@ (�; �) =@�k�

+n�1
nX
i=1

C0 (zi) [k@ (�; �) =@� � @0 (�; �) @�k� + k@0 (�; �) =@� � @0 (�; �0) @�k�]

This implies the result.

Lemma 18
p
nGn (�0; ̂ (�; �0)) is asymptotically equivalent to

1p
n

nX
i=1

�
g (zi; �0;  (�0)) + E

�
@g (zi; �0; 0)

@0
 nj jzi

�
+ E

�
@g (zj ; �0; 0)

@0
 nijzi

��
+gb

Proof. By the Taylor�s series expansion theorem for some Rn

Gn (�0; ̂ (�; �0))
= Gn (�0; 0 (�; �0))

+
1

n

nX
i=1

@gi (�0; 0 (�; �0))
@0

(̂ (�; �0)� 0 (�; �0)) +Rn:

When the Fréchet derivative satis�es the Lipschitz condition with exponent
1, the last term can be bounded:

jRnj �
1

n

nX
i=1

C4 (zi) k̂ (�; �0)�  (�; �0)k2� :

Thus
p
n jRnj converges to zero under the conditions.

Using the asymptotic linearity of the nonparametric estimator ̂, the
�rst term of the right-hand side equals

1

n

nX
i=1

@gi (�0; )

@0

0@ 1
n

nX
j=1

 nj + bn

1A
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which, by exploiting the linearity of the Fréchet derivative equals

1

n2

nX
i=1

nX
j=1
j 6=i

@gi (�0; 0)

@0
 nj

+
1

n2

nX
i=1

@gi (�0; 0)

@0
 ni

+
1

n

nX
i=1

@gi (�0; 0)

@0
bn:

The second term converges to zero after multiplied by
p
n under the condi-

tion. The third term multiplied by
p
n converges to gb under the condition.

By the U-statistics central limit theorem, the �rst term converges with
the rate the square root of the sample size. To obtain the asymptotic vari-
ance formula, we compute the projection: First by symmetrization we have
(n� 1) =n times

2

n (n� 1)

nX
i=1

nX
j>i

�
@g (zi; �0; 0)

@0
 nj +

@g (zj ; �0; 0)

@0
 ni

�
=2:

The projection is (for j 6= i)

2

n

nX
i=1

E

��
@g (zi; �0; 0)

@0
 nj +

@g (zj ; �0; 0)

@0
 ni

�
=2jzi

�

=
1

n

nX
i=1

�
E

�
@g (zi; �0; 0)

@0
 nj jzi

�
+ E

�
@g (zj ; �0; 0)

@0
 nijzi

��
:

Thus combining with the �rst term, we obtain the result.
Thus the asymptotic distribution is driven by


n = V ar

�
g (z1; �0; 0 (�; �0)) + E

�
@g (z1; �0; 0)

@0
 n2jz1

�
+ E

�
@g (z2; �0; 0)

@0
 n1jz1

��
:

Now we turn to a proof of the main theorem.
Proof. Let rGn (�; ̂�) = @Gn (�; ̂�) =@� + @Gn (�; ̂�) =@ � @̂ (�) =@�

where @Gn (�; ) =@ denotes the Fréchet derivative of Gn (�; ) with respect
 using the norm k�k�. Then the �rst order condition solves

0 =
h
rGn

�
�̂; ̂

�
�; �̂
��iT

ÂGn

�
�̂; ̂

�
�; �̂
��

:
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We consider the expansion of Gn
�
�̂; ̂

�
�; �̂
��

at � = �0: By the standard

Taylor�s series expansion theorem,

Gn

�
�̂; ̂

�
�; �̂
��

= Gn (�0; ̂ (�; �0)) +rGn (�0; ̂ (�; �0))
�
�̂ � �0

�
+
�
rGn

�
��; ̂

�
�; ��
��
�rGn (�0; ̂ (�; �0))

� �
�̂ � �0

�
for some �� which lies on a line connecting �̂ and �0. After substitution this
expression into the �rst order condition and rearranging, we have

� [rGn (�0;  (�; �0))]T Â [rGn (�0; ̂ (�; �0))]
�
�̂ � �0

�
= [rGn (�0;  (�; �0))]T ÂGn (�0; ̂ (�; �0)) + T1+ T2+ T3

where

T1 =
h
rGn

�
�̂; ̂

�
�; �̂
��
�rGn (�0; 0 (�; �0))

iT
ÂGn (�0; ̂ (�; �0)) ;

T2 =
h
rGn

�
�̂; ̂

�
�; �̂
��
�rGn (�0; 0 (�; �0))

iT
ArGn (�0; ̂ (�; �0))

