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Abstract

This paper examines the effect of mismeasured discrete regressors in binary choice models. I examine plausible
scenarios for the nature of the measurement error and discuss identifiability and estimation under various sets
of semiparametric assumptions. Under a minimal set of assumptions, the model is only partially identified and
I derive bounds for some of the parameters of interest. If the probability of misclassification is conditionally
independent of the other regressors, the model is point identified and I propose a

√
n consistent, asymptotically

normal semiparametric two-step estimator under this set of conditions. If, however, the misclassification rates
are not independent of the other regressors, further information is required. When an additional measurement
on the mismeasured regressor is available I develop a

√
n consistent, asymptotically normal estimator using the

method of sieves without specifying the relationship between the probability of misclassification and the other
explanatory variables. Monte Carlo simulations suggest good finite sample properties of the estimators and
the method is illustrated with a study on the effect of unionization on the receipt of health benefits using data
from the Current Population Survey.
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1 Introduction

Measurement error in Non-Linear models introduces difficulties whose solutions require techniques that are quite

distinct from those usually called for in linear models. Ordinary instrumental variable estimation is no longer

feasible and estimation typically proceeds by making strong distributional assumptions and/or introducing further

information. The evidence as is available on the validity of some of these assumptions suggests that they may not

be a reasonable approximation of the true data generating process. In particular, the assumptions of the classical

measurement error model — that the measurement error is independent of the true value and of other variables in

the model1 — have been shown not to hold in a number of studies. This paper attempts to shed light on the effect

of relaxing these assumptions in non-linear models by examining in detail the case of misclassified regressors in

binary choice models.

When a mismeasured variable is binary (or more generally has a known finite support) — commonly referred to

as the problem of misclassification — the independence assumption between the measurement error and the true

values of the variable, invoked by the classical model for measurement error, is particularly untenable. More

generally, the phenomenon of negative correlation between the errors and the true values (referred to as “mean

reversion”) has been found to exist for a number of quantities of interest. Evidence of such a pattern has been

found in earnings data by Bound and Krueger [13] and Bollinger [10].2 In their article on measurement error

in survey data, Bound, Brown, and Mathiowetz [12] also report similar dependencies for a number of variables

including hours worked, union status, welfare program participation, and employment status.

A second assumption that is usually imposed on error models is the independence between the measurement

error and the other explanatory variables in the model. Again, there is evidence from studies that suggests

otherwise. For instance, Bollinger and David [11] noted that the probability of misreporting AFDC status was

1Unlike linear models where uncorrelatedness suffices for identification (instrumental variable approaches for instance), most non-
linear models require some sort of independence assumption. The classical measurement error or “errors-in-variables” model in these
contexts is usually given by x = x∗ + ε and ε is assumed independent of the unobserved x∗ and the other regressors in the model.

2Also see the caveat therein.
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highest amongst the poorest households. Mellow and Sider [40] concluded that over-reporting of hours worked

varied systematically with education and race. Summarizing work on unemployment data Bound, Brown, and

Mathiowetz [12] report that misclassification rates tended to vary by age and sex.3

This paper examines the effect of relaxing these assumptions on the identifiability and estimation of the

parameters in a binary choice model. The object of interest is the effect of a binary random variable x∗on the

probability of a dichotomous outcome y while controlling for other explanatory variables z. The econometrician

observes a random sample {yi, xi, zi}ni=1 ≡ {wi}ni=1 where xi is an error-ridden measure of x∗i . Since the unobserved

variable is binary, the measurement error is necessarily correlated with the true value x∗. In addition, I also study

the possibility that the measurement error is not independent of the other explanatory variables z in the model,

something that has not been explored in any detail previously.

I first study the problem in a non-parametric context and then proceed to a semiparametric setting and also

discuss fully parametric specifications. I begin with minimal assumptions and characterize bounds on the objects

of interest before adding further information to the model that tightens the bounds and enables identification and

in these cases I develop semiparametric estimation strategies for the parameters of interest.4

Section 2 provides a review of related work in the non-linear measurement error and misclassification literature

following which we begin our first study of the problem. Section 3 constructs sharp bounds on the probabilities of

interest under minimal assumptions. The subsequent sections add further information and discuss identification

and estimation of the parameters of interest. Section 4 discusses identification and estimation when the probability

of misclassification is independent of the other regressors. When this no longer true, I add further information

to identify the model and develop a sieve based estimator for the parameters of interest in Section 5. Section

6 studies the finite sample properties of the proposed estimators using a series of Monte Carlo simulations and

Section 7 illustrates the methods using data from the Current Population Survey. Section 8 concludes.

3Their paper also serves as an excellent summary of the current empirical evidence on the nature of measurement error in survey
data.

4Most of the results in the paper also apply to discrete regressors in general with little modification.
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2 Related Literature

There has been a fair amount of work on measurement error in non-linear models over the past two decades. A

useful survey of the statistics literature can be found in Carroll, Ruppert and Stefanski [15]. Hausman, Newey,

Ichimura and Powell [28] address the issue of measurement error in polynomial regression models by introducing

auxiliary information either in the form of an additional indicator or an instrument. Their identification and esti-

mation strategy relies on the classical measurement error model requiring independence between the measurement

error and the true value of the mismeasured variable as well as independence between the error and the correctly

measured covariates.5 Tong Li [36] and Schennach [47] propose an estimation strategy under similar assumptions

for more general classes of nonlinear models. Mahajan [38] adopts a similar estimation strategy while accounting

for dependencies between the mismeasured variable and the exogenous regressors in parametric fashion.

Another class of models achieves identification by supplementing the classical independence assumptions with

a distributional assumption on the measurement error. Taupin [51] proposes a consistent estimator for a nonlinear

regression model by imposing normality on the measurement error while Hong and Tamer [29] derive estimators

for a broader class of moment based models by assuming a Laplacean distribution for the error term. Another set

of papers rely on the availability of a validation data set (that is, a sample where both the mismeasured as well

as the true value of the variable are observed). Carroll and Wand [16] use validation data to estimate a logistic

regression with measurement error, as do Lee and Sepanski [34] for a non linear regression model.

All these papers assume some variant of the classical additive measurement error model and independence

between the correctly measured covariates and the measurement error. Work departing from the classical mea-

surement error assumptions can be found in Horowitz and Manski [31]. In their work, the observed data are

a mixture of the variable of interest and another random variable and the error is allowed to depend upon the

variable of interest. Chen, Hong and Tamer [17] relax the independence assumptions between errors and the true

values of the variables in the presence of an auxiliary data set and derive distribution theory for estimates based

5The full independence assumption is imposed, however, only on one of the error terms in the repeated measurements.
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on non-linear unconditional moment restrictions. Imbens and Hyslop [32] interpret the problem within a predic-

tion model in which the errors are correlated with the true values and discuss the bias introduced in estimation

procedures if measurement errors followed their model.

Measurement error in binary variables is necessarily non-classical in nature since the error term is perforce

negatively correlated with the true outcome. If the misclassified variable is a response variable, Horowitz and

Manski’s [31] work can be used to derive bounds for the unidentified parameters of the conditional distribution

of interest. Hausman, Abrevaya and Scott-Morton [27] examine the effect of a mismeasured left hand side binary

variable within a maximum likelihood as well as a semiparametric framework. The issue of misclassified binary

regressors was first addressed by Aigner [2] and subsequently by Bollinger [9] in the context of a linear regression

model. In the absence of further information, they show that the model is not identified and both papers obtain

sharp bounds for the parameters of interest. With the addition of further information in the form of a repeated

measurement, a recent paper by Black, Berger, and Scott [8] obtained point identification for the slope coefficient

in a univariate regression using a method of moments approach. An essentially similar approach was used by

Kane, Rouse, and Staiger [33] to study the effect of mismeasured schooling on returns to education and Card

[14] studies the effect of unions on wages taking misclassification of union status explicitly into account using a

validation data set. All these papers make the assumption that misclassification rates are independent of the

other regressors in the model.6

3 Bounds

3.1 Bounds for the Non-parametric case

I first consider the problem in a non-parametric setting with no functional form assumptions for the binary choice

model. I do, however, place two restrictions on the nature of the measurement error and these are maintained

6Although, Hausman et al. [27] discuss a case where this is not true.
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throughout the paper. The first assumes that the outcome y is independent of x conditional on the correctly

measured random variable x∗ and the other explanatory variables z. Formally,

P (y = 1|x∗, x, z) = P (y = 1|x∗, z) (A1)

In the literature this is referred to as the assumption of non-differential measurement error and x is known as a

“surrogate” for x∗. In the more familiar linear context this is analogous to the assumption that the error term in

the outcome equation is independent of the measurement error in the incorrectly measured regressor, conditional

on all the regressors in the model. This implies that the measurement error itself is uninformative about the

response given information on the truth and z. The conditional statement is important since the misclassification

rates may in fact be informative about responses through their correlation with other variables in the model.

The second restriction limits the extent of the measurement error by requiring that the probability of a correct

classification be greater than that of an incorrect one, i.e.,

P (x = 1|x∗ = 1, z) > P (x = 1|x∗ = 0, z) a.e. z (A2)

This ensures that the unobserved variable x∗ is positively correlated with its surrogate x. This assumption ensures

that the direction of the effect of the surrogate on the response is the same as the effect of the unobserved true

regressor.

I place no further restrictions on the form of the measurement error in this section. In particular, I do not

require, unlike most papers on the subject, that the measurement error be independent of the other explanatory

variables in the model. It is therefore possible that the misclassification rates are systematically related to one or

more of the z variables. I do, however, require that the relationship between them remains stable in the sense of

(A2).

In the absence of further information, (A1) in not identified, however, we can bound it. In order to discuss
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the bounds, some notation is helpful. Define

m∗1(z) ≡ P (y = 1|x∗ = 1, z) (1)

m∗0(z) ≡ P (y = 1|x∗ = 0, z) (2)

m1(z) ≡ P (y = 1|x = 1, z) (3)

m0(z) ≡ P (y = 1|x = 0, z) (4)

Lemma 1 Let g0(z) ≡ 1 [m0(z) ≥ m1(z)] and g1(z) ≡ 1 [m0(z) ≤ m1(z)] Then, Under (A1) and (A2)

m1 (z)
≥
≤ m0 (z)⇒ m∗1 (z)

≥
≤ m∗0 (z) (5)

m1(z)g1(z) +m0(z)g0(z) ≤ m∗1(z)g1(z) +m∗0(z)g0(z) ≤ 1 (6)

and
0 ≤ m∗1(z)g0(z) +m∗0(z)g1(z) ≤ m1(z)g0(z) +m0(z)g1(z) (7)

In the absence of other information the bounds in (6) and (7) are sharp.

The proof is in the appendix and the idea is quite straightforward. Each of {m1,m2} is a linear combination

of the unknown probabilities {m∗1,m∗2} . (A2) provides us with information on the relative weights attached to

each of these and this in turn allows us to infer bounds on {m∗1,m∗2} based on the observed {m1,m2} and are

reported above. Suppose for instance that m1 (z) > m0 (z), then the bound for m∗1 (z) will be [m1(z), 1] and for

m∗0 (z) , [0,m0 (z)] .

3.2 Binary Choice Model

I continue to maintain (A2) but specialize (A1) by parameterizing it as

P (y = 1|x∗, z, x) = F (β0 + β1x
∗ + β2z) (A10)

where F is a known monotone increasing function and for the moment I assume that in addition to the intercept

term there is only one other explanatory variable so that the object of interest β = {β0, β1, β2} ∈ R3.
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The identification results in this section depend importantly upon the assumptions on the support of z (which

is henceforth denoted by Sz) with different assumptions yielding dramatically different conclusions on the bounds

of interest. At one extreme, if z is binary there is no finite bound for β2 at all, whereas if Sz = R, β2. is point

identified. In contrast, as lemma (2) states the sign of β1 is always identified regardless of the assumptions on Sz.

Lemma 2 Under (A10) and (A2) suppose for any z ∈ Sz

m1 (z)
≥
≤ m0 (z) (8)

then

m1 (z)
≥
≤ m0 (z) ∀ z ∈ Sz (9)

and

β1
≥
≤ 0 (10)

The result follows straightforwardly from (1) and also has the virtue of providing a check on the validity of

(A10) as a model for (A1) since the sets {z : m1(z) > m0(z)} and {z : m1(z) < m0(z)} cannot both have positive

probability under (A10).

