
C Additional Estimation Results

(PRELIMINARY AND INCOMPLETE!!!)

(TO BE MADE AVAILABLE UPON REQUEST

C.1 Asymptotic Linearity of P̂ (Z):

Using Theorem 3 of Heckman, Ichimura and Todd, for any 0 ≤ p ≤ pz ≤ p̃, we get26

[
P̂ (z)− P (z)

]
Î1(x, z) =

1

N

N∑
j=1

ψNP (Xi, Zi, Di; x, z) + b̂P (z) + R̂P (z),

where N−1/2
∑N

i=1 R̂P (Xi, Zi) = op(1), plimN→∞N−1/2
∑N

i=1 b̂P (Xi, Zi) = bP < ∞,

E[ψNP (Xi, Zi, Di; X,Z|X = x, Z = z] = 0. The particular forms of ψNP and b̂P are given by

ψNP (Xi, Zi, Di; x, z) = 1

hdz
NP

e1[M
P
p,N(z)]−1

[(
Zi−z
hNP

)Qp
]′

KP
(

Zi−z
hNP

)
εD

i I1(x, z)

b̂P (x, z) = h
pz
NP e1[M

P
pN(z)]−1Î1(x, z)

pz∑
s=p+1

[∫
uQ(0) · uQ(s)P (s)(z)

′ · uQ(pz−s)K(u)du,

...,

∫
uQ(p) · uQ(s)P (s)(z)

′ · uQ(pz−s)K(u)du

]
f

(pz−s)
Z (z)′

where P (s) denotes the s-th order derivative of P and dz = dim(Z). And if p = pz, the estimator
has the same form, but with b̂P (z) = o(h

pz
NP ).

C.2 Estimating h0(x, P (z))

This appendix has two goals: first to show that the local polynomial regression estimator of h0

is asymptotically linear with trimming; second, to show that its derivative with respect to P is
uniformly consistent for the derivative of h0 with respect to P . To show that local polynomial
regression estimator of h0 is asymptotically linear with trimming, we follow arguments similar to
those in the proof of theorem 3 of Heckman, Ichimura and Todd.

Write Y = m+ε = Xph
(x0)β

∗
ph

(x0)+rph
(X, x0)+ε, where ε = Y −E(Y |X). In our case −(1−

D)Y will play the role of Y in HIT, and the vector (P (Z), X) will play the role of X in HIT. In the

26If we were only estimating E(D|Z), i.e. if we did not have the later steps of our estimation procedure, we
would use a trimming function that is based on the estimated density of Z, and we would only need that E(D|Z) is
pz smooth with pz > dz. But we need to employ another trimming function at a later step, and for that trimming
function to be well behaved it must be that fX,Z and E(D|Z) are both p̃-smooth with p̃ > dim(X, Z). We could,
in principle, state the result of this section in terms of p̃ only, but to have a bias term that is O(hp̃

NP ) we would
need to assume more moments of KP are 0.
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first part of this section, we will use Ỹ and S to denote (1−D)Y and (P (Z), X). Let ds = dx+127,

s0 = (P (z0), x0), Sp(s0) =




(S1 − s0)
Qp

...
(SN − s0)

Qp


, H = diag(1, h−1

Nhιds , . . . , h
−p
Nhι(p+ds−1)!/[p!(ds−1)!]),

W (s0)=h−ds
Nh diag

�
Kh
�

S1−s0
hNh

�
,...Kh

�
SN−s0

hNh

��
M̂h

pN(s0) = N−1H ′Sp(s0)
′W (s0)Sp(s0)H

and Mh
pN(s0) = E[M̂h

pN(s0)]. Just as in Heckman, Ichimura and Todd, we will consider the case,
where p, the order of the polynomial terms included, is less than ph ≤ p̃28. To do that partition,
Sph

(s0) = [Sp(s0), Sph
(s0)] and β∗ph

(s0) = [β∗p(s0)
′, β

∗
ph

(s0)
′]′. Then,

[β̂p(s0)− β∗p(s0)]Î10 = H[M̂h
pN(s0)]

−1N−1H ′Sp(s0)
′W (s0)ε

hÎ10

+ H[M̂h
pN(s0)]

−1N−1H ′Sp(s0)
′W (s0)Sph

(s0)β
∗
ph

(s0)Î10

+ H[M̂h
pN(s0)]

−1N−1H ′Sp(s0)
′W (s0)rph

(s0)Î10

We need to show that e2[β̂p(s0)− β∗p(s0)]Î10 is asymptotically linear.

