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1 Introduction

Recent work in the macroeconometric literature considers the problem of

summarising efficiently a large set of variables and using this summary for a

variety of purposes including forecasting. Work in this field has been carried

out in a series of recent papers by Stock and Watson (2001, 2002) (SW) and

Forni, Lippi, Hallin and Reichlin (1999,2000) (FHLR). Factor analysis has

been the main tool used in summarising the large datasets.

The static version of the factor model was analyzed, among others, by

Chamberlain and Rothschild (1983), Connor and Korajczyk (1986, 1993).

Geweke (1977) and Sargent and Sims (1977) studied a dynamic factor model

for a limited number of series. Further developments were due to Stock and

Watson (1989, 1991), Quah and Sargent (1993) and Camba-Mendez et al

(2001), but all these methods are not suited when the number of variables

is very large due to the computational cost, even when a sophisticated EM

algorithm is used for optimization, as in Quah and Sargent (1993).

For this reason, SW have suggested a non-parametric principal component

based estimation approach in the time domain, and shown that principal

components can estimate consistently the factor space asymptotically. FHLR

have developed an alternative non-parametric procedure in the frequency

domain, based on dynamic principal components (see Chapter 9 of Brillinger

(1981)), that incorporates an explicitly dynamic element in the construction

of the factors.

In this paper we suggest a third approach for factor estimation that re-

tains the attractive framework of a parametric state space model but is com-

putationally feasible for very large datasets because it does not use maximum
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likelihood but linear algebra methods, based on subspace algorithms used ex-

tensively in engineering, to estimate the state. To the best of our knowledge,

this is the first time that these algorithms are used for factor estimation.

We analyze the asymptotic properties of the new estimators, first for a

fixed number of series, N , and then allowing N to diverge. We show that as

long as N grows less than T 1/3, where T is the number of observations, the

subspace algorithm still yields consistent estimators for the space spanned

by the factors. Moreover, we suggest a modified subspace algorithm that

permits to analyze datasets with N larger than T , i.e., more series than

observations, and evaluate its performance using Monte Carlo simulations.

Finally, we develop an information criterion that leads to consistent selection

of the number of factors to be included in the model, along the lines of Bai

and Ng (2002) for the static principal component approach.

Our second contribution is an extensive simulation study of the relative

performance of the three competing estimation methods. We evaluate the

relationship between the true factors and their estimated counterparts, and

we further examine the properties of the resulting idiosyncratic component

of the data. We find that our state space based method performs better in a

variety of experiments compared to the principal component based methods,

also when N > T , with the static principle component estimator ranked

second. Though these findings may depend on the experimental designs,

they appear to be rather robust. In this paper we only report a subset of the

results in order to save space, but many more are available upon request.

Our final contribution is the analysis of a large dataset of 146 US macroe-

conomic time series, the balanced panel used by SW. As in the simulation
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experiments, it turns out that the performance of static principal compo-

nents and state space methods is overall comparable. Moreover, when the

state space based factors are included in small scale monetary VARs, more

reasonable responses of output gap and inflation to interest rate shocks are

obtained.

The paper is organised as follows. Section 2 presents the state space

model approach and derives the properties of the estimators for the fixed

N case. Section 3 deals with the diverging N case, with correlation of the

idiosyncratic components, and with a modified algorithm to analyze datasets

with N > T . Section 4 compares the competing estimation methods using an

extensive set of Monte Carlo simulations. Section 5 discusses the empirical

example. Section 6 summarizes and concludes.

2 The state space factor estimator

In this section we present and discuss the basic state space representation for

the factor model, discuss the subspace estimators, and derive their asymp-

totic properties when T diverges and N is fixed. In the following section we

extend the framework to deal with the N going to infinity case, with the

analysis of datasets with a larger cross-section than time-series dimension,

and with cross-sectionally or serially correlated idiosyncratic errors.
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2.1 The basic state space model

Following Deistler and Hannan (1988), we consider the following state space

model.

xNt = Cft +D∗�t, t = 1, . . . , T (1)

ft = Aft−1 +B∗vt−1,

where xNt is an N-dimensional vector of stationary zero-mean variables ob-

served at time t, ft is a k-dimensional vector of unobserved states (factors)

at time t, and �t and vt are multivariate, mutually uncorrelated, standard

orthogonal white noise sequences of dimension, respectively, N and k. D∗ is

assumed to be nonsingular. The aim of the analysis is to obtain estimates of

the states ft, for t = 1, . . . , T . We make the following assumption

Assumption 1 (a) |λmax(A)| < 1 and |λmin(A)| > 0 where |λmax(.)| and
|λmin(.)| denote, respectively, the maximum and minimum eigenvalue of a

matrix in absolute value.

(b) The elements of C are bounded

The first part of assumption 1-(a), combined with assumption 1-(b) en-

sures that xNt is stationary. The second part of assumption 1-(a) implies

that each factor is correlated over time, which is important to distinguish it

from the idiosyncratic white noise error terms. Notice also that the factors

are driven by lagged errors, an important hypothesis for the methodology

developed in this paper, as we will discuss below.

This model is quite general. Its aim is to use the states as a summary

of the information available from the past on the future evolution of the
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system. To illustrate its generality we give an example where a factor model

with factor lags in the measurment equation can be recast in the above form

indicating the ability of the model to model dynamic relationships between

xNt and ft. Define the original model to be

xNt = C1ft + C2ft−1 +D∗�t, t = 1, . . . , T (2)

ft = Aft−1 +B∗vt−1,

This model can be written as

xNt = (C1, C2)f̃t +D∗�t, t = 1, . . . , T (3)

f̃t =

 ft

ft−1

 =

 A 0

I 0

 ft−1

ft−2

+
 B∗ 0

0 0

 vt−1

0

 ,

which is a special case of the specification in (1), even though by not taking

into account the particular structure of the A matrix and the reduced rank

of the error process we are losing in terms of efficiency.1

A large literature exists on the identification issues related with the state

space representation given in (1). An extensive discussion may be found in

Deistler and Hannan (1988). In particular, they show in Chapter 1 that (1)

is equivalent to the prediction error representation of the state space model

given by

xNt = Cft +Dut, t = 1, . . . , T (4)

ft = Aft−1 +But−1.

1These restrictions can be imposed but we prefer to work with the general unrestricted

formulation and evaluate the loss of efficiency through Monte Carlo simulations, since in

practice the exact parametric structure of the model is not known.
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where ut is an orthogonal white noise process. This form will be used for

the derivation of our estimation algorithm. Note that as at this stage the

number of series, N , is large but fixed we need to impose no conditions

on the structure of C. Conditions on this matrix will be discussed later

when we consider the case of N tending to infinity and possibly correlated

idiosyncratic errors.

2.2 Subspace Estimators

As we have mentioned in the introduction, maximum likelihood techniques,

possibly using the Kalman filter, may be used to estimate the parameters of

the model under some identification scheme. Yet, for large datasets this is

very computationally intensive. Quah and Sargent (1993) developed an EM

algorithm that allows to consider up to 50-60 variables, but it is still so time-

consuming that it is not feasible to evaluate its performance in a simulation

experiment.

To address this issue, we exploit subspace algorithms, which avoid ex-

pensive iterative techniques by relying on matrix algebraic methods, and can

be used to provide estimates for the factors as well as the parameters of the

state space representation.

There are many subspace algorithms, and vary in many respects, but

a unifying characteristic is their view of the state as the interface between

the past and the future in the sense that the best linear prediction of the

future of the observed series is a linear function of the state. A review of

existing subspace algorithms is given by Bauer (1998) in an econometric

context. Another review with an engineering perspective may be found in
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Van Overschee and De Moor (1996). To the best of our knowledge, our paper

is the first application of subspace algorithms for factor estimation.

The starting point of most subspace algorithms is the following represen-

tation of the system which follows from the state space representation in (4)

and the assumed nonsingularity of D.

Xf
t = OKXp

t + EEf
t (5)

whereXf
t = (x

0
Nt, x

0
Nt+1, x

0
Nt+2, . . .)

0,Xp
t = (x

0
Nt−1, x

0
Nt−2, . . .)

0, Ef
t = (u

0
t, u

0
t+1, . . .)

0,

O = [C 0, A0C 0, (A2)0C 0, . . .]0, K = [B̄, (A − B̄C)B̄, (A − B̄C)2B̄, . . .], B̄ =

BD−1 and

E =


D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D

 .

The derivation of this representation is simple once we note that (i) Xf
t =

Oft + EEf
t and (ii) ft = KXp

t . The best linear predictor of the future of the

series at time t is given by OKXp
t . The state is given in this context by KXp

t

at time t. The task is therefore to provide an estimate for K.
The above representation involves infinite dimensional vectors. In prac-

tice, truncation is used to end up with finite sample approximations given by

Xf
s,t = (x

0
Nt, x

0
Nt+1, x

0
Nt+2, . . . , x

0
Nt+s−1)

0 andXp
p,t = (x

0
Nt−1, x

0
Nt−2, . . . , x

0
Nt−p)

0.

Then an estimate of F = OK may be obtained by regressing Xf
s,t on Xp

p,t.

Following that, the most popular subspace algorithms use a singular value de-

composition (SVD) of an appropriately weighted version of the least squares

estimate of F , denoted by F̂ . In particular the algorithm we will use, due

to Larimore (1983), applies an SVD to Γ̂f F̂ Γ̂p, where Γ̂f and Γ̂p are the
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sample covariances of Xf
s,t and Xp

p,t respectively. These weights are used to

determine the importance of certain directions in F̂ . Then, the estimate of
K is given by

K̂ = Ŝ
1/2
k V̂ 0

kΓ̂
p−1/2

where Û ŜV̂ 0 represents the SVD of Γ̂f
−1/2F̂ Γ̂p1/2 , V̂k denotes the matrix con-

taining the first k columns of V̂ and Ŝk denotes the heading k×k submatrix

of Ŝ. Ŝ contains the singular values of Γ̂f
−1/2F̂ Γ̂p1/2 in decreasing order.

Then, the factor estimates are given by K̂Xp
t . We refer to this method as

SSS.

For what follows it is important to note that the choice of the weighting

matrices Γ̂f and Γ̂p is important but not crucial for the asymptotic properties

of the estimation method. This is because the choice does not affect neither

the consistency nor the rate of convergence of the factor estimator. For

these properties, the weighting matrices are only required to be nonsingular.

Therefore, for the sake of simplicity, in the theoretical analysis and in the

Monte Carlo study,

Assumption 2 We set Γ̂f = IsN and Γ̂p = IpN

A second point to note is that consistent estimation of the factor space

requires the ”lag” truncation parameter p to increase at a rate greater than

ln(T )α, for some α > 1 that depends on the maximum eigenvalue of A, but

at a rate lower than T 1/3. A simplified condition for p is to set it to T 1/r for

any r > 3.

For consistency, the ”lead” truncation parameter s is also required to be

set so as to satisfy sN ≥ k. As N is usually going to be very large for the
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applications we have in mind, this restriction is not binding and we can use

s = 1. This is relevant in particular in a forecasting context because with s =

1 only contemporaneous and lagged values of the variables are used for factor

estimation. Yet, it turns out that s in an important parameter in determining

the small sample performance of the subspace estimator. Therefore, we will

consider its choice in the Monte Carlo experiments in Section 4.

Once estimates of the factors have been obtained, if estimates of the

parameters of the model (including the factor loadings) are subsequently

required, least squares methods may be used with the estimated factors in-

stead of the true ones. The resulting estimates have been proved to be
√
T -consistent and asymptotically normal in Bauer (1998). We note that

the identification scheme underlying the above estimators of the parameters

is implicit, and depends on the normalisation used in the computation of the

SVD. In particular, the SVD used in the Monte Carlo simulations in Section

4 normalises the left and right singular value vectors by restricting them to

have an identity second moment matrix.

It is worth pointing out that the estimated parameters can be used with

the Kalman filter on the state space model to obtain both filtered and

smoothed estimates of the factors. Since the SSS method produces factor

estimates at time t conditional on data available at time t − 1, it may be
possible that smoothed estimates from the Kalman filter are superior to

those obtained by the SSS method. However, the parameter estimates are

conditional on the factor estimates obtained in the first step by the SSS

method. Limited experimentation using the Monte Carlo setup reported

below suggests that the loss in performance of the smoothed Kalman filter
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factor estimate because of the use of estimated factors from the SSS method,

is roughly similar to the benefit of using all the data. Moreover, in general,

factors estimated using the SSS method outperform filtered Kalman filter

factor estimates.

Finally, we must note that the SSS method is also applicable in the case of

unbalanced panels. In analogy to the work of SW, use of the EM algorithm,

described there, can be made to provide estimates both of the factors and of

the missing elements in the dataset.

2.3 Asymptotic properties

We now discuss the asymptotic properties of the SSS factor estimators and

derive their standard errors.

Let us denote the true number of factors by k0 and investigate in more

detail OLS estimation of the multivariate regression model

Xf
s,t = FXp

p,t + EEf
s,t (6)

where Ef
t = (u0t, u

0
t+1, . . . , u

0
t+s)

0. Estimation of the above is equivalent to

estimation of each equation separately. We make the following assumptions

Assumption 3 ut is an i.i.d. (0,Σu) sequence with finite fourth moments.