Consider first the simple case where Sz ∈ {0, 1} . Then, by using the bounds obtained in Lemma (1) I obtain

bounds on the parameter vector β

Lemma 3 Suppose (A2) and (A10) hold and that Sz ∈ {0, 1} Suppose w.l.o.g. that m1(z) > m0(z). Then

β1 > max
Sz

©
F−1 (m1 (z))− F−1 (m0 (z))

ª
(11)

β0 ≤ F−1 (m0 (0)) (12)

β2 ∈ R (13)

In the absence of further information these bounds are sharp.

More generally with a richer support of z, the identification possibilities can be characterized using the method
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proposed by Manski and Tamer [39]. Given (A10)

P (y = 1|x, z) = F (β0 + β2z)P (x
∗ = 0|x, z) + F (β0 + β1 + β2z)P (x

∗ = 1|x, z) (14)

So that

min {F (β0 + β2z) , F (β0 + β1 + β2z)} ≤ P (y = 1|x, z) ≤ max {F (β0 + β2z) , F (β0 + β1 + β2z)} (15)

For any b ∈ Θ consider the set

V (b) = {(x, z) : min {F (b0 + b2z) , F (b0 + b1 + b2z)} > P (y = 1|x, z)} ∪

{(x, z) : max {F (b0 + b2z) , F (b0 + b1 + b2z)} < P (y = 1|x, z)}

Then any b such that P (V (b)) > 0 is clearly inadmissible since it violates (15). The set

B∗ = {b ∈ Θ : P (V (b)) = 0}

is the set of elements in Θ that are observationally equivalent to β and the aim is to characterize this set. Following

Lemma 2 in Manski and Tamer [39], I define a objective function based on (15) such that every b ∈ B∗ minimizes

this function. First, define

m(b, z) = max {F (b0 + b2z) , F (b0 + b1 + b2z)}

n(b, z) = min {F (b0 + b2z) , F (b0 + b1 + b2z)}

η(x, z) = P (y = 1|x, z)
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The objective function is given by

Q0(b) = E
h
I (m(b, z) < η (x, z)) (m(b, z)− η (x, z))2 + I (n(b, z) > η (x, z)) (n(b, z)− η (x, z))2

i

and by Lemma 2 in [39]of we obtain that no b /∈ B∗ will minimize Q0 and that every b ∈ B∗ will. This line of

argument reveals that β2 is identified when z has unbounded support. This result follows from Proposition 4 in

Manski and Tamer [39] and is proved in Appendix A.0.1.

The conclusion from the section on bounds is therefore that while certain features of the model may be identified

further assumptions are required to identify all the parameters of interest in the model.

4 Distributional Assumption I

Section (3.2) demonstrated that the model (A10) under only (A2) is only partially identified. This section and

the next two explore the role of different types of additional information in achieving identification and related

estimation strategies. In this section I add information by assuming that the probability of misclassification is

independent of the other explanatory variables in the model.7 Formally,

P (x = 1|x∗, z) = P (x = 1|x∗) a.e. (16)

This is assumed, for instance, in [27] and [9] and implies that the misclassification rates are completely characterized

by two constants α0 ≡ P (x = 1|x∗ = 0) the “false positive” rate and α1 ≡ P (x = 0|x∗ = 1) the “false negative”

rate which by (A2) must satisfy

α0 + α1 < 1 (17)

7 In a work in progress I explore identification and estimation possibilities when only one of the elements of the z vector is conditionally
independent of x given all the other regressors and x∗.
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Some papers also assume (for instance Card [14]) that α0 = α1 and the problem is referred to as one of symmetric

misclassification but I shall not purse this simplification here. Under (A10),(17) and (16) the expected log likelihood

of {y, x|z} where z is a r dimensional vector valued random variable is

Q0 (a0, a1, b) = E
h
log
³
F y
1 (1− F1)

1−y (1− a1)
x a1−x1 P ∗ + F y

0 (1− F0)
1−y (1− a0)

1−x ax0(1− P ∗)
´i

(18)

Fx∗ = F (b0 + b1x
∗ + b2z) x∗ ∈ {0, 1} (19)

P ∗ (z, a0, a1) =
P (x = 1|z)− a0
1− a0 − a1

=
ξ (z)− a0
1− a0 − a1

(20)

I propose to estimate θ = (a0, a1, b) by maximizing the sample version of (18). The estimation technique is

semiparametric (or perhaps more accurately, quasi-likelihood) in the sense that I do not impose a parametric form

for the distribution of x conditional on z but instead approximate it by a smooth function using non-parametric

methods. The sample objective function is given by

Qn(θ) =
1

n

X
log
³
F yi
1 F 1−yi1 (1− a1)

xi a1−xi1 P̂ ∗i + F yi
0 F 1−yi0 (1− a0)

1−xi axi0 (1− P̂ ∗i )
´
w (zi) (21)

where

P̂ ∗i =
P̂ (x = 1|zi)− a0
1− a0 − a1

(22)

ξ̂(zi) =
nX

j=1

Kh(zj − zi)Pn
k=1Kh (zk − zi)

xj (23)

where ξ̂(zi) is a kernel estimator of P (x = 1|zi), h is a positive smoothing parameter that goes to zero as the

sample size increases, Kh(z) =
1
hrK

¡
z
h

¢
for a given kernel K and w is a weighting function (with compact support

Wz) whose role is discussed below. The estimator θ̂ is then given by

θ̂ = argmin
Θ

Qn(θ) (24)
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4.1 Identification

I state a sufficient condition for identification that essentially requires sufficient variation in the conditional proba-

bility of x∗ given z. In addition, I also require that this relationship be sufficiently different from the relationship

between the response y and z in a sense made clear below. I also state a separate set of more intuitive “Instrumental

Variable”- like conditions that also guarantee identification.

Consider two points θ = (a, b), θ̄ =
¡
ā, b̄
¢
∈ Θ and θ 6= θ̄8 and let κ = (1− a0 − a1) / (1− ā0 − ā1). The critical

condition for identification is that for some B ⊆ Sz with P (B) > 0 and ∀z ∈ B

ξ (z)
£
F1 (b)− F0 (b)− κ

¡
F1
¡
b̄
¢
− F0

¡
b̄
¢¢¤
6= (25)

κ
¡
(1− ā1)F0

¡
b̄
¢
− ā0F1

¡
b̄
¢¢
− ((1− a1)F0 (b)− a0F1 (b))

The result is stated as follows

Lemma 4 Suppose that (A10), (16), (17), (25) hold, (i) β1 6= 0,(ii) V ar[(P (x∗ = 1|z)] > 0 and (iii) E[1, z]0[1, z] >

0. Then, the model is identified

The necessity of (17) is easily seen. In its absence for any θ = (a0, a1, b0, b1, b2)

P (y = 1, x|z, a0, a1, b0, b1, b2) = P (y = 1, x|z, 1− a1, 1− a0, b0 + b1,−b1, b2) (26)

The necessity of the other conditions and the proof for the lemma are detailed in the appendix A.0.1..

There is a simpler set of conditions that guarantee identification that are also perhaps more intuitive since

they are similar to the usual instrumental variable requirements. They rely upon the existence of a variable v

that is unrelated to the response but is related to the misclassified regressor x∗. Specifically, suppose z can be

8At least one component of both a and b must differ, since it can be shown that as long as β1 6= 0 then α is identified if and only if
β is identified. Note that in principle one can deduce whether β1 equals 0 using the results from Lemma (2). In fact if z is discrete,
we can use the standard tests for equality of means.
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partitioned into (v, z2) and b2 into (bv, bz2)such that

C1 βv = 0 so that P (y = 1|x∗, v, z2) = P (y = 1|x∗, z2) (exclusion restriction)

C2 P (x = 1|x∗, v, z2) = P (x = 1|x∗) and that

C3 V ar(P (x∗ = 1|z2 = c, v)) > 0 for some c ∈ Sz2

Lemma 5 Suppose that (A10), (16), (17), C1-C3 hold, β1 6= 0 and E[1, z]0[1, z] > 0 . Then, the model is identified

Identification is achieved here because the variation in ξ(z2, v) ensures (25) holds. One case of interest is when

v is another surrogate for x∗. This occurs when there is a repeated (error ridden) measurement on x∗, for instance

from a reinterview survey or some other data source. In this case C2 will be satisfied if, conditional on the truth

and the other regressors, the two measurements are independent of each other. In the sequel I shall assume that

the model is identified although note that identification will need to be established on a case by case basis for

particular distributions of {y, x, z} and choices of F .

4.2 Consistency

The consistent estimation of θ ∈ Θ ⊆ Rr+4 (recall that r is the dimension of z) follows from a standard theorem

on the consistency of M-estimates. The conditions imposed by (17) on the misclassification probabilities imply

that

α0 < P (x = 1|z) < 1− α1 a.e. (27)

Therefore α0 ∈ [0, infz µ (z)] and α1 ∈ [0, 1− supz µ (z)] (where µ (z) ≡ E(x|z)) almost everywhere. In the sample

I impose the restriction that

0 ≤ a0 ≤ inf
Wz

P̂ (x = 1|z) (28)

0 ≤ a1 ≤ 1− sup
Wz

P̂ (x = 1|z)
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As long as P (x = 1|z) is consistently estimable and I incorporate this restriction into the maximization procedure

the asymptotic analysis in this section should remain unaffected because the constraint will be satisfied in large

samples. Therefore, in the subsequent analysis I assume that the constraint is satisfied.

With the parameter set specified to be a compact subset of Rr+4 with the restrictions above we can deduce

the consistency of θ̂ defined in (24).

Theorem 6 Suppose that (A10), (16), (17), (25), and D1-D3 hold. Suppose in addition that (i) Θ is compact

and (ii) α0 < supz P (x = 1|z) < 1− α1. Then

θ̂ → θ0

The result follows from Theorem 2.1 and Lemma 2.9 of Newey and McFadden [42] and the proof is detailed in

Appendix A.0.4.

4.3 Asymptotic Distribution

The asymptotic distribution of the estimator θ̂ follows from an application of the distribution theory for two-step

semiparametric estimators as covered for instance in Newey and McFadden [42]. I show that θ̂ converges at the

usual parametric rate
√
n so that the nonparametric estimation of P (x = 1|z) does not lead to a slower rate of

convergence. Although the nonparametric estimation does not affect the rate of convergence I find that it does,

however, affect the covariance matrix of the limiting distribution.

An important caveat is that the model with no measurement error cannot be analyzed using the asymptotics

derived here since the first order conditions are not defined for α0 = 0 or for α1 = 0.9 More generally, this is a

consequence of the requirement that the true parameter values lie in the interior of Θ. Relaxing this assumption

is possible and has been carried out by Andrews [3] and also in the fully parametric MLE setting by Geyer [25]

but I do not consider this generalization here. With the assumption that the truth lies in the interior of Θ for

9To see this algebraically, note that the first order order conditions in (97) and (98) have α0 and α1 as denominator terms.
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large enough sample sizes the constraint will not be binding with (in fact with probability approaching one) I shall

subsequently ignore the constraints (28) in deriving the asymptotic distribution.

To fix ideas I state the first order conditions from (24).

∇θQn

³
θ̂
´
=

nX
i=1

q
³
wi, θ̂, γ̂

´
= 0 (29)

γ̂(z) =
1

n

nX
i=1

x̃iKh (z − zi) (30)

where x̃i = [1 xi]
0 so that γ̂ (z) is a kernel estimate of γ0(z) ≡ fz(z)E [x̃|z]. This notational change for the

conditional expectation10 makes for expositional ease in the results that follow . I also adopt the convention

∇xf (x̄) ≡ ∇xf (x)|x=x̄.

The estimator θ̂ is quite naturally viewed as a two-step estimator where I first estimate γ and then estimate

θ by maximizing (24) given the first step estimate γ̂. The basic idea is to deduce the asymptotic distribution

of θ̂ by obtaining its influence function representation, taking into account the first step estimation. Since γ is

infinite dimensional, the asymptotic distribution is derived using large sample theory for two-step semiparametric

estimators.

The first practical problem is that since the objective function contains the reciprocal of the density of z it may

be ill behaved for extreme realizations of z. This is the well-known “random denominator” problem and various

authors have dealt with it using differing approaches. The most common one is to introduce a weighting function

that is zero outside of a bounded set over which the density is strictly positive so that the effect of the density is

“trimmed” to be zero outside a given set. Robinson [46] avoids the problem by using nearest neighbor estimators,

while for instance, [30] employs a variable trimming technique where the amount of trimming is allowed to increase

with sample size. I follow the first approach by introducing a weight function w (z) that is zero outside a closed

and bounded set Wz.