�
�̂ � �0

�
; and

T3 =
h
rGn

�
�̂; ̂

�
�; �̂
��iT

A
�
rGn

�
��; ̂

�
�; ��
��
�rGn (�0; ̂ (�; �0))

� �
�̂ � �0

�
:

Under the condition, clearly rGn (�0; 0 (�; �0)) converges to a full rank ma-
trix rG. The limit is

rG = E

�
@gi (�0; 0 (�; �0))

@�
+
@gi (�0; 0 (�; �0))

@0
� @0 (�; �0)

@�

�
:

Note that equals

�
�
�̂ � �0

�
=

n
rGn (�0;  (�; �0))T ÂrGn (�0; ̂ (�; �0))

o�1
�
h
rGn (�0;  (�; �0))T ÂGn (�0; ̂ (�; �0)) + T1+ T2+ T3

i
Earlier lemma implies

rGn
�
�̂; ̂

�
�; �̂
��
�rGn (�0; 0 (�; �0)) = op (1) ;

rGn
�
��; ̂

�
�; ��
��
�rGn (�0; ̂ (�; �0)) = op (1) ; and

Gn (�0; ̂ (�; �0))�rGn (�0; 0 (�; �0)) = op (1) :

These also imply that rGn (�0;  (�; �0))T ÂrGn (�0; ̂ (�; �0)) converges in
probability to an invertible matrix.
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Multiply both sides by
p
n=
�
1 +

p
n
�̂ � �0

Rp

�
and take the norm of

the left-hand side. Suppose
p
n
�̂ � �0

Rp
diverges with positive probabil-

ity. Then with the positive probability, the left-hand side converges to 1.
The right-hand side however converges to zero from the earlier lemma. Thus
p
n
�̂ � �0

Rp
= Op (1).

Next multiply both sides with
p
nc 2 Rp and applying the condition

implies the result.
These calculations clarify what we need to know to compute the asymp-

totic distribution of a semiparametric GMM estimator. They are rG and

n.

4 Applications

To carry out these computations, we need to �nd out the relevant Fréchet
derivatives and know what the asymptotic linear expressions are for the
nonparametric estimators used in the estimation.

For the kernel density estimators the following are the expressions:

 ni =
1

hd
K

�
zi � z
h

�
� E

�
1

hd
K

�
zi � z
h

��
and

bn = E

�
1

hd
K

�
zi � z
h

��
� f (z) :

To control the bias, so that the asymptotic linearity condition holds with
rate n�1=2, a certain type of kernel function needs to be used. The following
�higher order kernel�by Bartlett (1963) is a standard device in the literature.
Let �j0 = 1 if j = 0 and 0 for any other integer value j.

De�nition 19 K`, ` � 1 is the class of symmetric functions k : R ! R
around zero such that

R1
�1 tjk (t) dt = �j0 for j = 0; 1; :::; `� 1 and for some

" > 0

lim
jtj!1

k (t) =
�
1 + jtj`+1+"

�
<1:

Dimension d kernel functionK of order ` is constructed byK (t1; :::; td) =
k (t1) � � � k (td) for k 2 K`.

In order to improve the order of bias by the higher order kernel, the un-
derlying density is required to be smooth accordingly. The following notion
of smoothness is used by Robinson (1988). Let [�] denote the largest integer
not equal or larger than �.
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De�nition 20 G�� , � > 0, � > 0, is the class of functions g : Rd ! R

satisfying: g is [�]-times partially di¤erentiable for all z 2 Rd; for some
� > 0, supy2fky�zkRd<�g jg (y)� g (z)�Q (y; z)j = ky � zk

�
Rd
� h (z) for all

z; Q = 0 when [�] = 0; Q is a [�]-th degree homogeneous polynomial in
(y � z) with coe¢ cients the partial derivatives of g at z of orders 1 through
[�] when [�] � 1; and g (z), its partial derivatives of order [�] and less, and
h (z) have �nite �th moments.

Bounded functions are denoted by G1� . Let K be a higher order kernel
constructed as above. Robinson (1988) has shown the following result:

Lemma 21 (Robinson) E
n�
E
�
h�dK ((z2 � z1) =h) jz1

�
� f (z1)

�2o
= O

�
h2�
�

when f 2 G1� for some � > 0 and k 2 K[�]+1.

Lemma 22 (Robinson) E
���(g (z2)� g (z1))h�dK ((z2 � z1) =h)���	 = O

�
h�min(�;�+1;�+�)

�
when f 2 G1� , g 2 G�� , and k 2 K[�]+[�]+1.

These results are useful to examine estimators when rg and g are linear
in .