Assumption 4 p1 ≤ p ≤ p2 where p1 = O(T 1/r), r > 3 and p2 = o(T 1/3)

Denote Xp = (Xp
p,1, ...,X

p
p,T )

0. Then we have the following theorem:

Theorem 1 (Consistency). If we define f̂t = K̂Xp
p,t, then, under as-

sumptions 1-4, f̂t converges, in probability, to the space spanned by the true

factors.
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Proof. By (4) and (5) we can see that KXp
p,t spans the space of the true

factors. So we need to concentrate on the properties of K̂ as an estimator

of K. By Theorem 4 of Berk (1974), who provides a variety of results for

parameter estimates in infinite autoregressions, we have that F̂ is consistent
for F and that √T −Np(F̂−F) has an asymptotic normal distribution with
the standard OLS covariance matrix. This result follows straightforwardly

from equation (2.17) of Berk (1974) once we note that the sum of the absolute

values of the coefficients in each regression multiplied by p1/2 tends to zero.

This follows by the fact that the absolute value of the maximum eigenvalue

of F = OK , denoted |λmax(F)| , is less than one implying exponentially
declining coefficients with respect to p. This implies consistent estimation of

the factors since K̂ is a continuous function of F̂ for large enough T. Since

both T and p grow, by assumption 3 the rate of convergence of the factor

estimates lies between (T −Np)1/2−1/2r and (T −Np)1/3. This is because the

factor is a linear combination of the elements of K̂. This rate of convergence
follows if we note that the supremum norm of E(Xp0Xp/T )−1 is of order p

which follows from the absolute summability of the autocovariances of xNt.

We will denote the square of the rate of convergence by T ∗.

It is important to mention that consistency is possible because in the

model (1) the factors depend on lagged errors. Without this assumption,

i.e., if ft depends on vt rathen than on vt−1, the SSS estimator would be

consistent for Aft−1 but not for the space spanned by ft. The extent of the

inconsistencty is evaluated in the Monte Carlo experiments in Section 4, and

found to be minor.

Besides proving consistency, we have the following theorem on the asymp-
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totic distribution of the factor estimator.

Theorem 2 (Asymptotic distribution). Under assumptions 1-4, the

asymptotic distribution of
√
T ∗(vec(f̂) − vec(Hkf)) with f = (f1, . . . , fT )

0

is N(0, Vf), with

Vf = E

µ
(IT−Np ⊗Xp)

∂g

∂(A1FA2)(A
0
2 ⊗A1)(Γ

p−1 ⊗ Σ)(A2 ⊗A01)
∂g0

∂(A1FA2)(IT−Np ⊗Xp0)

¶
for s = 1 and

Vf = E

µ
(IT−Np ⊗Xp)

∂g

∂(A1FA2)(A
0
2 ⊗A1)Φ(A2 ⊗A01)

∂g0

∂(A1FA2)(IT−Np ⊗Xp0)

¶
for s > 1 where Hk is a square matrix of full rank and Φ, g, A1, A2 are defined

in the proof of the Theorem.

Proof. Asymptotic normality of the estimators follows from asymptotic

normality of K̂ which follows from the asymptotic normality of√T −Np(F̂−
F) proved in Theorem 4 of Berk (1974). The normality of K̂ follows by using
a simple Taylor expansion of the function implicitly defined by the SVD of F̂ .
Denote this function by g. The existence of the Taylor expansion follows from

continuity and differentiability of g which follows from Theorems 5.6 and 5.8

of Chatelin (1983). The variance calculations will be carried out conditional

on Xp
t , as when obtaining variances of regression coefficients conditional on

the regressors. From f = XpK̂0, simple manipulations indicate that

V
³√

T ∗(vec(f̂)− vec(Hkf))
´
= (IT−Np⊗Xp)V

³√
T ∗
³
vec(K̂0)− vec(K0)

´´
(IT−Np⊗Xp0)

We need to derive the asymptotic variance of V
³√

T ∗
³
vec(K̂0)− vec(K0)

´´
.

In general, K̂0 is a function of the SVD of Γ̂f F̂ Γ̂p, where Γ̂f and Γ̂p are
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weighting matrices discussed before. To simplify matters we assume that the

SVD is carried out on F̂ . It is straightforward to modify what follows to
accomodate the weighting matrices. Note the importance of sN ≥ k for the

calculation of the SVD. Note that there is serial correlation in the error terms

in (5) for s > 1. Nevertheless, the error term and Xp
t remain uncorrelated in

this case.

We define formally the function g(.) such that vec(K̂0) = g
³
vec(A1F̂A2)

´
.

This implicitly defines the matrices A1, A2 which define the tranformation

from F̂ to K̂0 via the singular value decomposition. By a first order Taylor
expansion of g(vec(A1F̂A2)) and g(vec(A1FA2)) around A1F∗A2, possible
since g(.) ∈ C∞ and where each element of F∗ lies between the respective
elements of F and F̂ , we have that

V
³√

T ∗
³
vec(K̂0)− vec(K0)

´´
=

∂g

∂(A1FA2)

V
³√

T ∗
³
vec(A1F̂A2)− vec(A1FA2)

´´ ∂g0

∂(A1FA2)
Consistency and a

√
T ∗ rate of convergence of the parameter estimates F̂ to

their true values implies that the remainder of the Taylor approximation is

op(1). So we need to derive the variance of
√
T ∗
³
vec(A1F̂A2)− vec(A1FA2)

´
.

Again simple manipulations imply that

V
³√

T ∗
³
vec(A1F̂A2)− vec(A1FA2)

´´
= (A02⊗A1)V

³√
T ∗
³
vec(F̂)− vec(F)

´´
(A2⊗A01)

From multivariate regression analysis we know that for s = 1

V
³√

T ∗
³
vec(F̂)− vec(F)

´´
= (Γp

−1 ⊗ Σ)

where Γp and Σ are the variance covariance matrices of Xp and of the re-

gression error respectively, which yields the result for s = 1. For the general
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case s > 1 since the error terms have serial correlation we have

V
³√

T ∗
³
vec(F̂)− vec(F)

´´
= (Γp

−1 ⊗ IsN)Φ(Γ
p−1 ⊗ IsN)

where Φ is equal to (Xp0 ⊗ IsN)Σu(X
p ⊗ IsN) and Σu = E(efse

f 0
s ) where

ef = vec(Ef) and Ef = (Ef
1 , ..., E

f
T ). A consistent estimator for Σu may be

easily obtained by calculating the autocovariances of the residuals of (6) up

to order s− 1 since the error term is autocorrelated only up to order s− 1.

3 The case: N →∞
In this section we firstly investigate the conditions for consistency of the SSS

method when N diverges. Second, we discuss correlation of the idiosyncratic

errors. Third, we derive an information criterion for the selection of the

number of factors. Finally, we develop a modified SSS algorithm for datasets

with more time series than observations.

3.1 Consistency of the SSS estimator

To prove consistency of the SSS estimator, we need to add an assumption to

those in the previous Section. In particular, we require

Assumption 5 Np = o(T 1/3); p = O(T 1/r), r > 3;

Then we have

Theorem 3 (Consistency when N → ∞). If N is o(T 1/3−1/r), then

when N and T diverge, and under assumptions 1-6, f̂t = K̂Xp
t converges to
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the space spanned by the true factors in probability.

Proof. Consistent estimation of the coefficients of the model in (6) by

OLS, and therefore of the factors, holds if the number of regressors in each of

the Ns equations tends to infinity at a rate lower than T 1/3 but the number

of lags, p, grows at a minimum rate of T 1/r where r > 0. Since the number

of regressors is Np we see that N can grow at rates of at most T 1/3−1/r.

Under these conditions the estimates of the factors will be consistent at rate

(T/Np)1/2 as the results by Berk (1974) applied to every equation separately

hold.

Thus, divergence of N requires to be accompanied by a faster divergence

of T for the SSS factor estimators to remain consistent. Asymptotic normal-

ity of the factor estimators follows along the lines of Theorem 2.

3.2 Correlation in the idiosyncratic errors

In this subsection we discuss the case of cross-sectional and/or serial correla-

tion of the idiosyncratic errors. This extension can be rather simply handled

within the state space method. Basically, the idiosyncratic errors can be

treated as additional pseudo-factors that enter only a few of the variables via

restrictions on the matrix of loadings C. These pseudo-factors can be serially

correlated processes or not depending on the matrix A in equation (1).

The problem becomes one of distinguishing common factors and pseudo-

factors, i.e., cross-sectionally correlated idiosyncratic errors. This is virtually

impossible for finite N , while when N diverges a common factor is one which
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enters an infinite number of series, i.e, the column of the, now infinite di-

mensional, matrix C associated with a common factor will have an infinity of

non-zero entries, and likewise a pseudo-factor will only have a finite number

of non-zero entries in the respective column of C. Let k1 denote the number

of common factors thus defined and k2 the number of pseudo-factors. Note

that k2 may tend to infinity but not faster than N . Then, following Forni et

al. (2000), we make the following assumption.

Assumption 6 The matrix OK in (5) has k1 singular values tending to

infinity as N tends to infinity and k2 non-zero finite singular values.

For example, the condition in the assumption is satisfied if k1 common

factors enter a non zero fraction, bN , 0 < b < 1, of the series xNt, in the

state space model given by (1), while k2(N) pseudo-factors enter a vanishing

proportion of the series xNt, i.e. each such factors enter c(N)N of the series

xNt where limN→∞c(N)N = 0 and k2(N) is at most O(N).

3.3 Choice of the number of factors

The choice of the number of factors to be included in the model is a relevant

issue, see e.g. Bai and Ng (2002). We will show that it is possible to obtain

a consistent estimator of the number of factors even when N diverges or the

idiosyncratic errors are correlated using an information criterion of the form

IC(k1) = V (k1, f̂
k1) + k1g(N, T ) (7)

where

V (k1, f̂
k1) = (NT )−1

TX
t=1

tr[(xNt − Ĉf̂k1t )(xNt − Ĉf̂k1t )
0], (8)
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f̂k1 = (f̂k11 , ..., f̂k1T )
0, f̂k1t are the factor estimates for the k1 first common

factors (according to the singular values), Ĉ is the OLS estimate of C based

on f̂k1t and g(N,T ) is a penalty term.

Before examining the properties of this criterion, note that, since the fac-

tors are orthogonal, any set of up to k01 factor estimators are consistent for the

respective set of true factors up to a nonsingular transformation determined

by the normalisation used in the SVD carried out during the estimation and

the identification of the state space model, see SW for a similar point . Thus,

denoting the T × k1 matrix of the k1 first true factors by f
0,k1, we have that

(T/Np)1/2||fk1t −Hk01f0,k1t || = Op(1)

for some nonsingular matrix Hk1 . This follows from Theorem 3. Then,

strengthening assumption 3 with

Assumption 7 ut is an i.i.d. (0,Σu) sequence with finite eighth moments.

the following theorem holds

Theorem 4 Let the factors be estimated by the SSS method and denote the

true number of common factors k01. Let k̂1 = argmin1≤k≤kmaxIC(k1). Then,

limT→∞ Pr(k̂1 = k01) = 1 if i) g(N,T ) → 0 and ii) Ng(N,T ) → ∞ as

N,T →∞.

Proof. The proof builds upon a set of results by Bai and Ng (2002).

Therefore, to start with, we examine whether our parametric setting in terms

of the representation 1 satisfies their assumptions. Assumption A of Bai and
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Ng (2002) is satisfied if |λmax(A)| < 1, where |λmax(A)| denotes the maximum
eigenvalue of A in absolute value and the fourth moments of ut exist. These

conditions are satisfied by our assumptions 1 and 3. Their Assumption B on

factor loadings is straightforwardly satisfied by assuming boundedness of the

elements of the C matrix. Their assumption C is satisfied by assuming that

the eighth moments of ut exist combined with our cross correlation structure

in Assumption 6. Finally, their Assumption D is trivially satisfied because

we assume that factors and idiosyncratic errors are uncorrelated.