10Now E(x|z) = γ02(z)/γ01(z) = f (z)E [x|z] /f(z)
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As detailed in the appendix, I first obtain an appropriate linearization for the first-order condition q(w, θo, γ)

in γ. In particular there exists a functional D (w, γ) that is linear in γ such that for γ close enough to γ0

kq (w, θ0, γ)− q (w, θ0, γ0)−D (w, γ − γ0)k ≤ C (w) kγ − γ0k2

The conditions below ensure that γ̂ is close enough to γ0 for n large enough in the precise sense that
√
n kγ̂ − γ0k2 →

0

D1 There is a version of γ0(z) that is continuously differentiable of order m(> r) and γ02(z) = fz(z) is bounded

away from 0 on Wz

D2
R
K (u) du = 1, and for all j < m

R
K (u) (

jN
l=1

u)du = 0

D3 The bandwidth h satisfies nh2r/ (lnn)2 →∞ and nh2m → 0 (so that m > r)

D4 There exists a b (w) , ε > 0 such that k∇θq(w, θ, γ)−∇θq(w, θ0, γ0)k ≤ b(w) [kθ − θ0kε + kγ − γ0kε] and

E [b (w)] <∞

D5 θ̂→ θ0 ∈ int (Θ)

Theorem 7 Assume (A10),(17),(16),(D1),(D2), (D3),(D4) and (D5) and δ is as defined in Appendix A.0.5.
Then √

n
³
θ̂ − θ0

´
⇒ N

³
0, G−1θ ΩG

−10
θ

´
where

Ω = V ar [q (w, γ0) + δ (w)] (31)

Gθ = E [∇θq(w, θ0, γ0)]

The first two assumptions ensure that the bias is order hm and in the case where r > 2 will require the

use of higher order kernels. The third assumption ensures n1/4 convergence for kγ̂ − γ0k . Having obtained

the linearization, I calculate the influence function representation for the linear functional D (w, γ), combine the
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results obtained to deduce a influence function representation for
√
n
³
θ̂ − θ0

´
and then apply a standard Central

Limit Theorem to obtain the limiting distribution (see Appendix A.0.5 for the proof). The standard errors can

be obtained analytically, by first constructing an estimate of δ, and then forming the sample versions of (31).

5 Distributional Assumption 2

The previous section achieved identification by assuming that the probability of misclassification did not depend

upon the other explanatory variables (z) in the model. However, there is evidence, as reported in Section 2,

that measurement errors are in fact correlated with individual characteristics, some of which may well be part of

the z vector. As noted earlier, once we allow for such dependencies, the model is no longer identified without

further assumptions. In this section we allow the misclassification probabilities to depend upon other explanatory

variables but assume that we have available another surrogate for x∗. This additional information is enough

to achieve point identification and we estimate the model using a (parametric and semi-parametric) likelihood

framework.

Let {x1, x2} denote the two replicated measurements (or more generally surrogates) for x∗. As before, we

require that, conditional on the truth and the other explanatory variables, the surrogates provide no further

information about the response variable. Specifically, (A10) is modified to

P (y = 1|x∗, x1, x2, z) = F (β0 + β1x
∗ + β2z) (A100)

We also limit the probability of misclassification, now conditional on the other regressors, by requiring that for

each replicate

P (xj = 1|x∗ = 0, z) + P (xj = 0|x∗ = 1, z) < 1 a.e.Pz j = 1, 2 (A20)

Finally, I require that the two surrogates are independent conditional on the truth (x∗) and the other explanatory
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variables. Formally, it is sufficient to assume

P (x1|x2, x∗, z) = P (x1|x∗, z) (A5)

I do not assume that the surrogates are identically distributed conditional on {x∗, z}. While (A5) does restrict

the nature of the dependency between the two surrogates, it is sufficiently weak so as to allow them to be uncon-

ditionally dependent and hence allows for correlation across surrogates. Under (A100),(A20),(A5) the conditional

likelihood is given by

P (y, x1, x2|z) =

F (β0 + β2z)
y (1− F (β0 + β2z))

1−y P (x1|x∗ = 0, z)P (x2|x∗ = 0, z)P (x∗ = 0|z)

+F (β0 + β1 + β2z)
y (1− F (β0 + β1 + β2z))

1−y P (x1|x∗ = 1, z)P (x2|x∗ = 1, z)P (x∗ = 1|z)

I next introduce some notation. Let η be a five dimensional vector of functions mapping from the support of z to

the open unit interval and define the parameter as α ≡ (b, η) and as before w = (y, x1, x2, z) . The log likelihood

for the model as a function of α is given by

l (w,α) = log{(1− F (b0 + b2z))
1−y (F (b0 + b2z))

y (32)³
η1(z)

x1 (1− η1(z))
1−x1

´³
η3(z)

x2 (1− η3(z))
1−x2

´
(1− η5(z))}

+ {(1− F (b0 + b1 + b2z))
1−y (F (b0 + b1 + b2z))

y

¡
η2(z)

1−x (1− η2(z))
x1
¢ ¡
η4(z)

1−x2 (1− η4(z))
x2
¢
ηs(z)}

The η are the nuisance parameters and are unknown functions of z. The parameters of interest b belong to B a

compact subset of R3 and η ∈ Λ where Λ is the (potentially infinite dimensional) nuisance parameter space (to

be defined below). The true parameter vector is given by (β, η0) = (β, α0 (z) , α1 (z) , γ0 (z) , γ1 (z) , µ (z)) where
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α0 (z) = P (x1 = 1|x∗ = 0, z), α1 = P (x1 = 0|x∗ = 1, z), γ0 (z), γ1 (z) are defined similarly for the second surrogate

and µ (z) = P (x∗ = 1|z) .

5.1 Identification

The approach followed is similar to Section 4.1. The usual identification condition for MLE requires that for any

α 6= α0

P {(y, x1, x2, z) : P (y = 1, x1, x2|z, α0) 6= P (y = 1, x1, x2|z, α)} > 0 (33)

Intuitively, since each element of η represents a probability, we expect that changing any element will lead to

(33) holding, particularly if all outcomes occur with positive probability. We, however, need to rule out possible

recombinations of (b, η) that yield the same observed probabilities P (y, x1, x2|z) . I state two conditions under

which the model is identified which, as before, depend upon sufficient variation in the distribution of x∗conditional

on the other explanatory variables. Another, perhaps more intuitive way to understand the result is to count

equations and unknowns and observe that, for instance when z has k points of support, we have 7k equations in

3 + 5k unknowns.

I state two sets of conditions under which the model is identified. The first, more general, one requires that

for any α 6= ᾱ ∃ B ⊆ Sz, with P (B) > 0 such that ∀z ∈ B

F0 (b) (1− η5 (z)) + F1 (b) η5 (z) 6= F0
¡
b̄
¢
(1− η̄5 (z)) + F1

¡
b̄
¢
η̄5 (z) (34)

Lemma 8 Consider the model given by (A100),(A20) and (A5). Suppose in addition that (i) β1 6= 011,(ii) E [zz0] >

0 and (34) holds. Then, the model is identified.

I can also state a set of conditions related to the instrumental variable conditions discussed in Section 4.1.

Assume that C1-C3 from that section hold for each measurement. Then the crucial condition is that for any α, ᾱ

11As noted before, we could use the results from Lemma 2 to learn whether β1 = 0.
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there exist three points v1, v2, v3 such that

η5 (z, v1)− η5 (z, v2)

η̄5 (z, v1)− η̄5 (z, v2)
6= η5 (z, v1)− µ (z, v3)

η̄5 (z, v1)− η̄5 (z, v3)
(35)

Here, as previously, we are placing a restriction on the relationship between x∗ and v that guarantees identification.

This condition will hold for instance if v has unbounded support and µ are the logit or Probit functions.

Lemma 9 Consider the model given by (A100),(A20) and (A5). Suppose β1 6= 0 and C1-C3 and (35) hold. Then,

the model is identified.

I define the estimator as the solution to

min
(b,η)∈B×Λ

1

n

nX
i=1

logP (yi, x1i, x2i|zi, α)

Consider first the case where z is scalar and has a finite support. In this case the parameter vector α is Euclidean

(∈ R3+5k when z has k points of support) and the model can be estimated using standard maximum likelihood

techniques and the large sample properties of the estimator can be derived from the asymptotic theory for fully

parametric maximum likelihood estimation. I do not cover this case here, particularly since the next section

generalizes this model considerably and I study the asymptotic properties of that model in some detail.

Once z is continuous, the η vector can no longer be fully characterized by a finite set of parameters without

placing further restrictions on the nature of the misclassification so we can no longer follow the procedure outlined

immediately above. One alternative is to consider various parametric assumptions on the form of misclassification

and carry out fully parametric likelihood estimation. An alternative technique, explored here, that does not place

such parametric restrictions is sieve estimation. This approach allows us to estimate β without specifying the

effect of z on the misclassification probabilities or on x∗, and thus is in keeping with the spirit of the semiparametric

assumptions of Section 4.
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The basic idea behind sieve likelihood estimation can be summarized quite briefly. Consider a likelihood that

depends upon a parameter belonging to an infinite dimensional parameter space (in our case these are the misclassi-

fication probabilities). Conventional maximum likelihood estimation in this model is often infeasible, inconsistent,

or has extremely slow rates of convergence12 because of the large parameter space over which maximization needs

to be carried out. Sieve estimation carries out the maximization over (an increasing sequence of) much smaller

spaces that approximate the large space as the sample size becomes large. Thus, the infinite dimensional problem

is reduced to a finite dimensional one and under a suitable set of conditions, the estimates obtained are consistent

at the parametric rate
√
n, asymptotically normal and achieve the semiparametric efficiency bound.

Sieve estimation is not, however, the only possible estimation scheme in a likelihood model with infinite

dimensional parameters. I have also experimented with profile likelihood maximization following the method

of Severini and Wong [48]. Their proposed estimation technique involves first concentrating out the unknown

functions by maximizing the likelihood locally around each data point zi and then maximizing the concentrated

likelihood to obtain the estimate of β. The proposed method is intuitively appealing but computationally intensive

in this instance. In order to carry out the routine, we need to carry out n maximizations for each evaluation of

the likelihood function at a candidate point b. For this reason, I did not pursue this approach at any length and

do not discuss its asymptotic properties.13

Sieve estimation14 for likelihood functions (and extremum estimators in general) was explored in a series of

papers beginning with Geman and Hwang [24], Gallant and Nychka [23], Birge and Massart [7], and Shen and

Wong [50]. Shen [49] provides theory for the asymptotic normality and efficiency for smooth scalar functions

of the sieve estimates (“plug in” estimators), while White and Wooldridge [54] and Chen and Shen [19] develop

theory for weakly dependent data.

12Grenander [26] provides examples where the MLE is inconsistent or nonexistent. See Severini and Wong [55] for conditions under
which MLE in this non-sieve context is consistent and efficient.
13See also Vaart [41] for a development of the large sample theory for this case. Neither paper, however, addresses sieve profile

likelihood estimation.
14The term was introduced by Grenander [26].
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I first define the nuisance parameter space Λ. It is given by H5 so that each of the five nuisance parameters

belongs to the set H which is given by

H =

(
f ∈ Cs (Sz) : 0 < f(z) < 1 sup

x,y∈SZ ,x6=y

f (s) (x))− f (s) (y))

|x− y|γ ≤ cf <∞
)

(36)

I assume for simplicity that z is a scalar and has as its support a closed interval Sz in R. The scalar assumption is

costless but the support simplification is needed to apply some of the approximation results in the literature. The

relevant measure of the size of a function space here depends on its degree of smoothness. I shall consider functions

that are s times continuously differentiable and whose sth derivative is Lipschitz of order γ and s+ γ > .5. Since

I am not particularly concerned with nonsmoothness in the misclassification rates I allow for the functions to be

twice continuously differentiable and Lipschitz of order 1 so that s + γ = 3. This is a sufficiently smooth class

and is well approximated by a variety of sieves.