Using these results we will examine various examples. The following
estimator �̂ of E ffg is examined by Ahmad (1976):

Example 23

0 = n�1
nX
i=1

h
� � f̂ (zi)

i
:

In this application g (z; �; ) = �� (z). Three aspects of this application
makes it particularly easy to directly verify the conclusions of the lemmas:
that  does not depend on �, rg (z; �; ) = 1, and that g (z; �; ) is linear in
. The �rst two imply that the conclusion of the �rst lemma holds without
any further assumptions. The third implies that there is no approximation
error to be concerned, so we just need to compute

V ar

�
g (z1; �0; 0 (�; �0)) + E

�
@g (z1; �0; 0)

@0
 n2jz1

�
+ E

�
@g (z2; �0; 0)

@0
 n1jz1

��
:

Fréchet derivative with respect to  can be directly computed as minus the
linear mapping from � into R which evaluates a given function at a point g
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is evaluated so that

@g (z1; �0; 0)

@0
 n2 = � 1

hd
K

�
z2 � z1
h

�
+ E

�
1

hd
K

�
z2 � z1
h

�
jz1
�

@g (z2; �0; 0)

@0
 n1 = � 1

hd
K

�
z1 � z2
h

�
+ E

�
1

hd
K

�
z1 � z2
h

�
jz2
�
:

Thus

E

�
@g (z1; �0; 0)

@0
 n2jz1

�
= 0

E

�
@g (z2; �0; 0)

@0
 n1jz1

�
= �E

�
1

hd
K

�
z1 � z2
h

�
jz1
�
+ E

�
1

hd
K

�
z1 � z2
h

��
Therefore

V ar

�
g (z1; �0; 0 (�; �0)) + E

�
@g (z1; �0; 0)

@0
 n2jz1

�
+ E

�
@g (z2; �0; 0)

@0
 n1jz1

��
= V ar

�
�0 � 0 (z1)� E

�
1

hd
K

�
z1 � z2
h

�
jz1
�
+ E

�
1

hd
K

�
z1 � z2
h

���
! 4E

n
[�0 � 0 (z1)]2

o
:

Also, Robinson�s result allows us to �nd conditions under which gb = 0.
Another example is the partial linear regression model of Cosslett (1984),

Schiller (1984) and Wahba (1984).

Example 24 For x 2 RK , y 2 R, w 2 Rd the model is

y = xT �0 + � (w) + "

where E ("jw; x) = 0. Consider an estimator which solves the following
equations:

0 = n�1
nX
i=1

h
yi � x0i�̂ � Ê (yjwi) + Ê

�
x0jwi

�
�̂
i
Îixi

where Îi = I
�
f̂ (wi) > b

�
and I is the indicator function.

The following lemma is useful. Let Ii = I (f (wi) > b).

Lemma 25 Pr
�
at least one of Îi � Ii 6= 0

�
! 0 when f 2 G1� , for some

� > 0, k 2 K[�]+1, jK (0)j < 1, b is positive and bounded, nhdb2= log n !
1, b=h� !1, and when there is no positive probability that f (wi) = b.
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Note that b is not necessarily required to converge to zero. This result
allows us to consider

0 = n�1
nX
i=1

h
yi � x0i�̂ � Ê (yjwi) + Ê

�
x0jwi

�
�̂
i
Iixi

instead of the feasible GMM.
Proof. The probability is bounded by

Pn
i=1 Pr

n
Îi � Ii 6= 0

o
. Note that

Pr
n
Î1 � I1 6= 0

o
= E

n
Pr
n
Î1 � I1 6= 0jw1

oo
= E

n
Pr
n
f̂ (w1) > bjw1

o
(1� I1)

o
+ E

n
Pr
n
f̂ (w1) < bjw1

o
I1

o
:

Let

~b1 = b�
�
nhd

��1
K (0)� [(n� 1) =n]E

h
h�dK ((w2 � w1) =h) jw1

i
:

Then by Bernstein�s inequality for some positive numbers C1 and C2,

Pr
n
f̂ (w1) > bjw1

o
(1� I1)

= Pr

(�
nhd

��1 nX
i=2

K

�
wi � w1

h

�
� E

�
K

�
wi � w1

h

�
jw1
�
> ~b1jw1

)
(1� I1)

� exp

(
� nhd~b21
C1 + C2~b1

)
I (f (w1) < b)

and that

Pr
n
f̂ (w1) < bjw1

o
I1

= Pr

(�
nhd

��1 nX
i=2

�K
�
wi � w1

h

�
+ E

�
K

�
wi � w1

h

�
jw1
�
> �~b1jw1

)
I1

� exp

(
� nhd~b21
C1 � C2~b1

)
I (f (w1) > b) :