We must now prove that limN(T ),T→∞Pr(IC(k1) < IC(k01)) = 0 for all

k1 6= k01, k1 < kmax. Denoting the T × k2 matrix of the first k2 true idiosyn-

cratic pseudo factors by f0,2,k2, we examine

V (k1, (f
0,k1, f0,2,k2))− V (k1, (f

0,k1))

for any finite k2. We know that, for all elements of xNt in which f0,2,k2 does

not enter, it is

1/T
TX
t=1

(xi,Nt − Ĉ 0
i,1,2(f

0,k01
t , f

0,2,k02
t )0)2 − 1/T

TX
t=1

(xi,Nt − Ĉ 0
i,1f

0,k1
t )2 = Op(T

−1)

For a finite number of elements of xNt

1/T
TX
t=1

(xi,Nt − Ĉ 0
i,1,2(f

0,k01
t , f

0,2,k02
t )0)2 − 1/T

TX
t=1

(xi,Nt − Ĉ 0
i,1f

0,k1
t )2 = Op(1)

Therefore, overall

V (k1, (f
0,k1, f0,2,k2))− V (k1, (f

0,k1)) = Op(N
−1) (9)

First consider k1 < k01. Then

IC(k1)− IC(k01) = V (k1, f̂
k1)− V (k01, f̂

k01)− (k01 − k1)g(N, T )
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and the required condition for the result is

Pr[V (k1, f̂
k1)− V (k01, f̂

k01) < (k01 − k1)g(N,T )] = 0

as N(T ), T →∞. Now

V (k1, f̂
k1)− V (k01, f̂

k01) = [V (k1, f̂
k1)− V (k1, f

k1Hk1)] + [V (k1, f
k1Hk1)− V (k01, f

k01Hk01)]+

[V (k01, f
k01Hk01)− V (k01, f̂

k01)]

By the rate of convergence of the factor estimators and Lemma 2 of Bai and

Ng (2002) we have

V (k1, f̂
k1)− V (k1, f

k1Hk1) = Op((T/Np)−1)

and

V (k01, f̂
k01)− V (k01, f

k01Hk01) = Op((T/Np)−1)

Note that Lemma 2 of Bai and Ng (2002) stands independently from the

factor estimation method discussed in that paper and only uses the rate

of convergence of the factor estimators derived in their Theorem 1. Then

V (k1, f
k1Hk1)− V (k01, f

k01Hk01) can be written as V (k1, f
k1Hk1)− V (k01, f

k01)

which has positive limit by Lemma 3 of Bai and Ng (2002). Thus, as long as

g(N, T )→ 0, Pr(IC(k1) < IC(k01)) = 0 for all k1 < k01.

Then, to prove Pr(IC(k1) < IC(k01)) = 0 for all k1 > k01 we have to prove

that

Pr[V (k01, f̂
k01)− V (k1, f̂

k1) < (k1 − k01)g(N, T )]→ 0

By (9) we know that asymptotically the analysis of the state space model

will be equivalent to the case of a model where there are no idiosyncratic

pseudo factors up to an order of probability of N−1. Then

|V (k01, f̂k
0
1)− V (k1, f̂

k1)| ≤ 2maxk01<k1≤kmax|V (k1, f̂k1)− V (k1, f
0,k01)|.
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By following the analysis of Lemma 4 of Bai and Ng (2002) we know that

maxk01<k1≤kmax|V (k1, f̂k1)− V (k1, f
0,k01)| = Op((T/Np)−1)

Combining this expression with (9) and the fact that Np grows slower than

T 1/3, gives the required result since then (T/Np)−1 < N−1. Note again that

Lemma 4 of Bai and Ng (2002) stands independently from the factor estima-

tion method discussed in that paper and only uses the rate of convergence

of the factor estimators derived in their Theorem 1.

3.4 Dealing with Large Datasets

Up to now we have outlined a method for estimating factors which requires

the number of observations to be larger than the number of elements in Xp
t ,

while SW and FHLR do not require this condition. We therefore suggest a

modification of our methodology to let the number of series be larger than

the number of observations.

The problem arises because the least squares estimator of F in (6) is not
uniquely defined due to the rank deficiency of Xp0Xp. As we mentioned in

section 2, we do not neccesarily want an estimator of F but an estimator of

the states XpK0. That could be obtained if we had an estimator of XpF 0
and used an SVD of that.

It is well known (see e.g. Magnus and Neudecker (1988) ) that although

F may not be estimable, XpF 0 always is using least squares methods. In
particular, the least squares estimator of XpF 0 is given by

\XpF 0 = Xp(Xp0Xp)+Xp0Xf (10)
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where Xf = (Xf
1 , . . . , X

f
T ) and A

+ denotes the unique Moore-Penrose inverse

of matrix A. However, when the row dimension of Xp is smaller than its

column dimension, Xp(Xp0Xp)+Xp0 = I implying that \XpF 0 = Xf . A

decomposition of Xf is then easily seen to be similar, but not identical, to

the eigenvalue decomposition of the covariance matrix of Xf which is the

SW principle component method. We will refer to this method as SSS0.

This method is static, abstracting from the fact that s may be larger than

1, thereby leading to a decomposition involving leads of xNt.

Alternative solutions exist to this problem. In particular, note that

we are after a subspace decomposition of the estimator of the fitted value

XpF 0. Essentially, we are after a reduced rank approximation of XpF 0,
and several possibilities exist. The main requirement is that, as the as-

sumed rank (number of factors) tends to the full rank of the estimate of

the fitted value, the approximation should tend to the estimated fitted value

\XpF 0 = Xp(Xp0Xp)+Xp0Xf = Xf . The alternative decomposition we sug-

gest is a SVD on Xf
0
Xp(Xp0Xp)+ = Û ŜV̂ 0. Then the estimated factors

are given by K̂Xp
t where K̂ is obtained as before but using the SVD of

Xf
0
Xp(Xp0Xp)+.

This approach, compared to SSS0, has the advantage that the estimated

factors are combinations of lags and contemporaneous values of the variables

(and also of leads when s > 1). We choose to set both weighting matrices

to the identity matrix in this case. We also refer to this decomposition as

SSS, because it is simply a generalisation of the method in section 2 and if

Np < T it reduces to that method. As k tends to min(Ns,Np) the set of

factor estimators tends to the OLS estimated fitted value Xf .
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This method needs to be judged in terms of its small sample properties in

approximating (linear combinations of) the true factors, and the simulations

in the next section indicate that it performs very well, similar to the proper

method of section 2 (and in general better than SSS0 on the basis of other

experiments that are not reported to save space).

4 A comparison of the estimation methods

In this section we summarize the results of an extensive set of simulation ex-

periments to investigate the small sample properties of the three competing

factor extraction methods, i.e. static principal components (PCA, SW), dy-

namic principal components (DPCA, FHLR), and our state space approach

(SSS). The first subsection describes the simulation set-up; the second one

the results.

4.1 Monte Carlo experiments, set-up

The basic data generating process (DGP) we use is:

xNt = Cft + �t, t = 1, . . . , T (11)

A(L)ft = B(L)ut

where A(L) = I −A1(L)− . . .−Ap(L), B(L) = I +B1(L) + . . .+Bq(L).

An important comment is in order for this model. We have developed

our theory for predetermined factors, i.e. factors that are determined at time

t − 1. This is reflected by (1) where the error term of the factor equation

is dated at time t − 1. This assumption is not considered restrictive in the
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state space model literature, see e.g. Deistler and Hannan (1988). Yet, the

specification we use for the simulations allows for factors that are determined

at time t. This brings us in line with the nonparametric context of SW and

FHLR. However, as the simulations will show, this choice still leaves the new

estimation method performing comparably and, in a majority of cases, better

than either PCA or DPCA. The rationale underlying this results is that the

SSS estimator, when contemporaneous errors drive the factors, is consistent

for the expected value of the factors conditional on information up to period

t−1. Of course, the performance of the SSS estimator further improves when
ut−1 is used in (11) rather than ut.

For the SSS method, the ”lag” truncation parameter is set at p = ln(T )α.

We have found that a range of α between 1.05 and 1.5 provides a satisfactory

performance, and we have used the value α = 1.25 in the reported results.

The ”lead” truncation parameter s is set equal to the assumed number

of factors for SSS, which typically coincides with the true number of factors,

i.e. s = k. For robustness, and since it is relevant for forecasting, we will

present selected result for the case s = 1 as well.2 For the DPCA method we

use 3 leads and 3 lags.

With the exceptions noted below, the C matrix is generated using stan-

dard normal variates as elements and the error terms are generated as un-

correlated standard normal pseudo-random variables. We have considered

2We have also experimented with other values of s but s = 1 or s = k appear to be

the preferable choices. To select the value of s we can either include this parameter as

a variable in the information criterion search or, perhaps more straightforwardly, we can

choose the value that maximises the proportion of the variance of each series explained by

the factors, averaged over all series.
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several combinations of N,T and report results for the following N, T pairs:

(50, 50), (50, 100), (100, 50), (100, 100), (50, 500), (100, 500) and (200, 50).

To provide a comprehensive evaluation of the relative performance of the

three factor estimation methods, we consider several types of experiments.

They differ for the number of factors (one or several), the choice of s (s = k

or s = 1), the factor loadings (static or dynamic), the choice of the number

of factors (true number or misspecified), the properties of the idiosyncratic

errors (uncorrelated or serially correlated), and the way the C matrix is gen-

erated (standard normal or uniform with non-zero mean). Each experiment

is replicated 500 times. Depending on these characteristics, the experiments

can be divided into five groups.

In the first group, we assume that we have a single VARMA factor with

8 specifications that differ for the extent of serial correlation and the AR and

MA order:

(1) a1 = 0.2, b1 = 0.4;

(2) a1 = 0.7, b1 = 0.2;

(3) a1 = 0.3, a2 = 0.1, b1 = 0.15, b2 = 0.15;

(4) a1 = 0.5, a2 = 0.3, b1 = 0.2, b2 = 0.2;

(5) a1 = 0.2, b1 = −0.4;
(6) a1 = 0.7, b1 = −0.2;
(7) a1 = 0.3, a2 = 0.1, b1 = −0.15, b2 = −0.15;
(8) a1 = 0.5, a2 = 0.3, b1 = −0.2, b2 = −0.2.
Experiment 9 is as experiment 1 but both the ARMA factor and its lag

enter the measurement equation, i.e., the C matrix is C(L) = C0+C1L where

L is the lag operator. We fix a priori the number of factors to p+ q, which is
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the true number in the state space representation. It is larger than the true

number in the FHLR setup, and it should provide a reasonable approximation

for SW too. As a robustness check, we consider the case where the factor

is generated as in Experiment 1 but only one factor is assumed to exist

rather than p + q. We refer to this experiment as Experiment 10. In the

case of experiments 9 and 10, qualitatively similar results are obtained when

the mentioned modifications are applied to the parameter specifications 2-8

(results available upon request).

In the second group of experiments, we investigate the case of serially

correlated idiosyncratic errors. The DGP for that is specified as in experi-

ments 1-10 but with each idiosyncratic error being an AR(1) process with

coefficient 0.2 rather than an i.i.d. process. These experiments are labelled

11-20. The results are rather robust to higher values of serial correlation but

0.2 is a reasonable value in practice since usually the common component

captures most of the persistence of the series. We have also investigated the

case of cross-correlated errors by assuming that the contemporaneous covari-

ance matrix of the idiosyncratic errors is tridiagonal with diagonal elements

equal to 1 and off-diagonal elements equal to 0.2. These experiments pro-

duced the same ranking of methods as in the case of serial correlation and

virtually no deterioration of performance with respect to the idiosyncratic

errors case (results available upon request).

In the third group of experiments, we use a 3 dimensional VAR(1) as

the data generation process for the factors as opposed to an ARMA process.

We report results for the case where the A matrix is diagonal with elements

equal to 0.5. This is labelled experiment 21.
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In the fourth group of experiments, we consider the DGPs in experiments

1-21 but generate the C matrix using standard uniform variates, thereby

allowing for the factor loadings to have a non zero mean. To save space, we

only report results for (N,T ) = (50, 50) for this case.

Finally, we consider again experiments 1-21 but using s = 1 instead of

s = k. We present results for the (N,T ) pairs (50, 50) and (100, 100).

We concentrate on the relationship between the true and estimated com-

mon components (Cft and bC bft), measured by their correlation, and on the
properties of the estimated idiosyncratic components (b�t), using an LM(4)
test to evaluate whether they are white noise as in the DGP, and presenting

the rejection probabilities of the test. These are the most common evaluation

criteria used in the literature. Throughout, we report the average values of

the different evaluation criteria (averaging over all variables for each replica-

tion and then over all replications), and the standard errors of the averages

over replications.

4.2 Monte Carlo experiments, results

The results are summarized in Tables 1 to 7 for different combinations of N

and T , while Table 8 presents the outcome for the uniform factor loadings C

and (N,T ) = (50, 50). Finally, Tables 9-11 present results for the case s = 1.

Starting with the (N, T ) = (50, 50) case in Table 1, and the single ARMA

factor experiments (1-8), the SSS method clearly outperforms the other two.

The gains with respect to PCA are rather limited, in the range 5-10%, but

systematic across experiments. The gains are larger with respect to DPCA,

about 20%, and again systematic across experiments. For all the three meth-
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ods the correlation is higher the higher the persistence of the factor. There

is little evidence that the idiosyncratic component is serially correlated on

the basis of the LM(4) test for any of the methods, but the DPCA yields

systematically larger rejection probabilities.

The presence of serially correlated idiosyncratic errors (experiments 11-

18) does not affect significantly the results. The values for each method, the

ranking of the methods and the relative gains are virtually the same as in

the basic case. Non correlation of the errors is rejected more often, but still

in a very low number of cases. This is related to the low power of the LM

test in small (T ) samples, for larger values of T the rejection rate increases

substantially, see Tables 2 and 3.

Allowing for a lagged effect of the factor on the variables, instead, leads

to a serious deterioration of the SSS performance, with a drop of about 25%

in the correlation values, compare experiments 1 and 9, and 11 and 19. The

performance of DPCA, which is particularly suited for this generating process

from a theoretical point of view, does improve, but it is still beaten by PCA

even though the difference shrinks. The choice of a lower value for s improves

substantially the performance of SSS in this case, making it comparable with

PCA, compare the relevant lines of Table 9 for s = 1. This finding, combined

with the fact that DPCA is still beaten by PCA, suggests that the use of

leads of the variables for factor estimation is complicated when the factors

can have a dynamic impact on the variables.