Finally, define a sieve Λn = Π5k=1Hnk, a sequence of approximating spaces, that approximates Λ as the sample

size gets large for some choice of Hnk. I have experimented with splines, trigonometric (‘Fourier’) series and neural

network sieves (for their definition see Appendix A.0.3). Given our choice of sieve, I define the estimator15

α̂ ≡
³
b̂, η̂
´
= arg max

B×Λn

1

n

nX
i=1

l(wi, b, η) (37)

5.2 Consistency

In this section I derive a rate of convergence result for α̂. The result will depend on the size of the sieve and how

well it approximates the parameter space. I assume that the sieve approximates the parameter space in the sense

that for every α ∈ B ×Λ there exists a Πnα ∈ B ×Λn such that kα−Πnαk→ 0 as n→∞ (for an appropriately

chosen metric16). This approximation error kα−Πnαk is completely deterministic and has been calculated in the

15 In a work in progress we also explore estimation using the log likelihood conditional on {z, x2} and using an approach similar to
Section 4 to eliminate P (x∗|z, x2) from the likelihood.
16We use the Fisher metric, which is defined in Appendix A.0.7.
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literature for various choice of sieves, norms and parameter spaces. As is intuitive, the greater the the number of

terms in (88) the smaller the approximation error.

In order to measure the size of the sieve I use the L2 metric entropy with bracketing. Let F = {q (·, θ) : θ ∈ Θ}

be a set of real valued functions defined over the support of a random variable z and having finite second moments.

Define the norm of this space to be the L2(P ) norm, i.e. kq (z, θ1)− q (z, θ2)k22 = E [f (z, θ1)− f (z, θ2)]
2 for some

probability measure P. Given any two functions l and u, the bracket [l, u] is the set of all functions h such that

for all z l(z) ≤ h (z, θ) ≤ u(z). An ε bracket is a bracket [l, u] such that ku− lk2 < ε. The bracketing number

N[] (ε, F ) is the minimum number of ε brackets needed to cover F by which we mean that for any h ∈ F there

exists a bracket {lj , uj} such that lj(z) ≤ h (z, θ) ≤ uj(z) almost everywhere. The logarithm of the bracketing

number is known as the L2 metric entropy with bracketing.17 As is intuitive, the L2 metric entropy of the sieve

increases with the number of terms rn. Consequently, approximation errors can be made small only at the cost

of increasing the entropy of the sieve class. This is analogous to the bias-variance trade-off familiar from the

literature on nonparametric estimation.

I follow Chen and Shen [19] with the simplification that the data are independent and identically distributed. A

linear approximation to the likelihood is used to study the asymptotic properties of the estimator. Let dlα0 (w, ᾱ)

denote the pathwise derivative of l at the point α0 in the direction ᾱ . More generally, for each w, dlα0 (w, ·) is a

linear mapping from B × Λ to the reals and when evaluated at a point ᾱ =
¡
b̄, η̄
¢
is given

dlα0 (w, ᾱ) =
∂l (w, b)

∂b

¯̄̄̄0
b=β0

¡
b̄
¢
+

5X
j=1

Aj(w, β0, α0)
¡
η̄j
¢

(38)

The specific form of the terms Aj is detailed in the appendix (they are the partial derivatives of the log likelihood

treating η as the variable of differentiation). With some abuse of notation I shall use dlα0 (w) to refer to the

vector
µ

∂l(w,b)
∂b

¯̄̄0
b=β0

, A (w,α0)
0
¶0
≡ (dlβ(w)0, dlη(w)0)0 and refer to l (w,α) − l (w,α0) as the criterion difference

17See Vaart [52] , Pollard [45], or Vaart and Wellner [53] for a comprehensive treatment.
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which is approximated in the sequel dlα0 (w,α− α0) . I assume the following conditions which are sufficient for

consistency of the parameter estimates
³
b̂, η̂
´
.

F1 Let Fn = {l (w,α)− l (w,α0) : kα− α0k < δ,α ∈ B × Λn} There exists a constant C2 and a sequence δn ∈
(0, 1) decreasing to 0 such that

δn = sup

(
δ > 0 :

Z δ2

δ

q
logN[] (ε, Fn)dε ≤ C2n

1/2

)

F2 For all small ε > 0 there exists a C1 such that

sup
{α∈B×Λn:kα−α0k<δ}

V ar (l (w,α)− l (w,α0)) ≤ C1ε
2

F3 The matrix E
£
dlα0 (w) dlα0 (w)

0¤ is positive definite and λmax < c1 and λmin > c2 almost everywhere.

F4 E
h
sup{α∈Λn:kα−α0k<δ} kdlα0 (w)k

i2
<∞

We can now state the basic result.

Theorem 10 Consider the Model given by (A100),(A20), and (A5) and assume (33), F1-F4 hold. Then,

kα̂− α0k = Op (max{kα0 −Πnα0k , δn})

The result follows from a suitable adaptation for i.i.d. data of Theorem 1 of Chen and Shen [19] and the

verification of the conditions for the proof are relegated to Appendix A.0.7. Condition F1 controls the size of

the criterion difference over the the sieve and for the sieves we consider in this paper δn is of the order r
1/2
n n−1/2.

F2 places restrictions on how fast the variance of the log difference declines while F3 and F4 ensure that the log

likelihood satisfies a continuity condition.

5.3 Asymptotic Distribution for b̂

The asymptotic distribution of the finite dimensional part of the sieve estimator α̂ is obtained by studying a linear

approximation to the log likelihood. This approximation is shown to satisfy an essential equicontinuity property. I
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then characterize the asymptotic distribution of
√
n
³
b̂− β0

´
using the Cramer-Wold device (i.e. by characterizing

the limit distribution of
√
nλ0

³
b̂− β0

´
for an arbitrary nonzero vector λ) and the Riesz Representation Theorem.

Let v∗ denotes the Riesz representer18 for the linear functional f (b, η) = λ0b, then I verify conditions such that

√
nλ0

³
b̂− β0

´
can be expressed as a normalized average of i.i.d random variables and an asymptotically negligible

term. In particular, I show that

√
nλ0

³
b̂− β0

´
= n−1/2

nX
i=1

dlα0 (wi, v
∗) + op(1) (39)

Asymptotic normality will then follow under standard conditions from the application of a central limit theorem

for i.i.d variables. In order to state the necessary conditions for the result I introduce some notation. Define the

remainder term

r (w,α− α0) ≡ l (w,α)− l (w,α0)− dlα0 (w,α− α0) (40)

Consider a perturbation around a point α ∈ B × Λn as α∗ (α) = α + εnu
∗ where εn = o

¡
n−1/2

¢
and u∗ = ±v∗.

The Riesz representer v∗ satisfies19

kv∗k2 = sup
{α∈B×Λ:kα−α0k>0}

¡
λ0 (b− β0)

¢2
kα− α0k2

(41)

and an explicit formula for v∗ results from an appropriate characterization of this maximization problem (see

below). In what follows denote Pn (f) = n−1 (Σif(xi)−E [f(x)]) and K (α0, α) = E [l (w,α0)− l (w,α)]

I now state conditions sufficient for
³
b̂− β0

´
to converge at the

√
n rate and have a limiting normal distribution.

Let the convergence rate of kα̂− α0k be op (δn).

18 If {Λ, <,>} is a Hilbert space and f is a bounded linear function from Λ to R, then by the Riesz Representation Theorem, there
is a unique member v∗ of Λ such that f(α) =< α, v∗ > for each α in Λ. v∗ is referred to here as the Riesz representer (see for instance
Debnath and Mikusinski [20]).
19See Ai and Chen [1].
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G1
sup

{α∈B×Λn:kα−α0k<δn}
Pn (r (w,α− α0)− r (Πnα

∗ (α)− α0)) = op
¡
n−1

¢
G2

sup
{α∈B×Λn:kα−α0k<δn}

[K (α0,Πnα
∗ (α))−K (α0, α)]−

(1/2)
h
kΠnα∗ (α)− α0k2 − kα− α0k2

i
= o

¡
n−1

¢
G3

sup
{α∈B×Λn:kα−α0k<δn}

kα∗ (α)−Πnα∗ (α)k = O
¡
δ−1n ε2n

¢
G4

sup
{α∈B×Λn:kα−α0k<δn}

Pndlα0 (w,α∗ (α)−Πnα∗ (α)) = op
¡
n−1

¢
G5

sup
{α∈B×Λn:kα−α0k<δn}

Pndlα0 (w,α− α0) = op

³
n−1/2

´
Theorem 11 Consider the Model given by (A100),(A20), and (A5) and suppose the sieve estimate has a rate of

convergence kα̂− α0k = op (δn) . Then,

√
n
³
b̂− β0

´
⇒ N (0, V ar (lα0 (w, v

∗))) (42)

The result is an application of Theorem 1 of Shen [49]. G1 is very much like an equicontinuity condition

that ensures that the linear approximation is small enough to ensure
√
n convergence while the next condition

stipulates that the limiting objective function is roughly quadratic (in the Fisher metric) around the truth. The

other conditions are suitable generalizations of the requirement in the finite dimensional case that α0be an interior

point of the parameter space. To see this, note that if α0 is an interior point of the Euclidean space Λ then for εn

small enough α∗ will also be in the sieve Λn so that the difference in (G3) and (G4) will be identically zero. The

details of the proof are in Appendix A.0.8 but I discuss below the calculation of the efficient score function and

the Riesz representer.
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5.3.1 Calculation of the Riesz representer

I calculate the Riesz representer v∗ in two steps. I first compute the least favorable directions for the model using

the results in Begun, Hall, Huang and Wellner [4] as stated in Severini and Wong [48]. I then characterize the

maximization problem in (41) using the least favorable directions to obtain v∗ following the method outlined in

Ai and Chen [1].

The calculation of an explicit formula for v∗ in general can be quite difficult. However, the likelihood in

(32) falls within the category of what are called conditionally parametric models for which an explicit formula is

available. Denote by B̄× Λ̄ the linear completion of B×Λ under the Fisher norm (we need the linear completion

in order to be able to apply the projection theorem for Hilbert spaces). Following Begun et al. [4]20 I can compute

the least favorable direction for β (component by component j = 1, 2, 3) as

δj∗(z) = E

µ∙
∂2l (w,α0)

∂ηdη0

¯̄̄̄
z

¸¶−1
E

∙
∂2l (w,α0)

∂η∂bj

¯̄̄̄
z

¸
(43)

The intuition for this result comes from examining the nature of the problem of projecting the scores for bj onto

the space spanned by the components of the scores for η.

Using δ∗(z) =
¡
δ1∗, .., δ3∗

¢
to represent the 5×3 matrix of the least favorite directions I next characterize (41).

After a few calculations (see Appendix) we can show

kv∗k2 = λ0E
h
l̃β0 (w) l̃β0 (w)

0
i−1

λ (44)

≡ λ0Ĩ−1λ

where

l̃β0 (w) =
¡
dlβ(w)− δ∗(z)0dlη(w)

¢
(45)

20A detailed exposition of these calculations (and much more) is also available in Bickel et al. [6]·
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is the efficient score function for β. This implies that

v∗ =
³
Ĩ−1λ,−δ∗(z)Ĩ−1λ

´
(46)

so that under the conditions above we can express

√
nλ0

³
b̂− β0

´
= n−1/2

nX
i=1

h
dlβ(wi)

0Ĩ−1λ− dlη(w)
0δ∗(z)Ĩ−1λ

i
+ op(1) (47)

=
³
λ0Ĩ−1

´
n−1/2

nX
i=1

£
dlβ(wi)− δ∗(z)0dlη(w)

¤
+ op(1)

=
³
λ0Ĩ−1

´
n−1/2

nX
i=1

l̃β0 (wi) + op(1)

so that

√
nλ0

³
b̂− β0

´
⇒ N

³
0, λ0Ĩ−1λ

´
(48)

since this holds for any non-zero vector λ,we have that

√
n
³
b̂− β0

´
⇒ N

³
0, Ĩ−1

´
(49)

A consistent estimate of the efficient Fisher information can be calculated by computing the sample covariance of

the estimated efficient score. The efficient score in turn can be obtained as the residual of the projection of the

score for the β parameters onto the scores for the sieve coefficients.
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6 Monte Carlo Results

6.1 Distributional Assumption I

In this sub-section I use a set of Monte Carlo simulations to illustrate the estimator and study its small sample

properties. The model consists of

P (y = 1|x∗, z) = Φ (β0 + β1x
∗ + β2z) (50)

I specify P (x∗ = 1|z) as a logit (I also experimented with a Probit and a simple distribution function for

discrete z). I carry out numerical optimization of (21) in MATLAB using a sequential quadratic programming

method. Throughout, (β0, β1, β2) is set to (0,−1, 1) . Table (3) displays the results for different sample sizes

as the misclassification problem increases. Table (4) displays the same statistics for the case when there exists

a variable v that satisfies assumptions C1-C3. In both tables, for the misclassification rates considered and for

moderate sample sizes, the estimator seems well behaved. The standard errors roughly halve when we quadruple

the sample size reflecting the
√
n convergence rate of the estimator. We also obtain similar results with different

choices for the support of z. For the first two tables z is discrete (taking on three values) while for the next two

it is continuous (uniform on [−1, 1] and standard normal respectively). In the case where z is continuous we need

to use a first step kernel estimator to estimeate P (x = 1|z) and we use a locally linear regression for this purpose.