Then an application of Lebesgue dominating convergence theorem implies

that
Pn
i=1 Pr

n
Îi � Ii 6= 0

o
converges to zero when all the rates conditions

hold.
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For the kernel regression estimators of g (x) = E (Y jX = x), denoting

" = Y � g (X), the linear approximation of (ĝ � g) I
�
f̂ > b

�
takes the fol-

lowing form:

 ni =
"ih

�dK ((xi � x) =h)
f (x)

I (f (x) > b) and

bn = E

�
I (f (x) > b)

(g (xi)� g (x))
hd

K

�
xi � x
h

�
=f (x)

�
:

Let z = (w; x; y). In this example, g (z; �; ) =
h
y � xT � � 1 (w)� 2 (w)T �

i
�

I � x so that
rg (z; �; ) = �I � x [x� 2 (w)]T :

Since rg (z; �; ) is linear in  and  does not depend on �, the direct
veri�cation of the lemma is easier. One can verify

rG = �E
n
I � x [x� E (xjw)]T

o
! �E

n
x [x� E (xjw)]T

o
when b! 0

when E
nx [x� E (xjw)]T

K2

o
<1.

To examine the asymptotic distribution note that g (z; �; ) is linear in 
so that direct calculation is simpler. The Fréchet derivative of g with respect

to  is @g=@ (h) = �
�
h1 (w)� h2 (w)T �0

�
x so that writing u = y�E (yjw)

and v = x� E (xjw) and " = y � xT �0 � � (w)
@g (z1; �0; 0)

@0
 n2 = �

�
u2 � vT2 �0

�
h�dK ((w2 � w1) =h)
f (w1)

I (f (w1) > b)x1

@g (z2; �0; 0)

@0
 n1 = �

�
u1 � vT1 �0

�
h�dK ((w1 � w2) =h)
f (w2)

I (f (w2) > b)x2:

Thus noting that u = y � E (xjw)T �0 � � (w) = "+ vT �0

E

�
@g (z1; �0; 0)

@0
 n2jz1

�
= 0

E

�
@g (z2; �0; 0)

@0
 n1jz1

�
= �"1E

�
h�dK ((w1 � w2) =h)

f (w2)
I (f (w2) > b)x2jw1

�
so that

V ar

�
g (z1; �0; 0 (�; �0)) I1 + E

�
@g (z1; �0; 0)

@0
 n2jz1

�
+ E

�
@g (z2; �0; 0)

@0
 n1jz1

��
= V ar

�
"1

�
x1I1 � E

�
h�dK ((w1 � w2) =h)

f (w2)
I (f (w2) > b)x2jw1

���
! V ar ["1 [x1 � E (x1jw1)]] as b! 0:
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We next consider trimming function suitable to handle index models. In

this part of the paper let Îi = I
�
infw2Br(wi) f̂ (w) > b

�
and Ii = I

�
infw2Br(wi) f (w) > b

�
The following lemma is useful.

Lemma 26 Pr
�
at least one of Îi � Ii 6= 0

�
! 0 when f 2 G1� , for some

� > 0, k 2 K[�]+1, jK (0)j < 1, b is positive and bounded, nhdb2= log n !
1, b=h� !1, and when there is no positive probability that f (wi) = b.

Proof. The probability is bounded by
Pn
i=1 Pr

n
Îi � Ii 6= 0

o
. Note that

Pr
n
Î1 � I1 6= 0

o
= E

n
Pr
n
Î1 � I1 6= 0jw1

oo
= E

�
Pr

�
inf

w2Br(w1)
f̂ (w) > bjw1

�
(1� I1)

�
+ E

�
Pr

�
inf

w2Br(w1)
f̂ (w) < bjw1

�
I1

�
:

Let ~b1 = b �
�
nhd

��1
K (0) � E

�
h�dK ((w2 � w1) =h) jw1

�
. Then by Bern-

stein�s inequality for some positive numbers C1 and C2,

Pr
n
f̂ (w1) > bjw1

o
(1� I1)

= Pr

(�
nhd

��1 nX
i=2

K

�
wi � w1

h

�
� E

�
K

�
wi � w1

h

�
jw1
�
> ~b1jw1

)
(1� I1)

� exp

(
� nhd~b21
C1 + C2~b1

)
I (f (w1) < b)

and that

Pr
n
f̂ (w1) < bjw1

o
I1

= Pr

(�
nhd

��1 nX
i=2

�K
�
wi � w1

h

�
+ E

�
K

�
wi � w1

h

�
jw1
�
> �~b1jw1

)
I1

� exp

(
� nhd~b21
C1 � C2~b1

)
I (f (w1) > b) :

Then an application of Lebesgue dominating convergence theorem implies

that
Pn
i=1 Pr

n
Îi � Ii 6= 0

o
converges to zero when all the rates conditions

hold.
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