When a lower number of factors than true is assumed for SSS, one in-

stead of two in experiments 10 and 20, the performance does not deteriorate.

Actually, comparing experiments 1 and 10, and 11 and 20, there is a slight
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increase in correlation. A similar improvement can be observed for PCA and

DPCA, and it is likely due to the fact that a single factor can do most of the

work of capturing the true common component, while estimation uncertainty

is reduced.

The presence of three autoregressive factors, experiment 21, reduces the

gap PCA-DPCA. The correlation values are higher than in the single factor

case, reflecting in general the higher persistence of the factors. Yet, the per-

formance of SSS deteriorates substantially. The latter improves and becomes

comparable to PCA with s = 1, see table 11.

The next three issues we consider are the effects of larger temporal di-

mension, cross-sectional dimension, and uniform rather than standard normal

loading matrix.

Tables 2 and 3 report results for N = 50 and, respectively, T = 100

and T = 500. The correlation between the true and estimated common

component increases monotonically for all the three methods, but neither

the ranking of methods nor the performance across experiments are affected.

The performance of the LM tests in detecting serial correlation in the error

process gets also closer and closer to the theoretical one.

When N increase to 100 while T remains equal to 50 (Table 4), the figures

for SSS are basically unchanged in all experiments, while the performance of

PCA and DPCA improves systematically. Yet, the gains are not sufficient to

match the SSS approach, which still yields the highest correlation in all cases,

except with a dynamic effect of the factors of the variables (experiments 9

and 19), and with three autoregressive factors (experiment 21). This pattern

continues if we further increase N to 200 (Table 7).
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When both N and T increase, N = 100, T = 100 in Table 5 while N =

100, T = 500 in Table 6, the performance of all methods improves with

respect to Table 1, proportionally more so for PCA and DPCA that benefit

more for the larger value of N , as mentioned before. But also in these cases

SSS is in general the best in terms of correlation.

The final issue we consider is the choice of s. This is examined through

Tables 9-11 where we set s = 1. For this case PCA and SSS perform very

similarly. The advantage SSS had for the ARMA experiments shrinks sub-

stantially, SSS is still better but only marginally so. On the other hand,

the large disadvantage SSS had for VAR experiments and experiments with

factor lags disappears, as mentioned above, with SSS and PCA performing

equally well.

In summary, the DPCA method shows consistently lower correlation be-

tween true and estimated common components than SSS and PCA. It shows,

in general, more evidence of serial correlation, although not to any signifi-

cant extent. Additionally, from results we are not presenting here the DPCA

method has the lowest variance for the idiosyncratic component or, in other

words, has the highest explanatory power of the series in terms of the com-

mon components. These results seem to indicate that i) part of the idiosyn-

cratic component seems to leak into the estimated common component in

the DPCA case, thus reducing the correlation between true and estimated

common components and the variance of the idiosyncratic component and

ii) some (smaller in terms of variance) part of the common component leaks

into the estimated idiosyncratic component thus increasing the serial corre-

lation of the idiosyncratic component. The conclusion from these results is
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that if one cares about isolating common components as summaries of un-

derlying common features of the data, then a high R2 may not always be the

appropriate guide. When instead the factors have a dynamic effect on the

variables, the performance of DPCA improves, but it is still beaten by PCA.

This experiment and the one with three autoregressive factors are the only

cases where PCA beats SSS, but the difference can be annihilated by means

of a proper choice of the s parameter. In all other experiments SSS leads to

gains in terms of higher correlation in the range 5-10%.

5 An empirical example

We now use a dynamic factor model estimated with the three methods to

analyze a large balanced dataset of 146 US macroeconomic variables, over

the period 1959:1-1998:12, taken from SW to whom we refer for additional

details. To start with, we estimate the common component of each variable

according to the three methods (with s = 1 for SSS), and then compute

the resulting (adjusted) R2 and the correlation among the three common

components. SW showed that the first two SW factors are the most relevant

for forecasting several variables in the dataset, while Favero, Marcellino and

Neglia (2002) found that 3 or 4 FHLR factors are sufficient. Since it is better

to overestimate the number of factors rather than underestimate it, we have

chosen to use six factors.

Focusing on the R2 first, the performance of SSS and PCA is comparable,

the latter is slightly better than the former on average over all variables

(0.44 versus 0.39), while DPCA is ranked first, with an average R2 of about
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0.52, see Table 12. A similar pattern emerges from a more disaggregate

analysis, DPCA yields a higher R2 for most variables. The better fit of

DPCA could be explained by the longer sample available, which improves

substantially the multivariate spectrum estimation underlying this method,

and by the use of future information in the computation of the spectrum

On the other hand, as the Monte Carlo results show, the better fit may be

an artefact of the tendency of the DPCA method to soak up part of the

idiosyncratic component in the data. The correlation among the estimated

common components is highest for SSS-PCA, with an average value of 0.93,

slightly lower but still considerable for PCA-DPCA, 0.76, and SSS-DPCA,

0.73. Overall, these values are in line with the Monte Carlo simulations,

which showed a higher similarity of PCA and SSS.

The second exercise we consider is the inclusion of the estimated factors in

a monetary VAR to evaluate the response of inflation and the output gap to

unexpected monetary shocks. The standard VARs in the literature consider

the output gap (USGAP), inflation (USINFL), a commodity price index,

the effective exchange rate, and the federal fund rate (USPR), to which we

add six factors treated as exogenous regressors. Four lags are included for

each endogenous variable and the VAR is estimated over the sample 1980:1-

1998:12 to cover a relatively homogenous period from the monetary policy

point of view but long enough to obtain reliable estimates of the parameters.

Impulse response functions are obtained with a Choleski decomposition with

the variables ordered as listed above.

The responses of USGAP, USINFL and USPR to a one standard deviation

shock in USPR are graphed in Figure 1 for the cases where the factors are
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excluded from the VAR (base), and when they are included as exogenous

regressors and estimated according to each of the three methods. To use

a comparable information set, the DPCA are lagged three periods, since

two future quarters are used to compute the spectrum, while the PCA and

SSS only once. Favero et al. (2002) performed a similar exercise using

modified DPCA derived from one-sided estimation in order not to use future

information, see Forni et al. (2003) for details on the method, but found

similar results as for DPCA.

The base case shows a positive (though not significant) response of US-

INFL for about 3 years, what is commonly named price puzzle since infla-

tion should instead decrease. The positive reaction of USGAP is also not in

line with standard economic theory. The inclusion of the dynamic principal

components does not change sensibly the pattern of response; with static

principal components the USGAP decreases; but only with the SSS factors

also the price puzzle is eliminated. To obtain such a result with PCA or

DPCA a larger number of factors has to be included in the VAR, up to 12.

6 Conclusion

In this paper we have developed a parametric estimation method for dynamic

factor models of large dimension based on a subspace algorithm applied to the

state space representation of the model (SSS). We have derived the asymp-

totic properties of the estimators, formulae for their standards errors, and

information criteria for a consistent selection of the number of factors.

Then we have undertaken a comparative analysis of the performance of
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alternative factor estimation methods using Monte Carlo experiments. Our

main conclusion is that the SSS method, which takes explicit account of

the dynamic nature of the data generating process, performs better than

alternative approaches for a number of experimental setups. Static principal

components seem to perform satisfactorily overall, while dynamic principal

components appear slightly less able to distinguish between common and

idiosyncratic factors, in the particular setup we have considered which is,

nevertheless, quite general.

Finally, we have provided an empirical application with a large dataset

for the US, that further confirms the good empirical performance of the SSS

method and, more generally, the usefulness of the dynamic factor model as

a modelling tool for datasets of large dimension.
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Table 1: Results for case: N=50, T=50

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.821(0.052) 0.860(0.054) 0.727(0.053) 0.067(0.033) 0.066(0.035) 0.097(0.042)
Exp 2 0.859(0.049) 0.890(0.050) 0.780(0.056) 0.072(0.040) 0.075(0.039) 0.103(0.045)
Exp 3 0.740(0.054) 0.805(0.054) 0.634(0.056) 0.073(0.036) 0.081(0.040) 0.137(0.052)
Exp 4 0.803(0.058) 0.855(0.054) 0.713(0.068) 0.076(0.040) 0.086(0.038) 0.143(0.054)
Exp 5 0.806(0.053) 0.848(0.055) 0.703(0.052) 0.067(0.034) 0.066(0.034) 0.094(0.042)
Exp 6 0.823(0.053) 0.861(0.053) 0.731(0.055) 0.068(0.035) 0.070(0.038) 0.103(0.042)
Exp 7 0.717(0.053) 0.787(0.054) 0.604(0.052) 0.064(0.034) 0.076(0.038) 0.135(0.049)
Exp 8 0.724(0.057) 0.791(0.058) 0.616(0.057) 0.067(0.035) 0.080(0.038) 0.137(0.053)
Exp 9 0.898(0.028) 0.693(0.061) 0.823(0.036) 0.071(0.036) 0.039(0.030) 0.123(0.049)
Exp 10 0.904(0.061) 0.904(0.060) 0.848(0.050) 0.068(0.037) 0.068(0.036) 0.079(0.039)
Exp 11 0.813(0.055) 0.855(0.055) 0.721(0.052) 0.102(0.043) 0.116(0.045) 0.132(0.050)
Exp 12 0.848(0.051) 0.881(0.052) 0.772(0.056) 0.100(0.042) 0.112(0.045) 0.132(0.050)
Exp 13 0.722(0.058) 0.789(0.058) 0.620(0.059) 0.084(0.037) 0.123(0.045) 0.155(0.053)
Exp 14 0.791(0.060) 0.846(0.055) 0.704(0.068) 0.089(0.040) 0.123(0.049) 0.162(0.056)
Exp 15 0.798(0.055) 0.845(0.057) 0.697(0.053) 0.113(0.045) 0.130(0.049) 0.150(0.051)
Exp 16 0.813(0.055) 0.854(0.056) 0.724(0.055) 0.105(0.043) 0.118(0.046) 0.143(0.050)
Exp 17 0.703(0.055) 0.776(0.058) 0.596(0.053) 0.082(0.039) 0.125(0.047) 0.157(0.056)
Exp 18 0.715(0.057) 0.785(0.059) 0.610(0.057) 0.082(0.039) 0.127(0.048) 0.165(0.058)
Exp 19 0.889(0.031) 0.685(0.063) 0.814(0.037) 0.086(0.039) 0.052(0.032) 0.138(0.049)
Exp 20 0.892(0.064) 0.893(0.063) 0.840(0.053) 0.119(0.047) 0.120(0.047) 0.128(0.050)
Exp 21 0.974(0.009) 0.692(0.051) 0.947(0.014) 0.078(0.038) 0.111(0.068) 0.125(0.046)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 2: Results for case: N=50, T=100

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.856(0.044) 0.903(0.045) 0.781(0.044) 0.057(0.033) 0.057(0.032) 0.068(0.036)
Exp 2 0.890(0.041) 0.928(0.039) 0.830(0.045) 0.060(0.034) 0.061(0.033) 0.073(0.036)
Exp 3 0.777(0.044) 0.862(0.042) 0.689(0.045) 0.057(0.034) 0.064(0.036) 0.086(0.040)
Exp 4 0.844(0.044) 0.906(0.038) 0.776(0.052) 0.061(0.034) 0.068(0.035) 0.086(0.040)
Exp 5 0.839(0.043) 0.891(0.045) 0.754(0.043) 0.056(0.034) 0.056(0.033) 0.069(0.038)
Exp 6 0.859(0.043) 0.904(0.044) 0.785(0.044) 0.057(0.033) 0.058(0.035) 0.070(0.036)
Exp 7 0.752(0.044) 0.847(0.044) 0.658(0.045) 0.056(0.032) 0.061(0.033) 0.084(0.039)
Exp 8 0.767(0.046) 0.855(0.045) 0.677(0.049) 0.057(0.032) 0.064(0.034) 0.088(0.041)
Exp 9 0.923(0.021) 0.703(0.055) 0.869(0.026) 0.061(0.034) 0.028(0.025) 0.081(0.039)
Exp 10 0.935(0.047) 0.935(0.047) 0.894(0.040) 0.056(0.032) 0.057(0.032) 0.061(0.033)
Exp 11 0.849(0.043) 0.898(0.043) 0.776(0.043) 0.212(0.060) 0.242(0.061) 0.235(0.061)
Exp 12 0.888(0.039) 0.926(0.038) 0.830(0.041) 0.204(0.057) 0.229(0.058) 0.226(0.059)
Exp 13 0.770(0.045) 0.859(0.043) 0.686(0.048) 0.157(0.051) 0.240(0.062) 0.228(0.059)
Exp 14 0.836(0.042) 0.902(0.037) 0.771(0.050) 0.157(0.050) 0.233(0.060) 0.221(0.058)
Exp 15 0.836(0.041) 0.890(0.042) 0.753(0.041) 0.232(0.061) 0.263(0.064) 0.263(0.062)
Exp 16 0.853(0.043) 0.900(0.045) 0.782(0.044) 0.208(0.060) 0.239(0.064) 0.239(0.064)
Exp 17 0.743(0.043) 0.840(0.042) 0.652(0.044) 0.167(0.053) 0.245(0.062) 0.229(0.064)
Exp 18 0.764(0.046) 0.853(0.045) 0.677(0.049) 0.162(0.054) 0.246(0.062) 0.230(0.061)
Exp 19 0.916(0.022) 0.695(0.050) 0.862(0.027) 0.183(0.055) 0.097(0.042) 0.220(0.058)
Exp 20 0.931(0.049) 0.932(0.049) 0.889(0.041) 0.244(0.062) 0.245(0.061) 0.250(0.062)
Exp 21 0.984(0.005) 0.686(0.040) 0.970(0.007) 0.062(0.033) 0.205(0.100) 0.083(0.038)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 3: Results for case: N=50, T=500