The results are somewhat more favorable to the estimator when z has a rich support which jibes with the intuition

that a bigger support of z in essence adds more information (or moment conditions in the naive counting equations

and unknowns approach).

6.2 Distributional Assumption 2

In this sub-section I illustrate the performance of the estimator under the second set of distributional assumptions

and study its small sample properties. As before, the binary response model is given by (50) and I specify z to
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be uniform over [−2, 2]. Each of the functions (η1 (z) , ..., η5 (z)) is a logit (we also experimented with a Probit

specification and obtained similar results) and use as our sieve a spline which is locally cubic over [−2, 2]. The

theory does not provide an exact number of terms for the approximation and for the samples considered here I

use 1 to 3 terms. As before, (β0, β1, β2) = (0,−1, 1). The results are in Table (7). As might be expected, they

are less precise than in the previous set of simulations although for moderately large sample sizes and moderate

misclassification rates the estimator performs reasonably well. 21

7 Empirical Illustration

As an empirical illustration I examine the effect of union status on the probability of receiving health insurance22

using data from the Current Population Survey (CPS). There is a substantial literature on the prevalence of

measurement error in union status (see for instance Card [14] and the review in Bound, Brown and Mathiowetz

[12]) although somewhat less is known about the effect of this misclassification on estimated parameters.23

The February 1999 CPS Basic Monthly Questionnaire (BMS) asked information on union status for all respon-

dents in their fourth and eighth months (the outgoing rotation groups) while the Contingent Worker Supplement

to the questionnaire recorded information on the receipt of health insurance and whether or not it was employer

provided. I restrict attention to employed individuals between the ages of 18 and 60 who are not self-employed or

engaged in agricultural work and the summary statistics for the data set are given in Table (9). Overall about

18% of the sample belonged to a union or employee association24 and 70% had health insurance at the time of the

survey. The results from a direct Probit estimation are given in Table (10) and those for the estimation method

proposed above are given in Table (11) with the corresponding results for marginal effects for both methods given

21All standard errors for the simulations are bootstrapped with the number of bootstrap replications set to 1000.
22For work on the effect of unionization on the provision of health insurance and other fringe benefits see for instance Freeman [22]

and Belman and Heywood [5].
23Card [14] studies the effect of union status on wages that explicitly accounts for the presence of measurement error in union status

in the context of a linear model. The study assumes that misclassification rates are symmetric and independent of other regressors in
the model.
24The sample also includes some workers (less than 1.5% of the sample) who do not belong to a union but whose jobs are covered

by a union or employee association contract. The results are robust to their inclusion in the union category.
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in Table (14). The point estimate for union status is about 26% higher under the estimation method discussed

above, although the confidence interval is considerably wider than that for the usual Probit. The point estimates

and standard errors for the remaining coefficients are roughly comparable across the two methods. The point

estimate of the marginal effect of union status is about a third higher under the method that takes the misclassifi-

cation rates into account, although again here the corresponding standard errors are approximately twice as large,

thereby reducing the t-statistic (for testing the null of no effect) by about a fifth.

I also implement the estimator obtained under the "instrumental variable" conditions by constructing another

surrogate for union status by matching two consecutive February CPS data sets. The February 2000 CPS

BMS again asked the union status question to households in the outgoing rotation groups and the Job Tenure

Supplement asked respondents how long they had been working at their current job and whether they had changed

occupations. I then have plausibly two self-reported measures of union status for those individuals who were in

their fourth month of the survey in February 1999 and who did not change jobs during the next twelve months.

Individuals were matched using the household identifier, line number, household number, race and sex and we

obtained a match rate of about 62% which is line with what we would expect from previous work. We also

imposed age consistency criteria without altering the match rate to any significant degree. 25 The results from

the estimation are quite similar to the results from the first estimation method and are displayed in Table (12).

Table (13) illustrates the implementation of the estimator derived in Section 5 using a neural network sieve. Here,

unlike the previous tables, I allow for arbitrary relationships between the probability of misclassification and the

other explanatory variables. The point estimate for union status is almost 25-50% higher than obtained from the

previous estimation methods and the remaining coefficients also differ from previous estimates by an average of

30%. The standard errors for union status differ from the Probit standard errors by 18-60% under the various

estimation methods considered. Finally, the marginal effect of union status on health benefits for the last

method is reported in Table (14) and is roughly 60% higher than that from the Probit with approximately the

25For more information on matching individuals across CPS surveys see Madrian and Lefgren [37].
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same standard error.

8 Conclusion

The evidence on measurement error in typical data sets suggests that it does not satisfy the independence as-

sumptions usually required by error correction techniques in non-linear models. This paper looks at the effect of

relaxing these assumptions in the context of a simple non-linear model with a simple type of measurement error.

Section 3 shows that the model is only partially identified under a minimal set of assumptions and derives sharp

bounds for the parameters of interest. I then show that the model is identified without further information the

misclassification is independent of the other regressors in the model and develop
√
n consistent and asymptotically

normal semiparametric estimators in this situation. However, when the misclassification probabilities to depend

on the other regressors, as is suggested by the empirical evidence on the issue, Section 5 shows that the model

can still be estimated as long as we have another surrogate for x∗. I develop a semiparamatric estimator using

the method of sieves that allows the misclassification probabilities to depend arbritrarily (albeit smoothly) on the

other regressors in the model but still attains the parametric rate of convergence.

In future work, it would be interesting to extend the framework to allow for unknown functions F and to models

other than the binary choice model such as quantile regression. It is also of independent interest to formulate

tests to detect the presence of misclassification (i.e. testing when the parameters may lie on the boundary of

the parameter space) and more importantly, to apply this framework to answer empirical questions of practical

import.
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A Appendix

A.0.1 Proofs for Non-Parametric Bounds

In the subsequent arguments all inequalities hold conditional on z. We first collect some results that will prove
useful in the sequel.

Lemma 12 Define

P (x = 1|x∗ = 0) ≡ α0(z) (51)

P (x = 0|x∗ = 0) ≡ α1(z) (52)

P (x∗ = 1|z) = p(z) (53)

γ (z) ≡ P (x∗ = 1|x = 1, z) = (1− α1) p

α0 (1− p) + (1− α1) p
(54)

δ (z) ≡ P (x∗ = 1|x = 0, z) = α1p

(1− α0) (1− p) + α1p

Then under (A2)
γ(z) > δ(z) a.e. z (55)

Proof. From (A2) and suppressing the dependence on z

1− α1 > α0 (56)

⇒ (1− p) (1− α1) > (1− p)α0

⇒ (1− α1) > (1− p)α0 + (1− α1) p

⇒ 1− α1 > η

where
η ≡ P (x = 1) (57)

so that

1− α1 − η + α1η > α1η (58)

⇒ (1− α1) (1− η) > α1η

⇒ γ =
(1− α1) p

η
>

α1p

(1− η)
= δ

Proof. Proof of (5)
Using Bayes Rule

m1(z) = γ (z)m∗1(z) + (1− γ (z))m∗0(z) (59)

m0(z) = δ (z)m∗1(z) + (1− δ (z))m∗0(z) (60)

First consider the case where g1(z) = 1. Both (59) and (60) are linear combinations of {m∗1,m∗0} and from Lemma
12 we know that γ > δ. Then we must have that

m∗1(z) > m∗0(z) (61)
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This in turn implies that

m∗1 ≥ max {m1(z),m0(z)} = m1(z) (62)

m∗0(z) ≤ min {m0(z),m1(z)} = m0(z) (63)

A similar argument applies to the case where g0(z) = 1.
In order to show the bounds are sharp we need to characterize the solutions {m∗1,m∗0} to the equations∙

γ 1− γ
δ 1− δ

¸−1 ∙
m1

m0

¸
=

∙
m∗1
m∗0

¸
(64)

as a function of {α0, α1, p,m1,m0} (we suppress dependency on z but note that the bounds are conditional on z).
The solution to (64) under (A2) and 0 < p < 1 is given by

m∗1(α0, α1, p) = (1− α0)

µ
1 +

α0
(1− α0 − α1) p

¶
m1 + α0

µ
1− 1− α0

(1− α0 − α1) p

¶
m0 (65)

m∗0(α0, α1, p) =
(1− α0 − p (1− α0 − α1)) (1− α1)m0

(1− p) (1− α0 − α1)
− (α0 (1− p) + (1− α1) p)α1m1

(1− p) (1− α0 − α1)
(66)

We next collect a few useful results.

Lemma 13 Under (A2) and 0 < p < 1 (65) and (66) are well defined and continuous in {α0, α1, p}. Assume
1 > m1 > 0,1 > m0 > 0 Then,

1. m∗1(0, α1, p,m1,m0) = m1, m
∗
0(α0, 0, p,m1,m0) = m0

2. sgn( ∂∂pm
∗
1(α0, α1, p,m1,m0)) = sgn

³
α0(1−α0)

−(1−α0−α1)p2 (m1 −m0)
´
= −sgn (m1 −m0) for α0 > 0

3. sgn( ∂∂pm
∗
0(α0, α1, p,m1,m0)) = sgn

³
α1(α1−1)

(1−α0−α1)(1−p)2
(m1 −m0)

´
= −sgn (m1 −m0) for α1 > 0

4. sgn
³

∂
∂α1

m∗1 (α0, α1, p,m1,m0)
´
= sgn

³
(1− α0)α0

(m1−m0)

(1−α0−α1)2p

´
= sgn (m1 −m0)

5. sgn
³

∂
∂α0

m∗1 (α0, α1, p,m1,m0)
´
= sgn

³³
1 +

(1−2α0)(α1−1)−α20
(1−α0−α1)2p

´
(m0 −m1)

´
= sgn (m1 −m0)

Proof. (1) We fix z and subsequently suppress it as an argument. Consider the case where m1 > m0 > 0 and
consider first the bound [m1, 1). Pick any m̄ ∈ [m1, 1). We will show that there exists a choice of {α0, α1, p}
and a corresponding m∗0 (α0, α1, p,m1,m0) ∈ (0,m0] such that m∗1 (α0, α1, p,m1,m0) = m̄. We shall suppress the
dependence of the functions on {m0,m1} from now on

First choose ε̄ ∈ (0, 1) and p̄ ∈ (0, 1) such that

p̄+ ε̄− 1
1− p̄ε̄

>
m1 −m0

m0
(67)

This ensures that there exists some x ∈ (0, 1− ε̄) such that

m∗0 (x, ε̄, p̄) > 0 (68)

Such an x satisfies

xp̄+ (1− p̄) (1− ε̄) <
m0 (1− ε̄)

(1− ε̄)m0 + εm1
(69)
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Consider the function

g (ε, p) =
1

p

µ
m0 (1− ε)

(1− ε)m0 + εm1
− (1− p) (1− ε)

¶
(70)

Note that g is decreasing in p for any ε ∈ (0, 1) . For any (ε, p) we then have that

m∗0(x, ε, p) > 0⇐⇒ x < g (ε, p) (71)

Next, observe that m∗1(0, ε, p) = m1 for any (ε, p) and m∗1 (·, ε, p) is continuous and increasing and is onto [m1, 1)
for 0 < α0 < 1− ε (see previous lemma). Then, there exists an c(ε̄, p̄) such that

m∗1(c(ε̄, p̄), ε̄, p̄) = m̄ (72)

If
g (ε̄, p̄) > c(ε̄, p̄) (73)

then by (71)
m∗0 (c(ε̄, p̄), ε̄, p̄) ∈ (0,m0) (74)

and we are done.
Consider, however the case where c(ε̄, p̄) > g (ε̄, p̄). Since for any a0 ∈ (0, 1− ε̄) there exists a p such that

m∗1 (α0, ε̄, p) = m̄ there must exist a p̃ such that m∗1 (g(ε̄, p̄), ε̄, p̃) = m̄ and since m∗1 is decreasing in p (for
fixed a0, α1) p̃ < p̄. This in turn implies that g (ε̄, p̃) > g (ε̄, p̄) = c (ε̄, p̃) so that m∗1(c(ε̄, p̃), ε̄, p̃) = m̄ and
m∗0(c(ε̄, p̃), ε̄, p̃) ∈ (0,m0)

The proof for the other interval [0,m0] follows analogously. If 0 < m1 < m0 then the bound on m∗1 would be
(0,m1] and for m∗0 would be [m0, 1) by similar arguments as above.

Finally, note that these bounds cannot be improved even if we strengthen (A2) to

P (x = 1|x∗ = 0, z) + P (x = 0|x∗ = 1, z) < κ a.e. z (75)

where κ ∈ (0, 1] ((A2) corresponds to κ = 1)
Proof of Lemma (3)

Proof. Pick any b̄ ∈ R. Choose any b̄0 < minSz
¡
F−1 (m0 (z))− b̄z

¢
and pick any

b̄1 > max
Sz

©
F−1 (m1 (z))− b̄z

ª
−min

Sz

¡
F−1 (m0 (z))− b̄z

¢
This choice of b̄1 satisfies (11). It is easy to see this when the same value of z maximizes and minimizes
the two objects on the right hand side. Now suppose that z1 = argmaxSz

©
F−1 (m1 (z))− b̄z

ª
and z2 =

argminSz
¡
F−1 (m0 (z))− b̄z

¢
. Then, we must have

F−1 (m1 (z1))− b̄z1 ≥ F−1 (m1 (z2))− b̄z2

so that b̄1 > F−1 (m1 (z2))− F−1 (m1 (z2)) . Also, since z2 = argminSz
¡
F−1 (m0 (z))− b̄z

¢
F−1 (m0 (z2))− b̄z2 ≤ F−1 (m0 (z1))− b̄z1

so that ¡
F−1 (m1 (z1))− b̄z1

¢
− F−1 (m0 (z2))− b̄z2 ≥

¡
F−1 (m1 (z1))− b̄z1

¢
−
¡
F−1 (m0 (z1))− b̄z1

¢
so that b̄1 > F−1 (m1 (z1))− F−1 (m1 (z1)) . This shows that β2 ∈ R.
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Next, pick any b1 > maxSz
¡
F−1 (m1 (z))− F−1 (m1 (z))

¢
. Then we can always pick (b0, b2) such that

min
Sz

F−1 (m0 (z)) ≥ b0 + b2z ≥ max
Sz

F−1 (m1 (z))− b1

is satisfied (the acceptable region is given by the parallelogram formed by the four lines with slopes (z1, z2) and
intercepts

©
minSz F

−1 (m0 (z)) ,maxSz F
−1 (m1 (z))− b1

ª
Finally, consider b̄0 ≤ F−1 (m0 (0)) Then, choose a b2

≤ F−1 (m0 (1))− b̄0 and pick b1 such that

b1 ≥ max
©
F−1 (m1 (1))− F−1 (m0 (1)) , F

−1 (m1 (0))− b̄0
ª

to see that any b̄0 ≤ F−1 (m0 (0)) is acceptable. Note that only the last part of the proof relied upon 0 being in
the support of z.

Lemma 14 Suppose z in (A10) has unbounded support. Then β2 is identified
Suppose that b ∈ B∗ but b2 6= β2. Then

P (V (b)) ≥ P [E (y|x, z) < F (b0 + b2z)]

≥ P [F (β0 + β1 + β2z) < F (b0 + b2z)]

= P [(β2 − b2)z < (b0 − β0)− β1] > 0

because z has unbounded support. But this implies b /∈ B∗. Therefore b2 = β2 for all b ∈ B∗

A.0.2 Identification Results

Lemma 15 Suppose that (A10), (16), and (17) hold, (i) β1 6= 0,(ii) V ar[(P (x∗ = 1|z)] > 0 and (iii) E[1, z]0[1, z] >
0. Then, {α0, α1} is identified if and only if β is identified

Proof. ” ⇒ ”Suppose {α0, α1} are identified. Then it follows that {γ, δ} as defined in (54) are identified.
Next, suppose there exist b̄ such that

P (y = 1|x, z, α0, α1, β) = P (y = 1|x, z, α0, α1, b̄) (76)

Then, using the notation introduced in Lemma (12) and using F̄s ≡ F
¡
b̄0 + b̄1s+ b̄2z

¢
as shorthand

(F1 − F̄1)γ (z) + (F0 − F̄0) (1− γ (z)) = 0 (77)

(F1 − F̄1)δ (z) + (F0 − F̄0) (1− δ (z)) = 0 (78)

which in turn imply
(F1 − F̄1)(γ (z)− δ (z))− (F0 − F̄0) (γ (z)− δ (z)) = 0 (79)

so that
(γ (z)− δ (z))

£
(F1 − F̄1)− (F0 − F̄0)

¤
= 0 (80)

By Lemma (12) we know γ (z) > δ (z) so that we must have

(F1 − F̄1) = (F0 − F̄0) (81)

which implies (via 77) that
F0 = F̄0 (82)

so that under (iii) we must have
b0 = β0 and b2 = β2 (83)
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Finally, we also have from (81)
F1 = F̄1 (84)

so that in conjunction with (83) we must have
b1 = β1 (85)

”⇐ ”
Suppose β is identified but the model is not completely identified. Then, it must be that there exists an

(a0, a1) 6= (α0, α1) such that
P (y = 1|z, α0, α1, β) = P (y = 1|z, a0, a1, β)

so that
F0 (1− γ̄) + F1γ̄ = F0 (1− γ) + F1γ

almost everywhere. This, given (i) implies
γ (z) = γ̄ (z) (86)

and given (ii) there exist at least two values of z with ξ (z1) 6= ξ (z2) and for each z

ξ (z)− a0
1− a0 − a1

=
ξ (z)− α0
1− α0 − α1

so that
ξ (z1)− a0
ξ (z2)− a0

=
ξ (z1)− α0
ξ (z2)− α0

which in turn implies that α0 = a0 and a1 = α1 follows.
Proof of Lemma 4

Proof. Suppose that the model is not identified, then there exist θ, θ̄ and θ 6= θ̄ such that

P
¡
y, x|z, θ̄

¢
= P

¡
y, x|z, θ̄

¢
a.e.

which in turn implies that
P (y = 1|z, θ) = P

¡
y = 1|z, θ̄

¢
a.e. (87)

Recall that
P (y = 1|z, θ) = (F0 (b) (1− ξ (z)− a1) + F1 (b) (ξ (z)− a0)) / (1− a0 − a1)

so that (87) implies that

(F0 (b) (1− ξ (z)− a1) + F1 (b) (ξ (z)− a0))¡
F0
¡
b̄
¢
(1− ξ (z)− ā1) + F1

¡
b̄
¢
(ξ (z)− ā0)

¢ = 1− a0 − a1
1− ā0 − ā1

so that

ξ (z) [F1 (b)− F0 (b)− κ (F1 (b)− F0 (b))] =

κ
£
(1− ā1)F0

¡
b̄
¢
− ā0F1

¡
b̄
¢¤
− [(1− a1)F0 (b)− a0F1 (b)] a.e.

which cannot hold by assumption (25).
Proof of Lemma 5

Proof. C3 ensures that B1 holds.
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A.0.3 Sieve Definitions

The Fourier space of approximating functions is given by

Hnk =

⎧⎨⎩f (x) =
rnX
j=1

aj,k cos (2πjx) + bj,k sin (2πjx) ,Σjj
2q
¡
a2j,k + b2j,k

¢
≤ c2n,k

⎫⎬⎭ (88)

where q is some number slightly bigger than s+ γ (defined in the text). The sigmoid neural network sieve with
the logit as the sigmoid function is given by

Hnk =

⎧⎨⎩f (x) = a0k +
rnX
j=1

bjk
exp (a0jk + a1jkx)

1 + exp (a0jk + a1jkx)
,Σj |bjk| ≤ cn, max

j∈{1,..,rn}
(a0jk + a1jk) ≤ c̃n

⎫⎬⎭
A sieve based on B-splines is given by

Hnk =

⎧⎨⎩f (x) =

rn+[p]+1X
j=1

bjkφjk, , max
j∈{1,..,rn+[p]+1}

(bjk) ≤ ln

⎫⎬⎭
where

³
φi, ..., φrn+[p]+1

´
are B-splines of order [p]+1 on the support of x.

A.0.4 Consistency for Distributional Assumption 1

Proof of Lemma 6. We obtain consistency by checking the conditions for Theorem 2.1 in Newey and McFadden
[42].
Proof. The proof follows from checking condition (iv) for Theorem 2.1 in Newey and McFadden [42] since the
remaining conditions are satisfied. 26

sup
Θ
|Qn (θ, γ̂)−Q0 (θ, γ0)| ≤ sup

Θ
|Qn (θ, γ̂)−Qn (θ, γ0)|+ sup

Θ
|Qn (θ, γ0)−Q0 (θ, γ0)| (89)

We can use a point-wise Mean Value Expansion to obtain

Qn (θ, γ̂)−Qn (θ, γ0) ≤ kγ̂ − γ0k∞
°°°° 1nΣi∇γq (wi, θ, γ

∗)

°°°° (90)

where ∇γm (wi, θ, γ) is the ordinary derivative w.r.t. γ computed in the usual fashion by treating γ as the variable
of interest. The first term is op(1) under D1-D3. B3 ensures that

E

"
sup
Θ

sup
kγ−γ0k≤δn

k∇γq (wi, θ, γ)k
#
<∞

which ensures that the last term in the above expression is Op (1) . This gives us

sup
Θ
|Qn (θ, γ̂)−Qn (θ, γ0)|→ 0

26We define the norm for a matrix M as kMk = Trace (M 0M) and for the function γ as kγk = supz∈Sz kγ (z)k
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The second term in (89) is much easier to deal with since q(w, θ, γ0) is uniformly bounded in θ by a constant so
that by Lemma 2.4 in Newey and McFadden

sup
Θ
|Qn (θ, γ̂)−Q0 (θ, γ0)|→ 0 (91)

A.0.5 Asymptotic Distribution for Distributional Assumption 1

The proof Theorem 7 will follow from checking the conditions for Theorem 8.12 in [42]. We assume (A10), (17),
(16), (D1), (D2), (D3), (D4) and (D5). For the sake of exposition consider first a standard Taylor Series Expansion
for θ̂ which gives

√
n
³
θ̂ − θ0

´
= −

£
Σ∇θq

¡
wi, θ̄, γ̂

¢¤−1 ∙ 1√
n
Σiq(wi, γ̂)

¸
(92)

where we adopt the convention q(wi, γ) = q(wi, θ0, γ). The idea is to show convergence in distribution for the
term n−1/2Σiq(wi, γ̂).

We begin with a study of the properties of the first order conditions which after some manipulation can be
expressed as

q (w, θ, γ) = (sv1 + (1− s) v2)w(z) (93)

where

s (w, θ, γ) =
d0 (w, θ, γ)

d0 (w, θ, γ) + d1 (w, θ, γ)
(94)

In the interest of brevity we suppress the arguments (w, θ, γ) from now on. The remaining terms are

d0 = F y
0 (1− F0)

1−y αx0 (1− α0)
1−x 1− α1 − γ

1− α0 − α1
(95)

d1 = F y
1 (1− F1)

1−y α1−x1 (1− α1)
x γ − α0
1− α0 − α1

(96)

v1 =

∙µ
y − F0

F0 (1− F0)
f0

¶
[1 z]0, 0,

µ
x− α0

α0 (1− α0)
+

1

1− α1 − α0

¶
,

µ
α0 − γ

(1− α0 − α1) (1− α1 − γ)

¶¸0
(97)

v2 =

∙µ
y − F1

F1 (1− F1)
f1

¶
[1 z]0,

µ
y − F1

F1 (1− F1)
f1

¶
,

µ
γ − 1 + α1

(1− α0 − α1) (γ − α0)

¶
,

µ
1

1− α1 − α0
+
1− α1 − x

α1 (1− α1)

¶¸0
(98)

We first check the various finiteness conditions required by the conditions of the theorem. Each element of the
vector q(·, θ0, γ0) is bounded almost surely so that E

h
kq(w, θ0, γ0)k2

i
< ∞. The boundedness of each element

follows from the binary nature of {y, x} and the imposition that the weight function be zero outside of a compact
set. We can similarly show by inspection that q (w, θ, γ0) is continuously differentiable in θ ∈ int(Θ) and that
∇θq (·, θ0, γ0) is bounded element by element so that E [∇θq (w, θ0, γ0)] < ∞. In addition, ∇γγq (·, γ0) is also
bounded so that E [k∇γγq(w, γ0)k] <∞.