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.899(0.028) 0.939(0.042) 0.855(0.031) 0.052(0.030) 0.062(0.043) 0.058(0.032)
Exp 2 0.922(0.027) 0.951(0.036) 0.889(0.030) 0.050(0.031) 0.064(0.044) 0.056(0.034)
Exp 3 0.822(0.033) 0.907(0.049) 0.773(0.036) 0.056(0.033) 0.088(0.075) 0.066(0.033)
Exp 4 0.885(0.030) 0.946(0.026) 0.851(0.034) 0.051(0.031) 0.083(0.059) 0.064(0.036)
Exp 5 0.881(0.033) 0.937(0.039) 0.830(0.035) 0.050(0.031) 0.055(0.036) 0.056(0.032)
Exp 6 0.900(0.030) 0.943(0.039) 0.857(0.033) 0.052(0.031) 0.059(0.043) 0.056(0.031)
Exp 7 0.803(0.036) 0.904(0.055) 0.749(0.039) 0.051(0.029) 0.071(0.067) 0.062(0.035)
Exp 8 0.822(0.037) 0.914(0.049) 0.773(0.039) 0.052(0.033) 0.077(0.070) 0.065(0.035)
Exp 9 0.946(0.014) 0.718(0.055) 0.924(0.017) 0.050(0.031) 0.122(0.143) 0.058(0.033)
Exp 10 0.967(0.031) 0.966(0.032) 0.948(0.026) 0.052(0.031) 0.052(0.031) 0.053(0.031)
Exp 11 0.893(0.030) 0.941(0.044) 0.851(0.033) 0.945(0.032) 0.945(0.040) 0.950(0.030)
Exp 12 0.920(0.026) 0.954(0.032) 0.889(0.028) 0.944(0.032) 0.937(0.043) 0.949(0.030)
Exp 13 0.820(0.037) 0.914(0.043) 0.772(0.040) 0.924(0.038) 0.933(0.054) 0.941(0.034)
Exp 14 0.879(0.031) 0.944(0.030) 0.846(0.034) 0.922(0.038) 0.920(0.062) 0.940(0.036)
Exp 15 0.883(0.031) 0.937(0.042) 0.834(0.034) 0.950(0.031) 0.954(0.031) 0.956(0.030)
Exp 16 0.897(0.029) 0.943(0.048) 0.856(0.031) 0.942(0.034) 0.940(0.052) 0.950(0.031)
Exp 17 0.793(0.036) 0.901(0.051) 0.740(0.038) 0.925(0.038) 0.943(0.046) 0.943(0.033)
Exp 18 0.817(0.035) 0.911(0.049) 0.769(0.038) 0.926(0.037) 0.940(0.053) 0.942(0.032)
Exp 19 0.945(0.015) 0.721(0.052) 0.922(0.018) 0.932(0.036) 0.662(0.176) 0.940(0.034)
Exp 20 0.965(0.036) 0.961(0.051) 0.945(0.030) 0.956(0.029) 0.956(0.029) 0.955(0.029)
Exp 21 0.991(0.001) 0.609(0.030) 0.988(0.002) 0.053(0.031) 0.569(0.117) 0.058(0.033)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 4: Results for case: N=100, T=50

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.841(0.038) 0.868(0.038) 0.740(0.040) 0.069(0.026) 0.069(0.026) 0.102(0.032)
Exp 2 0.871(0.036) 0.895(0.034) 0.790(0.041) 0.072(0.026) 0.073(0.027) 0.108(0.031)
Exp 3 0.758(0.044) 0.806(0.042) 0.639(0.048) 0.070(0.027) 0.079(0.027) 0.156(0.041)
Exp 4 0.818(0.052) 0.856(0.047) 0.721(0.063) 0.078(0.029) 0.088(0.027) 0.163(0.042)
Exp 5 0.821(0.038) 0.852(0.039) 0.713(0.039) 0.063(0.025) 0.068(0.025) 0.096(0.030)
Exp 6 0.836(0.041) 0.863(0.040) 0.736(0.044) 0.072(0.026) 0.073(0.026) 0.108(0.032)
Exp 7 0.734(0.040) 0.786(0.040) 0.609(0.041) 0.068(0.025) 0.077(0.029) 0.149(0.039)
Exp 8 0.749(0.042) 0.798(0.041) 0.629(0.045) 0.069(0.025) 0.081(0.028) 0.156(0.040)
Exp 9 0.912(0.022) 0.696(0.058) 0.833(0.032) 0.071(0.026) 0.036(0.021) 0.130(0.036)
Exp 10 0.904(0.043) 0.904(0.043) 0.852(0.037) 0.065(0.026) 0.065(0.026) 0.075(0.027)
Exp 11 0.829(0.039) 0.859(0.039) 0.736(0.041) 0.102(0.031) 0.115(0.034) 0.135(0.035)
Exp 12 0.855(0.042) 0.880(0.041) 0.776(0.047) 0.104(0.030) 0.112(0.033) 0.137(0.035)
Exp 13 0.746(0.044) 0.800(0.042) 0.634(0.046) 0.084(0.028) 0.119(0.034) 0.172(0.044)
Exp 14 0.805(0.049) 0.847(0.044) 0.712(0.060) 0.093(0.029) 0.124(0.034) 0.179(0.043)
Exp 15 0.817(0.039) 0.853(0.040) 0.713(0.039) 0.109(0.032) 0.128(0.034) 0.152(0.038)
Exp 16 0.825(0.043) 0.857(0.043) 0.731(0.046) 0.101(0.031) 0.118(0.032) 0.146(0.037)
Exp 17 0.721(0.043) 0.780(0.043) 0.602(0.044) 0.085(0.029) 0.122(0.034) 0.171(0.043)
Exp 18 0.735(0.045) 0.790(0.045) 0.620(0.048) 0.088(0.030) 0.124(0.032) 0.176(0.044)
Exp 19 0.904(0.024) 0.686(0.055) 0.826(0.032) 0.088(0.030) 0.050(0.023) 0.148(0.039)
Exp 20 0.902(0.046) 0.902(0.047) 0.847(0.039) 0.117(0.034) 0.117(0.034) 0.125(0.036)
Exp 21 0.979(0.006) 0.696(0.048) 0.952(0.010) 0.076(0.028) 0.109(0.063) 0.123(0.037)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 5: Results for case: N=100, T=100

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.875(0.029) 0.910(0.029) 0.798(0.030) 0.058(0.022) 0.058(0.023) 0.070(0.025)
Exp 2 0.904(0.028) 0.931(0.028) 0.843(0.032) 0.061(0.024) 0.061(0.024) 0.075(0.026)
Exp 3 0.807(0.033) 0.870(0.031) 0.711(0.036) 0.058(0.024) 0.062(0.024) 0.091(0.028)
Exp 4 0.865(0.033) 0.910(0.029) 0.793(0.041) 0.062(0.024) 0.066(0.025) 0.093(0.030)
Exp 5 0.860(0.032) 0.897(0.032) 0.773(0.033) 0.058(0.023) 0.059(0.023) 0.072(0.026)
Exp 6 0.876(0.030) 0.910(0.030) 0.798(0.032) 0.060(0.024) 0.060(0.025) 0.072(0.027)
Exp 7 0.783(0.032) 0.852(0.031) 0.679(0.034) 0.055(0.024) 0.060(0.025) 0.090(0.029)
Exp 8 0.796(0.035) 0.860(0.033) 0.696(0.037) 0.061(0.026) 0.063(0.025) 0.093(0.030)
Exp 9 0.938(0.015) 0.702(0.042) 0.883(0.021) 0.058(0.024) 0.024(0.016) 0.081(0.028)
Exp 10 0.938(0.034) 0.938(0.034) 0.898(0.028) 0.057(0.023) 0.057(0.022) 0.063(0.024)
Exp 11 0.867(0.030) 0.902(0.030) 0.792(0.031) 0.213(0.040) 0.238(0.042) 0.236(0.044)
Exp 12 0.896(0.031) 0.923(0.030) 0.837(0.034) 0.210(0.040) 0.233(0.043) 0.229(0.045)
Exp 13 0.797(0.034) 0.864(0.032) 0.704(0.037) 0.161(0.036) 0.236(0.045) 0.230(0.044)
Exp 14 0.857(0.034) 0.905(0.029) 0.786(0.040) 0.161(0.036) 0.230(0.044) 0.228(0.044)
Exp 15 0.858(0.030) 0.899(0.029) 0.772(0.032) 0.227(0.043) 0.260(0.044) 0.264(0.045)
Exp 16 0.870(0.032) 0.905(0.033) 0.798(0.033) 0.210(0.041) 0.241(0.042) 0.245(0.044)
Exp 17 0.773(0.033) 0.848(0.032) 0.672(0.035) 0.167(0.037) 0.245(0.042) 0.235(0.044)
Exp 18 0.790(0.034) 0.859(0.032) 0.694(0.038) 0.164(0.037) 0.242(0.044) 0.238(0.041)
Exp 19 0.934(0.015) 0.694(0.040) 0.879(0.020) 0.179(0.039) 0.091(0.030) 0.228(0.043)
Exp 20 0.933(0.036) 0.933(0.036) 0.891(0.032) 0.247(0.043) 0.247(0.043) 0.251(0.043)
Exp 21 0.988(0.003) 0.688(0.037) 0.974(0.005) 0.062(0.023) 0.215(0.104) 0.082(0.026)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 6: Results for case: N=100, T=500

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.918(0.020) 0.958(0.019) 0.874(0.021) 0.051(0.022) 0.052(0.022) 0.054(0.022)
Exp 2 0.939(0.017) 0.970(0.016) 0.908(0.020) 0.050(0.022) 0.051(0.022) 0.054(0.023)
Exp 3 0.859(0.024) 0.939(0.019) 0.806(0.026) 0.052(0.022) 0.053(0.023) 0.056(0.024)
Exp 4 0.910(0.019) 0.963(0.015) 0.876(0.022) 0.054(0.023) 0.053(0.022) 0.058(0.023)
Exp 5 0.906(0.022) 0.951(0.021) 0.857(0.023) 0.052(0.022) 0.051(0.022) 0.054(0.024)
Exp 6 0.920(0.021) 0.960(0.019) 0.878(0.024) 0.052(0.021) 0.052(0.021) 0.053(0.021)
Exp 7 0.841(0.024) 0.931(0.021) 0.782(0.026) 0.051(0.021) 0.052(0.022) 0.055(0.022)
Exp 8 0.856(0.023) 0.939(0.019) 0.802(0.026) 0.051(0.023) 0.051(0.022) 0.057(0.022)
Exp 9 0.963(0.008) 0.709(0.035) 0.941(0.010) 0.053(0.021) 0.021(0.016) 0.055(0.023)
Exp 10 0.971(0.022) 0.971(0.022) 0.952(0.019) 0.051(0.022) 0.052(0.022) 0.052(0.022)
Exp 11 0.913(0.021) 0.954(0.021) 0.871(0.022) 0.945(0.022) 0.952(0.022) 0.948(0.022)
Exp 12 0.934(0.019) 0.965(0.018) 0.903(0.021) 0.944(0.023) 0.949(0.021) 0.946(0.022)
Exp 13 0.854(0.024) 0.937(0.019) 0.803(0.026) 0.929(0.025) 0.950(0.022) 0.943(0.023)
Exp 14 0.907(0.020) 0.962(0.016) 0.872(0.023) 0.927(0.027) 0.950(0.023) 0.941(0.024)
Exp 15 0.905(0.021) 0.953(0.020) 0.856(0.023) 0.950(0.022) 0.956(0.021) 0.954(0.021)
Exp 16 0.916(0.022) 0.957(0.021) 0.875(0.023) 0.944(0.022) 0.952(0.021) 0.949(0.021)
Exp 17 0.834(0.024) 0.929(0.020) 0.777(0.026) 0.933(0.024) 0.954(0.020) 0.945(0.023)
Exp 18 0.852(0.024) 0.937(0.020) 0.799(0.027) 0.929(0.025) 0.952(0.022) 0.945(0.023)
Exp 19 0.963(0.008) 0.712(0.034) 0.940(0.011) 0.935(0.025) 0.533(0.088) 0.943(0.025)
Exp 20 0.968(0.025) 0.968(0.025) 0.947(0.021) 0.952(0.020) 0.952(0.021) 0.951(0.020)
Exp 21 0.995(0.001) 0.675(0.021) 0.992(0.002) 0.053(0.022) 0.810(0.076) 0.057(0.023)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 7: Results for case: N=200, T=50