Next, consider a pointwise Taylor expansion for the ith element of q

qi(w, γ) = qi (w, γ0) +∇γqi (w, γ0) (γ (z)− γ0 (z)) + (γ (z)− γ0 (z))
0∇γγqi (w, γ0) (γ (z)− γ0 (z))

+o
³
kγ − γ0k2

´
(99)

where the derivative ∇γ is taken in the usual fashion by treating γ as the variable of interest and the norm over
the γ space is chosen appropriately (say the sup-norm). Note that the problem of finding the linearization is
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simplified in this problem since γ affects q(w, γ) only through its value at one point z. Next, note that

|qi(w, γ)− qi (w, γ0) +∇γqi (w, γ0) (γ (z)− γ0 (z))| ≤
°°(γ (z)− γ0 (z))

0∇γγqi (w, γ0) (γ (z)− γ0 (z))
°°

+o(kγ − γ0k2)
≤ kγ − γ0k2 k∇γγqi (w, γ0)k+ o(kγ − γ0k2) (100)

using the triangle inequality and the Cauchy-Schwarz inequality. Therefore for kγ − γ0k small

|qi(w, γ)− qi (w, γ0) +∇γqi (w, γ0) (γ (z)− γ0 (z))| ≤ kγ − γ0k2 k∇γγqi (w, γ0)k (101)

so that

kq(w, γ)− q (w, γ0) +∇γq (w, γ0) (γ − γ0)k ≤ kγ − γ0k2 k∇γγq (w, γ0)k
kq(w, γ)− q (w, γ0) +D(w, γ − γ0)k ≤ kγ − γ0k2 k∇γγq (w, γ0)k (102)

where D (w, γ) = [∇γq (w, γ0)]5X2 [γ]2X1 Next, note that

|D (w, γ)| ≤ k∇γq (w, γ0)k kγ − γ0k (103)

and we note that since each element of ∇γq (w, γ0) is bounded it follows that E
h
k∇γq (w, γ0)k2

i
<∞

Next, we establish the form of the influence functionZ
D (w, γ)F0(dw) =

Z
fz(z)E [∇γq (w, γ0) |z] γ(z)dz

=

Z
v (z) γ (z) dz (104)

so that by the arguments on p.2208 of [42] we have the influence function for g (w, γ̂)

δ (w) = v(z)x̃−E [v (z) x̃] (105)

and again by the boundedness of ∇γq (w, γ0) it follows that
R
kv(z)k dz <∞. Also note that E

h
kq(w, γ0k2

i
<∞

Finally, in order to apply Theorem 8.12 we need to guarantee the convergence of the Jacobian term which is
ensured by D5.

A.0.6 Identification for Distributional Assumption 2

Identification (Lemma 8)follows since (34) implies (33) holds. Similarly, Lemma 9 also follows as (35) implies (33)
holds.

A.0.7 Consistency for Distributional Assumption 2

Consider the model (32)under F1−F4. Then by a modification for i.i.d. data by Theorem 1 in [19] we have that

kα̂− α0k = Op (max (δn, kα0 −Πnα0k)) (106)

In order to check the conditions for the theorem we first need to impose a metric on the space B×Λ. A convenient
metric (which will be useful in the normality proof) that is referred to as the Fisher metric:

kα1 − α2k =
q
E [dlα0 (w,α1 − α2)]

2 (107)
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where dlα0 is the pathwise derivative of l at α0 as detailed in the text. In order to check (F1) we apply Ossiander’s

[44] result which bounds N[] (ε, Fn, L2) by N[]
³
ε, {α ∈ Λn : kα−Πnα0k < δ} , kksup

´
and which under smoothness

conditions satisfied here gives the bound as Krn log (δ/ε) . This implies that we can choose δn = r
1/2
n n−1/2.

Finally, in order to show consistency using Theorem 1 in Chen and Shen [19] we need to check the condition
(A4)in their paper which states that

sup
{α∈B×Λn:kα−α0k<δ}

|l (w,α)− l (w,α0)| ≤ Un (w) δ
s (108)

with supnE [Un (w)
γ ] ≤ C3 for some constant C3 and some γ > 2. We will use the pathwise derivative of the map

α → l (α,w) which we assume is differentiable over all α for each w. The pathwise derivative at a point ᾱ is a
linear function mapping Λ to R and is given by

dlᾱ (w,α) =
∂l (w, b)

∂b

¯̄̄̄
b=b̄

(b) +
5X

j=1

Aj(w, b, η̄)
¡
ηj
¢

(109)

where

A (w, b, η) = (110)∙
s
(x1 − η1)

η1 (1− η1)
, (1− s)

(1− x1 − η2)

η2 (1− η2)
, s
(x2 − η3)

η3 (1− η3)
, (1− s)

(1− x2 − η4)

η4 (1− η4)
,
(1− x2 − η5)

η5 (1− η5)

¸
(111)

and

s = d0/(d0 + d1)

d0 = (1− F (b0 + b2z))
1−y (F (b0 + b2z))

y
³
η1(z)

x1 (1− η1(z))
1−x1

´³
η3(z)

x2 (1− η3(z))
1−x2

´
(1− η5(z))

d1 = (1− F (b0 + b1 + b2z))
1−y (F (b0 + b1 + b2z))

y ¡η2(z)1−x1 (1− η2(z))
x1
¢ ¡
η4(z)

1−x2 (1− η4(z))
x2
¢
η5(z)

We assume that for each w the pathwise derivative exists for all points along the closed line segment with endpoints
α0and α. Then, there exists (see for instance Flett [21] p.214, 254) at least one point ᾱ along the line segment
such that

|l (w,α)− l (w,α0)| ≤ |dlᾱ (w,α(z)− α0(z))| (112)

≤ kdlᾱ (w)kE k(α(z)− α0(z))kE
≤ kdlᾱ (w)kE k(α− α0)k∞

where kkE denotes the Euclidean norm and kα− αk2∞ = kb− β0k2 + Σ5i=1
¡
supz∈SZ

¯̄
ηj (z)− η0 (z)

¯̄¢2
. We next

use an interpolation inequality result of Lemma 2 in Shen and Wong [50] to translate the result about the sup
norm into one for the L2 norm to obtain

|l (w,α)− l (w,α0)| ≤ kdlᾱ (w)kE k(α− α0)k
2(s+γ)

2(s+γ)+1

2 (113)

where under (F3) we can replace the last term on the right hand side with the Fisher metric so that

|l (w,α)− l (w,α0)| ≤ kdlᾱ (w)kE k(α− α0)k
2(s+γ)

2(s+γ)+1 (114)

and given (F4) we see that conditions (A4) in [19] holds.
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A.0.8 Asymptotic Distribution for Distributional Assumption 2

In this section we provide sufficient conditions for Theorem 1 of Shen [49] to hold. The first condition is essentially
a stochastic equicontinuity condition.

We First write a pointwise (in w) Taylor series Expansion of l around α0 (z). Since, since l depends on α only
through its value at the point z α (z) , we can calculate a direct series expansion element by element to obtain

l (w,α) = l(w,α0) + dlα0 (w) (α− α0) + (α− α0)
0 dl2ᾱ(w) (α− α0) (115)

where dl2ᾱ is the matrix of second partial derivatives of l (treating b and η as the variables of interest) evaluated
at some point ᾱ. Then,

r (w,α− α0) ≡ (α− α0)
0 dl2ᾱ(w) (α− α0) (116)

r (w,α− α0)− r (w,Πnα
∗ − α0) = (α− α0)

0 dl2ᾱ(w) (α− α0) (117)

− (Πnα∗ − α0)
0 dl2ᾱ2(w) (Πnα

∗ − α0)

If we assume that both dl2ᾱand dl2ᾱ are both equal to dl
2
α0 (w) ≡ V, then we can rewrite the difference as

−Πnu0εnV (2 (α− α0) +Πnuεn) (118)

= −Πnu0εnV 2 (α− α0)−ΠnuεnVΠnuεn
= −ε2nΠnu0VΠnu− 2εnΠnuV (α− α0)

Consider the class of functions Ss,j
n =

n
[Πnu(w)]s [V (w)]sj ηj (z)− η0j (z) : ηj ∈ H

o
. If we can show that this

class is stochastically equicontinuous (for instance by showing that it is P-Donsker), then for any sequence δn
going to 0 and an appropriate norm kkon H

sup
{s∈H:ks−η0jk<δn}

Pn
³
[Πnu(w)]s [V (w)]sj ηj (z)− η0j (z)

´
= op

³
n−1/2

´
(119)

A sufficient condition for the class to be Donsker given our assumptions onH is that E
h
[Πnu(w)]s [V (w)]sj

i2
<∞.

This is enough to ensure that (G1) holds.
Next,

K (α0,Πnα
∗ (α))−K (α0, α) = (120)

E [dlα0 (w,α−Πnα∗ (α))]
+E

£
(α− α0)

0 dl2ᾱ(w) (α− α0)
¤
−E

£
(α∗ − α0)

0 dl2ᾱ2(w) (α
∗ − α0)

¤
and as before we replace the dl2 terms with the corresponding term evaluated at α0 and assume that the matrix
E
£
dl2α0 (w)

¤
is positive definite and its biggest and smallest eigenvalues are bounded by constants c1 and c2 almost

everywhere, then
c2 kα− α0k22 ≤ E

£
(α− α0)

0 dl2ᾱ(w) (α− α0)
¤
≤ c1 kα− α0k22 (121)

and under (F3) note that for the Fisher metric

c1 kα− α0k22 ≤ kα− α0k2 ≤ c2 kα− α0k22 (122)
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Further under (G4) and the condition that

Pn (dlα0 (w,Πnu)) = Op

³
n−1/2

´
(123)

(G2) will hold.
A sufficient condition for (G4) is

Pn (dlα0 (w, u−Πnu)) = Op

³
n−1/2

´
(124)

(G3) will be satisfied as long as δ2n = o
¡
n−1/2

¢
and (G5) will hold if the class of functionsM = {dlα0 (w,α− α0) :

α ∈ Λ} is Donsker. If Λ is Donsker and the elements of dlα0 (w) are square P-integrable, then M is Donsker (see
for instance p.193 in Vaart and Wellner [53]).
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Table 1: Results from Naive Probit Estimation on Misclassified Data

β0 = 0 β1 = 1 β2 = −1
N=2000
Mean .21 5.19 -10.76
Median .20 4.86 -10.15
Std. Dev .19 1.39 2.77
IQR .25 2.20 4.37
N=4000
Mean .20 5.26 -10.81
Median .21 4.87 -10.11
Std. Dev .13 1.25 2.35
IQR .17 1.88 3.75
N=8000
Mean .20 5.02 -10.43
Median .20 4.86 -10.12
Std. Dev .09 .95 1.87
IQR .12 1.34 2.65
Model: P (y = 1) = Φ (x∗ − z)
x∗ binary unobserved
Observe {y, x, z}

Table 2: Results from Method 1 Estimation when A2 is violated

β0 = 0 β1 = 1 β2 = −1
N=2000
Mean .89 -.84 -.91
Median .86 -.79 .-.91
Std. Dev .10 .16 .15
IQR .11 .20 .21
N=4000
Mean .89 -.82 -.89
Median .87 -.80 -.89
Std. Dev .09 .12 .09
IQR .12 .12 .10
N=8000
Mean .91 -.85 -.91
Median .88 -.85 -.90
Std. Dev .08 .09 .07
IQR .10 .15 .09
P (y = 1) = Φ (x∗ − z)
P (x = 1|x∗ = 0, z) = α0
P (x = 0|x∗ = 1, z) = α1
z ∼ Uniform[−1, 1]
but α0 + α1 > 1
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Table 3: Monte Carlo Simulations: Distributional Assumption 1
α0 + α1 = .15 α0 + α1 = .30 α0 + α1 = .45
β0 β1 β2 β0 = 0 β1 = 1 β2 = −1 β0 β1 β2

N=200
Mean 1.18 2.33 -2.25 .94 2.23 -2.1 .25 2.24 -1.78
Median 1.53 2.56 -2.64 1.25 2.32 -2.38 -.81 1.91 -1.28
Std. Dev 1.25 1.32 1.18 1.33 1.53 1.17 1.90 2.37 1.17
IQR 2.13 2.15 2.20 1.71 2.22 2.19 2.27 3.30 -2.14
N=400
Mean .80 1.86 -1.83 .773 1.84 -1.80 .32 1.85 -1.60
Median -.44 1.35 -1.18 .23 1.37 -1.16 -.42 1.31 -1.03
Std. Dev 1.04 1.07 1.03 1.08 1.15 1.01 1.32 1.66 1.05
IQR 1.97 2.00 -1.95 1.93 1.97 1.93 1.80 2.06 -1.80
N=800
Mean .41 1.40 -1.2 .37 1.40 -1.39 .29 1.56 -1.42
Median .07 1.12 -1.07 .03 1.06 -1.03 .03 1.15 -1.04
Std. Dev .81 .83 .80 .72 .87 .81 1.03 1.24 .90
IQR .47 .61 .38 .46 .60 .35 .53 1.02 .56
N=1600
Mean .12 1.10 -1.05 .12 1.14 -1.13 .09 1.17 -1.13
Median .006 1.02 -1.01 .02 1.04 -1.01 .006 1.07 -1.01
Std. Dev .44 .47 .43 .48 .51 .48 .52 .56 .48
IQR .24 .31 .24 .28 .36 .27 .31 .44 .29
Model: P (y = 1) = Φ (x∗ − z)
P (x = 1|x∗ = 0, z) = α0 P (x = 0|x∗ = 1, z) = α1
z Discrete
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Table 4: Monte Carlo Simulations: Distributional Assumption 1 ("IV")
α0 + α1 = .15 α0 + α1 = .30 α0 + α1 = .45
β0 β1 β2 β0 β1 β2 β0 β1 β2

N=200
Mean .37 1.54 -1.47 .18 1.43 -1.35 -.13 1.07 -1.09
Median 0 1.24 -1.14 0 1.12 -1.07 -.32 .84 -.88
Std. Dev 1.03 1.09 .97 1.02 1.34 .87 1.00 1.41 .72
IQR .74 .86 .73 .96 .85 .62 ..64 1.01 .44
N=400
Mean .24 1.36 -1.30 .18 1.26 -1.23 -.09 1.07 -1.03
Median 0 1.16 -1.10 0.17 1.02 1.00 -.26 .88 -.89
Std. Dev .71 .83 .67 .74 .88 .74 .75 .92 .57
IQR .11 .61 .42 .34 .61 .40 .48 .77 .35
N=800
Mean .12 1.16 -1.14 .07 1.10 -1.10 -.07 1.02 -1.00
Median -.16 1.08 -1.05 0.10 1.00 -1.01 .01 .95 -.93
Std. Dev .44 .48 .44 .48 .53 .46 .47 .62 .36
IQR .20 .38 .28 .34 .42 .30 .25 .56 .28
N=1600
Mean .02 1.05 1.04 .01 1.02 -1.03 -.05 .98 -.97
Median 0 1.02 -1.01 -.02 1.00 -.99 .14 .98 -.96
Std. Dev .19 .28 .32 .31 .27 .20 .27 .40 .20
IQR .17 .27 .18 .24 .32 .21 .15 .39 .20
Model: P (y = 1) = Φ (x∗ − z)
P (x = 1|x∗ = 0, z, v) = α0 P (x = 0|x∗ = 1, z, v) = α1
z Discrete
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Table 5: Monte Carlo Simulations: Distributional Assumption 1
α0 + α1 = .15 α0 + α1 = .30 α0 + α1 = .45
β0 β1 β2 β0 = 0 β1 = 1 β2 = −1 β0 β1 β2

N=200
Mean .004 1.05 -1.02 .07 .95 -1.01 .15 .77 -.94
Median .006 1.00 -1.01 .07 .82 -.98 .20 .66 -.89
Std. Dev .27 .51 .18 .28 .52 .18 .46 .84 .22
IQR .35 .58 .20 .37 .60 .20 .52 .90 .22
N=400
Mean .02 .96 -1.01 .039 .94 -.97 .19 .68 -.91
Median .02 .92 -.99 .056 .90 -.96 .24 .60 -.92
Std. Dev .18 .35 .112 .21 .37 .12 .29 .52 .15
IQR .24 .43 .15 .23 .43 .15 .38 .75 .19
N=800
Mean .01 .98 -1.00 .04 .90 -.96 .09 .79 -.93
Median .01 .95 -.97 .06 .88 -.96 .06 .73 -.90
Std. Dev .13 .25 .08 .16 .27 .08 .24 .49 .13
IQR .17 .40 .13 .21 .32 .09 .34 .69 .19
N=1600
Mean .004 1.01 -1.01 .01 .98 -.99 .09 .80 -.94
Median .009 1.00 -1.01 .002 .98 -.98 .08 .81 -.91
Std. Dev .10 .18 .06 .14 .26 .08 .20 .34 .10
IQR .15 .25 .07 .16 .30 .12 .32 .48 .16
Model: P (y = 1) = Φ (x∗ − z)
P (x = 1|x∗ = 0, z) = α0 P (x = 0|x∗ = 1, z) = α1
z ∼ Uniform[−1, 1]
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Table 6: Monte Carlo Simulations: Distributional Assumption 1
α0 + α1 = .15 α0 + α1 = .30 α0 + α1 = .45
β0 β1 β2 β0 = 0 β1 = 1 β2 = −1 β0 β1 β2

N=200
Mean -.05 1.13 -1.07 -.003 1.04 -1.04 .11 .77 -.91
Median -.02 1.05 -1.03 .04 .88 -.98 .15 .65 -.89
Std. Dev .24 .46 .26 .30 .58 .27 .29 .48 .24
IQR .27 .42 .30 .35 .58 .30 .25 .52 .25
N=400
Mean -.03 1.07 -1.02 .03 .92 -.96 .08 .86 -.93
Median -.03 1.05 -.99 .06 .86 -.95 .13 .78 -.89
Std. Dev .15 .29 .15 .18 .44 .16 .22 .39 .18
IQR .22 .35 .17 .22 .37 .19 .27 .53 .20
N=800
Mean -.03 1.03 -1.01 .01 .98 -1.00 .06 .90 -.95
Median .01 .99 -.1.00 .02 .94 -.98 .10 .81 -.92
Std. Dev .12 .25 .13 .15 .30 .13 .18 .30 .16
IQR .17 .31 .16 .23 .44 .19 .24 .48 .21
N=1600
Mean 0.01 1.01 -1.02 .002 .99 -1.00 .02 .92 -.96
Median 0.01 .99 -1.00 .01 .97 -.98 .01 .87 -.93
Std. Dev .08 .18 .10 .12 .23 .11 .14 .26 .13
IQR .09 .22 .10 .15 .35 .16 .23 .43 .18
Model: P (y = 1) = Φ (x∗ − z)
P (x = 1|x∗ = 0, z) = α0 P (x = 0|x∗ = 1, z) = α1
z ∼ Normal(0, 1)
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Table 7: Monte Carlo Simulations: Distributional Assumption 2
Corr(xi, x

∗) = .85 Corr (xi, x
∗) = .70 Corr (xi, x

∗) = .55
β0 β1 β2 β0 = 0 β1 = 1 β2 = −1 β0 β1 β2

N=200
Mean .07 .96 -1.08 .27 .73 -1.05 .34 .75 -1.03
Median .07 .90 -1.02 .26 .72 -.99 .32 .68 -1.00
Std. Dev .15 .31 .47 .15 .27 .16 .15 .43 .24
IQR .21 .35 .23 .20 .32 .21 .21 .36 .19
N=400
Mean .09 .95 -1.01 .26 .78 -.99 .32 .69 -.99
Median .10 .92 -.98 .27 .80 -.99 .32 .67 -.97
Std. Dev .11 .23 .20 .09 .17 .11 .10 .29 .18
IQR .16 .19 .15 .12 .25 .14 .15 .28 .12
N=800
Mean .08 .95 -.97 .16 .79 -.98 .29 .72 -.99
Median .07 .98 -.98 .18 .80 -.97 .31 .70 .98
Std. Dev .07 .13 .18 .06 .11 .08 .07 .18 .10
IQR .10 .16 .10 .09 .13 .11 .08 .20 .10
N=1600
Mean .03 .98 -.99 .15 .88 -1.00 .26 .75 -.97
Median .07 .96 -.98 .14 .86 -.98 .32 .72 -.97
Std. Dev .05 .10 .09 .06 .10 .12 .04 .13 .07
IQR .06 .08 .07 .05 .11 .08 .05 .12 .08
Model: P (y = 1) = Φ (x∗ − z)
P (x1 = 1|x∗ = 0, z) = α0(z) P (x1 = 0|x∗ = 1, z) = α1(z)
P (x2 = 1|x∗ = 0, z) = γ0(z) P (x2 = 0|x∗ = 1, z) = γ1(z)
z ∼ Uniform[−2, 2]
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Table 8: Monte Carlo Simulations: Distributional Assumption 2
Corr(xi, x

∗) = .97 Corr (xi, x
∗) = .95 Corr (xi, x

∗) = .90
β0 β1 β2 β0 = 0 β1 = 1 β2 = −1 β0 β1 β2

N=200
Mean .024 .94 -1.0 .05 .97 -1.04 .06 .96 -1.02
Median .023 .934 -.97 .04 .99 -1.03 .05 .92 -1.02
Std. Dev .16 .23 .16 .17 .24 .19 .17 .26 .17
IQR .20 .32 .19 .22 .29 .23 .16 .32 .21
N=400
Mean .02 .96 -1.0 .05 .97 -.997 .06 .95 -1.02
Median .01 .95 -.98 .05 .98 -.98 .05 .95 -1.01
Std. Dev .10 .14 .09 .12 .18 .11 .12 .17 .11
IQR .13 .18 .13 .19 .22 .14 .15 .17 .14
N=800
Mean .007 .991 -.994 .06 .98 -.999 .05 .95 -.98
Median -.002 .998 -.987 .07 .97 -.990 .05 .94 -.98
Std. Dev .08 .11 .07 .08 .10 .09 .07 .12 .06
IQR .10 .16 .11 .09 .13 .11 .10 .15 .09
N=1600
Mean .007 .989 -.995 .05 .99 -.98 .04 .97 -.98
Median .004 .976 -.997 .05 .97 -.98 .04 .96 -.98
Std. Dev .05 .06 .05 .054 .07 .04 .06 .07 .05
IQR .07 .08 .07 .06 .10 .07 .06 .09 .08
Model: P (y = 1) = Φ (x∗ − z)
P (x1 = 1|x∗ = 0, z) = α0(z) P (x1 = 0|x∗ = 1, z) = α1(z)
P (x2 = 1|x∗ = 0, z) = γ0(z) P (x2 = 0|x∗ = 1, z) = γ1(z)
z ∼ Uniform[−2, 2]

Table 9: Summary Characteristics for CPS data Feb 1999
Sample Characteristics
Sample Size 3000
Average Age 41.3
Fraction Male .498
Fraction White .919
Occupational Categories
Managerial/Professional .65
Service .11
Production, Repair,Craft .24
Education
Upto 11th Grade .06
11th Grade - High School .33
Some College .29
BA and above .31
Health Insurance .70
Union Membership .18
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Table 10: Results: Probit Estimation (n=3000)
Variable Coefficient (Std. Error)
Union Status .60 .074
Age .010 .003
Sex -.451 .054
Race .369 .098
Occupation -.032 .036
Education .204 .040
Intercept -.02 .20

Table 11: Results: Distributional Assumption 1 (n=3000)
Variable Coefficient (Std. Error)
Union Status .760 .122
Age .010 .002
Sex -.430 .055
Race .364 .104
Occupation -.050 .038
Education .215 .028
Intercept .014 .197
Misclassification Probabilities
False Positive (α0) .033 .009
False Negative (α1) .139 .052

Table 12: Results: Distributional Assumption 1 ("IV" with additional Surrogate) (n=3000)
Variable Coefficient (Std. Error)
Union Status .620 .088
Age .010 .003
Sex -.450 .055
Race .358 .097
Occupation -.037 .035
Education .205 .030
Intercept .010 .199
Misclassification Probabilities
False Positive (α0) .032 .002
False Negative (α1) .099 .039

Table 13: Results: Distributional Assumption 2 (n=3000)
Variable Coefficient (Std. Error)
Union Status .949 .090
Age .008 .003
Sex -.564 .069
Race .490 .095
Occupation -.053 .048
Education .121 .030
Intercept -.09 .154
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Table 14: Comparison of Marginal Effects of Union Status
Estimation Method Point Estimate Std. Error
Probit .172 .018
Distribution Assn 1 .233 .033
Distribution Assn 1 ("IV") .180 .019
Distribution Assn 2 .288 .016
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