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.849(0.030) 0.869(0.029) 0.748(0.035) 0.067(0.018) 0.069(0.018) 0.108(0.024)
Exp 2 0.881(0.029) 0.897(0.028) 0.797(0.038) 0.074(0.019) 0.075(0.020) 0.112(0.027)
Exp 3 0.775(0.035) 0.810(0.033) 0.648(0.040) 0.069(0.018) 0.078(0.020) 0.179(0.033)
Exp 4 0.830(0.041) 0.857(0.038) 0.726(0.054) 0.077(0.020) 0.088(0.022) 0.181(0.035)
Exp 5 0.833(0.031) 0.855(0.031) 0.721(0.032) 0.066(0.018) 0.066(0.018) 0.103(0.024)
Exp 6 0.849(0.031) 0.869(0.031) 0.748(0.037) 0.070(0.017) 0.071(0.018) 0.112(0.025)
Exp 7 0.753(0.031) 0.791(0.031) 0.618(0.034) 0.067(0.018) 0.077(0.019) 0.169(0.033)
Exp 8 0.765(0.036) 0.801(0.034) 0.635(0.040) 0.071(0.019) 0.080(0.020) 0.176(0.035)
Exp 9 0.921(0.017) 0.689(0.053) 0.838(0.027) 0.069(0.018) 0.035(0.014) 0.144(0.030)
Exp 10 0.912(0.030) 0.912(0.030) 0.857(0.028) 0.067(0.018) 0.067(0.018) 0.079(0.021)
Exp 11 0.840(0.031) 0.862(0.030) 0.743(0.035) 0.102(0.021) 0.114(0.024) 0.139(0.029)
Exp 12 0.866(0.032) 0.885(0.030) 0.788(0.038) 0.105(0.022) 0.110(0.024) 0.141(0.029)
Exp 13 0.764(0.034) 0.805(0.033) 0.645(0.039) 0.092(0.022) 0.119(0.024) 0.195(0.041)
Exp 14 0.814(0.045) 0.848(0.040) 0.714(0.057) 0.098(0.023) 0.125(0.026) 0.201(0.039)
Exp 15 0.831(0.031) 0.858(0.031) 0.722(0.033) 0.111(0.022) 0.130(0.024) 0.160(0.027)
Exp 16 0.839(0.031) 0.863(0.030) 0.743(0.037) 0.105(0.022) 0.118(0.023) 0.152(0.028)
Exp 17 0.742(0.032) 0.787(0.031) 0.614(0.034) 0.089(0.021) 0.123(0.023) 0.190(0.038)
Exp 18 0.752(0.037) 0.795(0.035) 0.629(0.041) 0.091(0.023) 0.124(0.027) 0.200(0.041)
Exp 19 0.913(0.019) 0.687(0.050) 0.833(0.028) 0.089(0.022) 0.049(0.017) 0.161(0.032)
Exp 20 0.902(0.033) 0.902(0.033) 0.848(0.030) 0.118(0.023) 0.118(0.022) 0.126(0.024)
Exp 21 0.981(0.005) 0.694(0.046) 0.954(0.009) 0.077(0.019) 0.111(0.057) 0.126(0.029)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 8: Results for case: N=50, T=50 and non zero mean factor
loadings C

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.881(0.039) 0.916(0.039) 0.815(0.040) 0.070(0.037) 0.071(0.038) 0.101(0.045)
Exp 2 0.904(0.036) 0.932(0.035) 0.852(0.039) 0.073(0.037) 0.074(0.038) 0.105(0.047)
Exp 3 0.817(0.045) 0.873(0.042) 0.734(0.049) 0.068(0.035) 0.081(0.040) 0.135(0.051)
Exp 4 0.865(0.046) 0.908(0.040) 0.799(0.055) 0.075(0.038) 0.090(0.041) 0.143(0.053)
Exp 5 0.867(0.042) 0.905(0.042) 0.794(0.042) 0.064(0.033) 0.068(0.035) 0.091(0.040)
Exp 6 0.881(0.042) 0.915(0.040) 0.817(0.045) 0.070(0.036) 0.070(0.037) 0.101(0.045)
Exp 7 0.798(0.046) 0.860(0.043) 0.712(0.048) 0.065(0.035) 0.074(0.037) 0.131(0.049)
Exp 8 0.807(0.047) 0.867(0.044) 0.722(0.051) 0.070(0.036) 0.082(0.038) 0.143(0.052)
Exp 9 0.921(0.023) 0.757(0.048) 0.863(0.031) 0.071(0.036) 0.034(0.026) 0.126(0.048)
Exp 10 0.938(0.048) 0.945(0.049) 0.907(0.041) 0.071(0.036) 0.071(0.036) 0.081(0.040)
Exp 11 0.878(0.042) 0.913(0.040) 0.815(0.043) 0.101(0.043) 0.114(0.044) 0.133(0.048)
Exp 12 0.900(0.041) 0.927(0.040) 0.849(0.043) 0.103(0.042) 0.111(0.043) 0.129(0.050)
Exp 13 0.808(0.046) 0.870(0.042) 0.728(0.049) 0.085(0.042) 0.122(0.048) 0.161(0.056)
Exp 14 0.860(0.048) 0.903(0.043) 0.796(0.055) 0.091(0.043) 0.125(0.049) 0.162(0.057)
Exp 15 0.863(0.041) 0.905(0.041) 0.792(0.043) 0.105(0.043) 0.129(0.046) 0.147(0.051)
Exp 16 0.875(0.045) 0.910(0.043) 0.813(0.046) 0.104(0.046) 0.121(0.046) 0.144(0.050)
Exp 17 0.790(0.044) 0.857(0.040) 0.704(0.047) 0.083(0.039) 0.126(0.046) 0.153(0.054)
Exp 18 0.797(0.046) 0.861(0.043) 0.714(0.050) 0.085(0.040) 0.127(0.047) 0.159(0.051)
Exp 19 0.919(0.025) 0.755(0.049) 0.864(0.032) 0.086(0.040) 0.048(0.032) 0.140(0.052)
Exp 20 0.932(0.048) 0.937(0.047) 0.900(0.040) 0.121(0.049) 0.121(0.047) 0.129(0.047)
Exp 21 0.983(0.006) 0.777(0.052) 0.975(0.007) 0.075(0.036) 0.154(0.096) 0.122(0.049)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 9: Results for case: N=50, T=50, s = 1

Exp.a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.827(0.051) 0.829(0.050) 0.733(0.049) 0.066(0.035) 0.066(0.035) 0.096(0.039)
Exp 2 0.858(0.047) 0.860(0.048) 0.779(0.052) 0.069(0.035) 0.073(0.036) 0.103(0.046)
Exp 3 0.737(0.052) 0.741(0.052) 0.631(0.054) 0.067(0.035) 0.071(0.038) 0.147(0.051)
Exp 4 0.803(0.057) 0.806(0.057) 0.713(0.067) 0.074(0.039) 0.079(0.039) 0.149(0.053)
Exp 5 0.810(0.052) 0.814(0.052) 0.708(0.050) 0.064(0.037) 0.069(0.037) 0.094(0.041)
Exp 6 0.823(0.055) 0.825(0.055) 0.728(0.056) 0.068(0.036) 0.070(0.035) 0.099(0.041)
Exp 7 0.713(0.053) 0.717(0.053) 0.602(0.050) 0.066(0.035) 0.070(0.037) 0.134(0.048)
Exp 8 0.725(0.055) 0.728(0.055) 0.617(0.056) 0.072(0.037) 0.072(0.039) 0.147(0.051)
Exp 9 0.897(0.027) 0.897(0.028) 0.822(0.037) 0.066(0.037) 0.071(0.037) 0.123(0.050)
Exp 10 0.907(0.060) 0.908(0.060) 0.853(0.049) 0.068(0.036) 0.069(0.036) 0.078(0.037)
Exp 11 0.815(0.054) 0.820(0.055) 0.724(0.053) 0.101(0.043) 0.111(0.044) 0.129(0.047)
Exp 12 0.852(0.051) 0.856(0.051) 0.777(0.055) 0.103(0.044) 0.114(0.045) 0.136(0.047)
Exp 13 0.727(0.058) 0.733(0.056) 0.625(0.059) 0.084(0.042) 0.105(0.044) 0.170(0.058)
Exp 14 0.795(0.055) 0.800(0.056) 0.709(0.064) 0.093(0.043) 0.113(0.044) 0.173(0.057)
Exp 15 0.801(0.056) 0.805(0.056) 0.701(0.053) 0.110(0.042) 0.124(0.045) 0.149(0.052)
Exp 16 0.813(0.056) 0.818(0.055) 0.726(0.055) 0.104(0.045) 0.116(0.048) 0.143(0.052)
Exp 17 0.707(0.050) 0.713(0.050) 0.598(0.048) 0.087(0.039) 0.109(0.044) 0.168(0.059)
Exp 18 0.723(0.055) 0.729(0.055) 0.617(0.056) 0.083(0.038) 0.106(0.043) 0.171(0.059)
Exp 19 0.895(0.028) 0.896(0.028) 0.821(0.034) 0.087(0.039) 0.107(0.041) 0.148(0.053)
Exp 20 0.893(0.063) 0.894(0.062) 0.839(0.052) 0.120(0.047) 0.119(0.047) 0.129(0.046)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 10: Results for case: N=100, T=100, s = 1

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.874(0.030) 0.877(0.030) 0.794(0.032) 0.058(0.022) 0.059(0.023) 0.073(0.026)
Exp 2 0.905(0.028) 0.906(0.028) 0.844(0.031) 0.061(0.025) 0.062(0.024) 0.075(0.026)
Exp 3 0.806(0.032) 0.810(0.032) 0.709(0.035) 0.058(0.024) 0.059(0.025) 0.092(0.028)
Exp 4 0.865(0.032) 0.868(0.032) 0.792(0.041) 0.061(0.024) 0.064(0.024) 0.095(0.029)
Exp 5 0.859(0.031) 0.861(0.030) 0.771(0.032) 0.056(0.023) 0.055(0.024) 0.067(0.025)
Exp 6 0.877(0.031) 0.880(0.031) 0.800(0.033) 0.059(0.025) 0.060(0.024) 0.074(0.026)
Exp 7 0.784(0.033) 0.789(0.033) 0.680(0.034) 0.056(0.023) 0.058(0.023) 0.089(0.028)
Exp 8 0.800(0.033) 0.804(0.033) 0.701(0.037) 0.058(0.023) 0.059(0.023) 0.094(0.029)
Exp 9 0.939(0.014) 0.940(0.013) 0.884(0.019) 0.058(0.023) 0.059(0.024) 0.085(0.029)
Exp 10 0.938(0.036) 0.938(0.035) 0.896(0.029) 0.057(0.022) 0.057(0.023) 0.062(0.025)
Exp 11 0.868(0.031) 0.872(0.032) 0.792(0.032) 0.217(0.043) 0.238(0.044) 0.244(0.044)
Exp 12 0.897(0.029) 0.901(0.029) 0.839(0.032) 0.209(0.040) 0.228(0.043) 0.231(0.044)
Exp 13 0.796(0.033) 0.802(0.033) 0.703(0.036) 0.171(0.037) 0.218(0.044) 0.238(0.044)
Exp 14 0.859(0.034) 0.864(0.033) 0.790(0.041) 0.167(0.038) 0.213(0.044) 0.232(0.043)
Exp 15 0.859(0.031) 0.863(0.031) 0.773(0.033) 0.232(0.044) 0.255(0.046) 0.261(0.044)
Exp 16 0.872(0.032) 0.876(0.032) 0.798(0.034) 0.215(0.040) 0.234(0.042) 0.245(0.046)
Exp 17 0.775(0.032) 0.783(0.032) 0.673(0.034) 0.174(0.037) 0.223(0.045) 0.243(0.044)
Exp 18 0.794(0.033) 0.801(0.032) 0.698(0.036) 0.171(0.040) 0.218(0.043) 0.247(0.046)
Exp 19 0.935(0.014) 0.937(0.013) 0.880(0.019) 0.187(0.039) 0.226(0.044) 0.235(0.041)
Exp 20 0.934(0.038) 0.934(0.037) 0.893(0.032) 0.241(0.045) 0.241(0.045) 0.245(0.045)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 11: Results for Experiment 21 (3 AR factors (non correlated),
no correlation among idiosyncratic components) and s = 1

N/T Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

N = 50, T = 50 0.9754(0.008) 0.9751(0.008) 0.9478(0.013) 0.076(0.040) 0.074(0.038) 0.125(0.048)
N = 50, T = 100 0.9844(0.004) 0.9843(0.004) 0.9703(0.007) 0.062(0.033) 0.060(0.033) 0.082(0.038)
N = 100, T = 50 0.9792(0.006) 0.9789(0.006) 0.9520(0.011) 0.076(0.028) 0.076(0.027) 0.124(0.037)
N = 100, T = 100 0.9880(0.004) 0.9879(0.004) 0.9745(0.006) 0.063(0.025) 0.063(0.025) 0.084(0.028)
N = 500, T = 50 0.9827(0.003) 0.9825(0.003) 0.9554(0.007) 0.076(0.013) 0.075(0.012) 0.126(0.021)
N = 100, T = 500 0.9914(0.002) 0.9913(0.002) 0.9777(0.003) 0.061(0.010) 0.061(0.010) 0.082(0.012)
N = 200, T = 50 0.9835(0.006) 0.9878(0.005) 0.9741(0.008) 0.074(0.039) 0.074(0.038) 0.127(0.050)

aMean Correlation between true and estimated common component, with MC
st.dev. in ().

bMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 12: US dataset – Fit of factor model and correlations of permanent components 
 

  Adjusted-R^2   Correlations  

Var. SSS PCA DPCA PCA-DPCA PCA-SSS SSS-DPCA 

1 0.6814 0.7699 0.829 0.9329 0.9375 0.8917 
2 0.6761 0.7129 0.8129 0.9004 0.9454 0.871 
3 0.6305 0.6523 0.758 0.8853 0.9541 0.8634 
4 0.5283 0.5195 0.7094 0.8214 0.9486 0.8212 
5 0.4465 0.4743 0.6009 0.8522 0.9524 0.8309 
6 0.2114 0.1758 0.3822 0.6444 0.9379 0.6742 
7 0.4345 0.4805 0.4896 0.912 0.9426 0.8652 
8 0.3726 0.4408 0.496 0.8939 0.9031 0.8326 
9 0.4658 0.5665 0.6118 0.9312 0.9278 0.8785 

10 0.3188 0.3673 0.4421 0.8646 0.9158 0.8139 
11 0.6825 0.7838 0.8472 0.9326 0.9316 0.8862 
12 0.6071 0.7032 0.7573 0.9241 0.9328 0.8742 
13 0.4208 0.452 0.5672 0.8653 0.9163 0.8375 
14 0.0329 0.0322 0.0646 0.5548 0.9292 0.5701 
15 0.0387 0.0631 0.0915 0.4253 0.8912 0.3895 
16 0.6165 0.7973 0.8476 0.9427 0.9017 0.8279 
17 0.2577 0.3234 0.4394 0.8328 0.8695 0.7011 
18 0.634 0.7441 0.8345 0.9348 0.894 0.8326 
19 0.239 0.2603 0.3577 0.784 0.9049 0.733 
20 0.2608 0.2972 0.3569 0.8385 0.9057 0.7743 
21 0.5834 0.8001 0.9311 0.9004 0.8785 0.7624 
22 0.669 0.6364 0.8275 0.8727 0.8244 0.8456 
23 0.7052 0.8005 0.8323 0.9164 0.8914 0.8877 
24 0.7946 0.8686 0.9241 0.9263 0.8816 0.8962 
25 0.758 0.8185 0.9228 0.9103 0.8575 0.8709 
26 0.7738 0.8629 0.9146 0.9309 0.8761 0.8826 
27 0.5916 0.7607 0.7532 0.9388 0.902 0.8422 
28 0.6228 0.7719 0.7692 0.9365 0.8983 0.8435 
29 0.6263 0.7738 0.7673 0.9495 0.9058 0.8601 
30 0.2442 0.2805 0.3475 0.7501 0.8559 0.6864 
31 0.5725 0.7312 0.7513 0.9447 0.916 0.8468 
32 0.5314 0.673 0.6878 0.9442 0.921 0.8534 
33 0.3525 0.4671 0.532 0.8795 0.888 0.7646 
34 0.3113 0.4196 0.4553 0.8605 0.9055 0.7614 
35 0.3166 0.4155 0.4809 0.867 0.8857 0.7529 
36 0.1767 0.2019 0.3267 0.7337 0.8858 0.7101 
37 0.1837 0.2109 0.2597 0.8029 0.9155 0.7393 
38 0.179 0.1859 0.1657 0.796 0.858 0.7797 
39 0.3901 0.2453 0.8319 0.5377 0.7654 0.6717 
40 0.3541 0.1466 0.8492 0.4288 0.7255 0.6556 
41 0.0134 0.0151 0.1761 0.32 0.8822 0.3223 
42 0.0113 0.0103 0.1243 0.3305 0.928 0.3022 
43 0.5367 0.6399 0.8634 0.8325 0.8705 0.771 
44 0.3702 0.3897 0.6201 0.7503 0.8831 0.7532 
45 0.4422 0.4908 0.5396 0.911 0.9119 0.8671 
46 0.5508 0.6057 0.7857 0.8327 0.8641 0.7868 
47 0.3253 0.4393 0.6302 0.7968 0.8302 0.7102 
48 0.5487 0.5976 0.8732 0.8053 0.8541 0.7778 
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49 0.3917 0.3029 0.564 0.6836 0.8812 0.7745 
50 0.7778 0.7765 0.8364 0.9283 0.981 0.9221 
51 0.6335 0.6354 0.7501 0.8992 0.9787 0.8885 
52 0.5694 0.5818 0.6858 0.9052 0.9766 0.8894 
53 0.285 0.2709 0.3764 0.7855 0.9718 0.7875 
54 0.297 0.31 0.3867 0.7735 0.9806 0.7679 
55 0.3232 0.3262 0.4428 0.8221 0.9649 0.8081 
56 0.1686 0.1761 0.175 0.6944 0.9894 0.6878 
57 0.3444 0.3476 0.5994 0.6969 0.9797 0.6861 
58 0.154 0.1604 0.4729 0.5593 0.972 0.5403 
59 0.3281 0.4199 0.4618 0.8007 0.9194 0.7203 
60 0.3017 0.408 0.3864 0.8422 0.9052 0.7473 
61 0.2657 0.3732 0.3544 0.8636 0.9079 0.7856 
62 0.1351 0.1558 0.1316 0.6577 0.9228 0.5539 
63 0.1047 0.1085 0.108 0.7662 0.9244 0.7121 
64 0.0877 0.1388 0.3009 0.5727 0.9037 0.4793 
65 0.7791 0.7885 0.8375 0.9234 0.9798 0.918 
66 0.6465 0.6664 0.7411 0.9114 0.9742 0.8984 
67 0.293 0.3 0.3778 0.7703 0.9852 0.7703 
68 0.2321 0.2513 0.551 0.5616 0.9784 0.5478 
69 0.6014 0.7659 0.8804 0.9329 0.9073 0.838 
70 0.4828 0.7023 0.8258 0.9167 0.8953 0.7923 
71 0.4903 0.7081 0.8179 0.9328 0.8882 0.8041 
72 0.5319 0.5553 0.6797 0.8897 0.9108 0.8541 
73 0.539 0.6093 0.6724 0.9241 0.9177 0.8666 
74 0.6329 0.7839 0.8631 0.9348 0.9211 0.8475 
75 0.4916 0.5131 0.6241 0.8864 0.9243 0.8533 
76 0.5661 0.5849 0.6218 0.9348 0.9748 0.9136 
77 0.5717 0.6329 0.8017 0.8488 0.9704 0.8122 
78 0.2186 0.244 0.4698 0.627 0.9437 0.596 
79 0.6991 0.7512 0.8295 0.8987 0.9819 0.8716 
80 0.5231 0.5734 0.7408 0.8193 0.9743 0.7883 
81 0.5658 0.6267 0.7947 0.8458 0.9732 0.8114 
82 0.4699 0.5224 0.7255 0.7895 0.9685 0.7563 
83 0.4102 0.4062 0.4811 0.8065 0.9888 0.8133 
84 0.2102 0.2173 0.3042 0.7549 0.9823 0.7533 
85 0.4266 0.4769 0.5993 0.8394 0.9431 0.8024 
86 0.4131 0.4635 0.5853 0.8357 0.94 0.7987 
87 0.146 0.2514 0.3088 0.7986 0.8595 0.6641 
88 0.1631 0.1878 0.4318 0.6002 0.9298 0.5773 
89 0.1549 0.1815 0.4328 0.5939 0.9268 0.5687 
90 0.0694 0.0812 0.2015 0.5179 0.9669 0.492 
91 0.058 0.0626 0.1771 0.4467 0.9338 0.4074 
92 0.0335 0.0361 0.1034 0.3441 0.9027 0.3414 
93 0.2214 0.2675 0.4387 0.6479 0.9247 0.5903 
94 0.0137 0.02 0.1346 0.2883 0.9453 0.2732 
95 0.014 0.0157 0.1845 0.2313 0.9432 0.2251 
96 0.0517 0.0668 0.1584 0.4858 0.9656 0.4595 
97 0.3773 0.4453 0.4041 0.7251 0.9554 0.6749 
98 0.384 0.4497 0.401 0.7304 0.9579 0.6828 
99 0.3673 0.43 0.3856 0.7272 0.9579 0.6797 

100 0.3121 0.3641 0.3231 0.7255 0.9566 0.6743 
101 0.313 0.3582 0.286 0.7649 0.9599 0.7398 
102 0.4412 0.4389 0.8244 0.6871 0.8703 0.7029 
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103 0.4357 0.4135 0.7201 0.7238 0.8734 0.7474 
104 0.4303 0.473 0.5235 0.7507 0.9726 0.741 
105 0.4134 0.4591 0.5108 0.733 0.9712 0.7214 
106 0.452 0.5108 0.4867 0.7773 0.9634 0.7531 
107 0.4545 0.5214 0.4437 0.8104 0.95 0.7654 
108 0.3232 0.3427 0.4046 0.7212 0.9657 0.7204 
109 0.2168 0.2478 0.1945 0.6611 0.9165 0.6907 
110 0.1852 0.1882 0.1817 0.6266 0.9296 0.6689 
111 0.1829 0.1912 0.1947 0.6069 0.9281 0.6443 
112 0.1316 0.1785 0.0957 0.6858 0.871 0.6749 
113 0.0796 0.0759 0.0786 0.6324 0.9539 0.6083 
114 0.5288 0.6087 0.6156 0.9139 0.9311 0.8603 
115 0.264 0.2741 0.2966 0.7347 0.9901 0.7302 
116 0.2833 0.2949 0.316 0.7504 0.9904 0.7439 
117 0.0218 0.0219 0.0615 0.4527 0.9649 0.4569 
118 0.6339 0.6569 0.5729 0.8286 0.986 0.8158 
119 0.0793 0.0814 0.0569 0.6599 0.9912 0.6518 
120 0.2821 0.2967 0.2632 0.7351 0.9852 0.7235 
121 -0.0004 0.0007 0.1036 0.2642 0.9734 0.2445 
122 0.6449 0.6732 0.5692 0.8349 0.9889 0.8213 
123 0.0242 0.0263 0.0588 0.5574 0.9742 0.542 
124 0.0364 0.0356 0.2172 0.3279 0.9671 0.3277 
125 0.3036 0.3109 0.2654 0.771 0.9848 0.757 
126 0.6334 0.6511 0.5024 0.8488 0.9916 0.8431 
127 0.5824 0.6004 0.5246 0.8198 0.9857 0.808 
128 0.6372 0.6647 0.5359 0.8291 0.9895 0.819 
129 0.0163 0.0209 0.0454 0.5307 0.958 0.4847 
130 0.6828 0.7039 0.5455 0.8449 0.9907 0.8359 
131 0.0852 0.0925 0.1441 0.5238 0.9776 0.5111 
132 0.2675 0.3751 0.4279 0.8325 0.9008 0.7214 
133 0.3626 0.3897 0.5481 0.7041 0.9841 0.6871 
134 0.23 0.247 0.4103 0.6295 0.9864 0.6137 
135 0.182 0.191 0.4429 0.5765 0.9797 0.5624 
136 0.1009 0.1119 0.1045 0.7097 0.9448 0.7012 
137 0.1908 0.2008 0.3419 0.5938 0.9852 0.5813 
138 0.6577 0.7324 0.6881 0.9026 0.94 0.8659 
139 0.71 0.8267 0.7605 0.9401 0.9255 0.8699 
140 0.7093 0.8429 0.8057 0.9315 0.9231 0.8546 
141 0.5761 0.7534 0.7613 0.9163 0.906 0.8063 
142 0.6671 0.852 0.8994 0.9305 0.8844 0.8361 
143 0.6792 0.8552 0.9104 0.9301 0.8775 0.8409 
144 0.7032 0.8496 0.9087 0.9325 0.8691 0.8632 
145 0.6404 0.8514 0.8978 0.9426 0.8644 0.8439 
146 0.6837 0.8601 0.8902 0.941 0.8799 0.8527 

mean 0.3875 0.4365 0.5179 0.7644 0.9295 0.7288 
sd 0.2207 0.2557 0.2587 0.1682 0.0468 0.1513 

       
Note: The table reports the adjusted R2 in a regression of the variable on the common component and the 
correlation between each pair of estimated common components 
See the Data Appendix for variable definitions.  
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Figure 1: The role of factors in monetary VARs 
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Note: Impulse response function to an interest rate shock in the base case (no factors in VAR), with static 
principal components (PCA), dynamic principal components (DPCA), and state space factors (SSS). 
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DATA APPENDIX  

  
This appendix lists the variables used in the empirical analysis,  
 with a short description and the transformation applied.   
The transformation codes are: 1 = no transformation; 2 = first difference; 3= second difference;  
4 = logarithm; 5 = first difference of logarithm; 6 = second difference of logarithm.  

  
Variable Transf 
1 INDUSTRIAL PRODUCTION: TOTAL INDEX(1992=100,SA)  5 
2 INDUSTRIAL PRODUCTION: PRODUCTS,TOTAL(1992=100,SA)  5 
3 INDUSTRIAL PRODUCTION: FINAL PRODUCTS(1992=100,SA)  5 
4 INDUSTRIAL PRODUCTION: CONSUMER GOODS(1992=100,SA)  5 
5 INDUSTRIAL PRODUCTION: DURABLE CONSUMER GOODS(1992=100,SA) 5 
6 INDUSTRIAL PRODUCTION: NONDURABLE CONDSUMER GOODS(1992=100,SA) 5 
7 INDUSTRIAL PRODUCTION: BUSINESS EQUIPMENT(1992=100,SA)  5 
8 INDUSTRIAL PRODUCTION: INTERMEDIATE PRODUCTS(1992=100,SA)  5 
9 INDUSTRIAL PRODUCTION: MATERIALS(1992=100,SA)  5 
10 INDUSTRIAL PRODUCTION: NONDURABLE GOODS MATERIALS(1992=100,SA) 5 
11 INDUSTRIAL PRODUCTION: MANUFACTURING(1992=100,SA)  5 
12 INDUSTRIAL PRODUCTION: DURABLE MANUFACTURING(1992=100,SA)  5 
13 INDUSTRIAL PRODUCTION: NONDURABLE MANUFACTURING(1992=100,SA)  5 
14 INDUSTRIAL PRODUCTION: MINING(1992=100,SA)  5 
15 INDUSTRIAL PRODUCTION: UTILITIES(1992-=100,SA)  5 
16 CAPACITY UTIL RATE: MANUFACTURING,TOTAL(%OF CAPACITY,SA)(FRB) 1 
17 PURCHASING MANAGERS' INDEX (SA) 1 
18 NAPM PRODUCTION INDEX (PERCENT) 1 
19 PERSONAL INCOME (CHAINED) (BIL 92$, SAAR) 5 
20 INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS "(1967=100;SA)"  5 
21 EMPLOYMENT: "RATIO;" HELP-WANTED ADS:NO.UNEMPLOYED CLF  4 
22 CIVILIAN LABOR FORCE:EMPLOYED,TOTAL (THOUS.,SA)  5 
23 CIVILIAN LABOR FORCE:EMPLOYED,NONAGRIC.INDUSTRIES(THOUS.,SA)  5 
24 UNEMPLOYMENT RATE:ALL WORKERS,16 YEARS & OVER(%,SA) 1 
25 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS(SA)  1 
26 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5WKS(THOUS.,SA)  1 
27 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS(THOUS.,SA)  1 
28 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS +(THOUS.,SA)  1 
29 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS(THOUS.,SA)  1 
30 EMPLOYEES ON NONAG.PAYROLLS:TOTAL(THOUS.,SA)  5 
31 EMPLOYEES ON NONAG.PAYROLLS:TOTAL,PRIVATE (THOUS,SA)  5 
32 EMPLOYEES ON NONAG.PAYROLLS:GOODS-PRODUCING(THOUS.,SA)  5 
33 EMPLOYEES ON NONAG.PAYROLLS:CONTRACT CONSTRUCTION(THOUS.,SA)  5 
34 EMPLOYEES ON NONAG.PAYROLLS:MANUFACTURING(THOUS.,SA)  5 
35 EMPLOYEES ON NONAG.PAYROLLS:DURABLE GOODS(THOUS.,SA)  5 
36 EMPLOYEES ON NONAG.PAYROLLS:NONDURABLE GOODS(THOUS.,SA)  5 
37 EMPLOYEES ON NONAG.PAYROLLS:SERVICE-PRODUCING(THOUS.,SA)  5 
38 EMPLOYEES ON NONAG.PAYROLLS:WHOLESALE & RETAIL TRADE (THOUS.,SA)  5 
39 EMPLOYEES ON NONAG.PAYROLLS:FINANCE,INSUR.&REAL ESTATE (THOUS.,SA  5 
40 EMPLOYEES ON NONAG.PAYROLLS:SERVICES(THOUS.,SA)  5 
41 EMPLOYEES ON NONAG.PAYROLLS:GOVERNMENT(THOUS.,SA)  5 
42 AVG. WEEKLY HRS. OF PRODUCTION WKRS.: MANUFACTURING (SA)  1 
43 AVG. WEEKLY HRS. OF PROD. WKRS.:MFG., OVERTIME HRS. (SA)  1 
44 NAPM employment index (percent) 1 
45 MANUFACTURING & TRADE: TOTAL(MIL OF CHAINED 1992 DOLLARS)(SA)  5 
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46 MANUFACTURING & "TRADE: MANUFACTURING;TOTAL 5 
47 MANUFACTURING & "TRADE: MFG;" DURABLE GOODS  5 
48 MANUFACT.& "TRADE:MFG;NONDURABLE" GOODS  5 
49 MERCHANT WHOLESALERS: TOTAL (MIL OF CHAINED 1992 DOLLARS)(SA)  5 
50 MERCHANT WHOLESALERS:DURABLE GOODS TOTAL  5 
51 MERCHANT WHOLESALERS:NONDURABLE GOODS  5 
52 RETAILTRADE: TOTAL (MIL OF CHAINED 1992 DOLLARS)(SA)  5 
53 RETAILTRADE: NONDURABLE GOODS (MIL OF 1992 DOLLARS)(SA)  5 
54 PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL(BIL 92$,SAAR)  5 
55 PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL DURABLES(BIL 92$,SAAR) 5 
56 PERSONAL CONSUMPTION EXPEND (CHAINED)-NONDURABLES(BIL 92$,SAAR)  5 
57 PERSONAL CONSUMPTION EXPEND (CHAINED)-SERVICES(BIL 92$,SAAR)  5 
58 PERSONAL CONS EXPEND (CHAINED)-NEW CARS (BIL 92$,SAAR) 5 
59 HOUSING "STARTS: NONFARM(1947-58);TOTAL" FARM&NONFARM(1959-)(THOUS.,SA  4 
60 HOUSING STARTS: NORTHEAST (THOUS.U.)S.A.  4 
61 HOUSING STARTS: MIDWEST (THOUS.U.)S.A.  4 
62 HOUSING STARTS: SOUTH (THOUS.U.)S.A.  4 
63 HOUSING STARTS: WEST (THOUS.U.)S.A.  4 
64 HOUSING AUTHORIZED:TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)  4 
65 MOBILE HOMES: MANUFACTURERS' SHIPMENTS(THOUS.OF UNITS,SAAR)  4 
66 MANUFACTURING & TRADE INVENTORIES:TOTAL(MIL OF CHAINED 1992)(SA)  5 
67 INVENTORIES,BUSINESS,MFG(MIL OF CHAINED 1992 DOLLARS, SA) 5 
68 INVENTORIES,BUSINESS DURABLES(MIL OF CHAINED 1992 DOLLARS, SA) 5 
69 INVENTORIES,BUSINESS,NONDURABLES(MIL OF CHAINED 1992 DOLLARS, SA)  5 
70 MANUFACTURING & TRADE INV:MERCHANT WHOLESALERS 5 
71 MANUFACTURING & TRADE INV:RETAIL TRADE (MIL OF CHAINED 1992 DOLLARS)(SA)  5 
72 RATIO FOR MFG & TRADE:INVENTORY/SALES (CHAINED 1992 DOLLARS, SA)  2 
73 RATIO FOR MFG & "TRADE:MFG;INVENTORY/SALES"(87$)(S.A.)  2 
74 RATIO FOR MFG & "TRADE:WHOLESALER;INVENTORY/SALES(87$)(S.A.)"  2 
75 RATIO FOR MFG & TRADE:RETAIL"TRADE;INVENTORY/SALES(87$)(S.A.)"  2 
76 NAPM INVENTORIES INDEX (PERCENT)  1 
77 NAPM NEW ORDERS INDEX (PERCENT)  1 
78 NAPM VENDOR DELIVERIES INDEX (PERCENT)  1 
79 NEW ORDERS (NET)-CONSUMER GOODS & MATERIALS, 1992 DOLLARS(BCI) 5 
80 NEW ORDERS, DURABLE GOODS INDUSTRIES, 1992 DOLLARS(BCI)  5 
81 NEW ORDERS, NONDEFENSE CAPITAL GOODS,IN 1992 DOLLARS(BCI)  5 
82 MFG NEW ORDERS:ALL MANUFACTURING INDUSTRIES,TOTAL(MIL$,SA)  5 
83 MFG NEW ORDERS:MFG INDUSTRIES WITH UNFILLED ORDERS(MIL$,SA)  5 
84 MFG NEW ORDERS:DURABLE GOODS INDUSTRIES, TOTAL(MIL$,SA)  5 
85 MFG NEW ORDERS:DURABLE GOODS INDUST WITH UNFILLED ORDERS(MIL$,SA)  5 
86 MFG NEW ORDERS:NONDURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)  5 
87 MFG NEW ORDERS:NONDURABLE GDS IND.WITH UNFILLED ORDERS(MIL$,SA)  5 
88 MFG UNFILLED ORDERS: ALL MANUFACTURING INDUSTRIES,TOTAL(MIL$,SA)  5 
89 MFG UNFILLED ORDERS: DURABLE GOODS INDUSTRIES,TOTAL(MIL$,SA)  5 
90 MFG UNFILLED ORDERS: NONDURABLE GOODS INDUSTRIES, TOTAL(MIL$,SA)  5 
91 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT (BIL$,SA)  5 
92 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT IN 1992 DOLLARS(BCI) 5 
93 NYSE COMMON STOCK PRICE INDEX: COMPOSITE (12/31/65=50)  5 
94 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)  5 
95 S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS(1941-43=10)  5 
96 S&P'S COMMON STOCK PRICE INDEX: CAPITAL GOODS (1941-43=10)  5 
97 S&P'S COMMON STOCK PRICE INDEX: UTILITIES (1941-43=10)  5 
98 S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD(% PER ANNUM)  1 
99 S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO(%,NSA)  1 
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100 UNITED "STATES;EFFECTIVE" EXCHANGE RATE(MERM)(INDEX NO.)  5 
101 FOREIGN EXCHANGE RATE: GERMANY(DEUTSCHE MARK PER U.S.$)  5 
102 FOREIGN EXCHANGE RATE: SWITZERLAND(SWISS FRANC PER U.S.$)  5 
103 FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$)  5 
104 FOREIGN EXCHANGE RATE: CANADA(CANADIAN $ PER U.S.$)  5 
105 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)  2 
106 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)  2 
107 BOND YIELD: MOODY'S AAA CORPORATE(%PER ANNUM)  2 
108 BOND YIELD: MOODY'S BAA CORPORATE(%PER ANNUM)  2 
109 SECONDARY MARKET YIELDS ON FHA MORTGAGES(%PER ANNUM) 2 
110 Spread FYCP -FYFF  1 
111 Spread FYGM3-FYFF  1 
112 Spread FYGM6-FYFF  1 
113 Spread FYGT1-FYFF  1 
114 Spread FYGT5-FYFF  1 
115 Spread FYGT10-FYFF  1 
116 Spread FYAAAC-FYFF  1 
117 Spread FYBAAC - FYFF 1 
118 Spread FYFHA-FYFF  1 
119 MONEY STOCK:M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA)  6 
120 MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP 6 
121 MONEY STOCK:M3(M2+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)(BIL$,SA) 6 
122 MONEY SUPPLY-M2 IN 1992 DOLLARS (BCI) 5 
123 MONETARY BASE,ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)  6 
124 DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA)  6 
125 DEPOSITORY INST RESERVES:NONBORROW+EXT CR,ADJ RES REQ CGS(MIL$,SA)  6 
126 NAPM COMMODITY PRICES INDEX (PERCENT)  1 
127 PRODUCER PRICE INDEX: FINISHED GOODS(82=100,SA)  6 
128 PRODUCER PRICE INDEX: FINISHED CONSUMER GOODS(82=100,SA)  6 
129 INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A)  6 
130 CPI-U: ALL ITEMS(82-84=100,SA)  6 
131 CPI-U: APPAREL & UPKEEP(82-84=100,SA)  6 
132 CPI-U: TRANSPORTATION(82-84=100,SA)  6 
133 CPI-U: MEDICAL CARE(82-84=100,SA)  6 
134 CPI-U: COMMODITIES(82-84=100,SA)  6 
135 CPI-U: DURABLES(82-84=100,SA)  6 
136 CPI-U: SERVICES(82-84=100,SA)  6 
137 CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA)  6 
138 CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA)  6 
139 CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA)  6 
140 PCE,IMPL PR DEFL:PCE (1987=100)  6 
141 PCE,IMPL PR "DEFL:PCE;" DURABLES (1987=100)  6 
142 PCE,IMPL PR "DEFL:PCE;" NONDURABLES (1987=100)  6 
143 PCE,IMPL PR "DEFL:PCE;" SERVICES (1987=100)  6 
144 AVG HR EARNINGS OF CONSTR WKRS: CONSTRUCTION ($,SA) 6 
145 AVG HR EARNINGS OF PROD WKRS: MANUFACTURING ($,SA) 6 
146 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83)  1 

 