C.2.1 First Step

As our first step, we claim that

e2H[M̂h
pN(s0)]

−1N−1H ′Sp(s0)
′W (s0)ε

hÎ10 = e2H[Mh
pN(s0)]

−1N−1H ′Sp(s0)
′W (s0)ε

hI0 + R̂1(s0)

where e2 = (0, 1, 0, ..., 0) and
∑N

i=1 R̂1(P (Zi), Xi)/
√

N = op(1). Note that e2H = 1
hNh

e2. Let

γN0(P (Zj), Xj) = e2[M
h
pN(P (Zj), Xj)]

−1, γ̂N(P (Zj), Xj) = e2[M̂
h
pN(P (Zj), Xj)]

−1, and

ΓN = {γN : sup(x,z)∈A1
|γN(x, z)− e2[MpN(x, z)]−1| ≤ εγ}

Let

G1N=

(
gN :gN (εh

i ,Xi,Zi,Xj ,Zj)=N−3/2γN (P (Zj),Xj)
εh
i

h
dx+2
Nh

"�
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�Qp
#′

Kh

�
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�
Ĩ1iĨ1j

)

where Ĩ1 ∈ I1, which defined in Appendix (C.4).
Also let gN0 be the same as gN except with γN replaced by γN0, and Ĩ1i and Ĩ1j replaced by I1i

and I1j. And define ĝN similarly with γ̂N , Î1i and Î1j replacing γN ,Ĩ1i and Ĩ1j, respectively. With

27In this section we pretend that the estimation is done as if the actual values of P (Zi) are observed. In a
later section we are going to show that this does not affect the asymptotic variance of our estimator as long as
P̂ (Zi)−P (Zi) = op(hNh), which is only true if P̂ is estimated on a region where the density of (X,Z) is bounded
away from 0. This is the reason we trim every observation in defining Ŵ .

28We introduce ph for the same reason we introduced pP . For additional information please refer to footnote
(C.1).
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this new notation 1/
√

N
∑

i R̂1(Xj, Zj) =
∑

i

∑
j[ĝN(εh

i , Xi, Zi, Xj, Zj) − gN0(ε
h
i , Xi, Zi, Xj, Zj)].

To show that this sum is op(1), we first need to show that
∑

j

∑
i gN(εh

i , Xi, Zi, Xj, Zj) is equicon-

tinuous over G1N in a neighborhood of gN0(ε
h
i , Xi, Zi, Xj, Zj) and that with probability approach-

ing to 1, ĝN(εh
i , Xi, Zi, Xj, Zj) lies within the neighborhood over which equicontinuity is estab-

lished. For the first step, we try using this lemma. To apply that lemma, we need to have a degen-
erate U-process, and

∑
i

∑
j gN(εh

i , Xi, Zi, Xj, Zj) is not degenerate. To deal with this issue, we

first split the
∑

i

∑
j gN(εh

i , Xi, Zi, Xj, Zj) process into two sums:
∑

i

∑
j 6=i gN(εh

i , Xi, Zi, Xj, Zj)

and
∑

i gN(εh
i , Xi, Zi). The latter process is symmetric. To see that it is also degenerate, we

observe that
(

(P (Zi),Xi)−(P (Zi),Xi)
hNh

)Qp

is a row vector whose first component equals 1 and all other

components equal 0.

gN(εh
i , Xi, Zi) = N−3/2γN(P (Zi), Xi)e

′
1ε

h
i

(
1

hNh

)dx+2

K(0)

E[gN(εh
i , Xi, Zi)] = E[γN(P (Zi), Xi)e

′
1E(εh

i |Xi, P (Zi)]
K(0)

N3/2hdx+2
Nh

= 0

Thus,
∑

i gN(εh
i , Xi, Zi) is degenerate.

Next, define g0
N :=

gN (εh
i ,Xi,Zi,Xj ,Zj)+gN (εh

j ,Xj ,Zj ,Xi,Zi)

2
, Li := (εh

i , Xi, Zi), φN(Li) := E[g0
N(Li, l)|Li]

= E[g0
N(l, Li)|Li], and g̃0

N(Li, Lj) = g0
N(Li, Lj) − φN(Li) − φN(Lj) as in Heckman, Ichimura and

Todd, so that
∑

i

∑
j 6=i g

0
N(Li, Lj) =

∑
i

∑
j 6=i g̃

0
N(Li, Lj)+

∑N
i=1 2(N−1)φN(Li). To show equicon-

tinuity of our original process we need to show that that each of the processes
∑N

i=1 gN(εh
i , Xi, Zi),∑

i

∑
j 6=i g̃

0
N(Li, Lj) and

∑N
i=1 2(N − 1)φN(Li) are degenerate. We already verified that the first

of these is degenerate. To show that the latter two are degenerate, one could use law of iterated
expectations and the independence of (ε, U) from (X,Z) in a similar fashion to argue that

φN (Li)=
1
2

εh
i

h
dx+2
Nh

N−3/2Ĩ(Xi,Zi)E

"
γN (P (Zj),Xj)

 �
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�Qp
!′

εh
j K

�
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�
|εh

i ,Xi,Zi

#
.

Thus, φN(εh
i , Xi, Zi) =

εh
i Ĩ(Xi,Zi)t(XiZi)

2N3/2hdx+2
Nh

for some measurable function t(Xi, Zi). Now we can go

through the same arguments as above and show that E[φN(εh
i , Xi, Zi)] = 0. Thus, all the processes

are degenerate, and lemma 3 is applicable to each of them. So the next step is the verification of
the conditions of the equicontinuity lemma.

Let I1i be as in Appendix (C.4). Then |gN(εh
i , Xi, Zi)| ≤ N−3/2C|e′1||εh

i |K(0)I1i, and

N∑
i=1

E

[
N−3C2(εh

i )
2 1

h
2(dx+2)
Nh

K(0)2I1i

]
≤ C2K(0)2E((εh)2)

(
1

Nh
(dx+2)
Nh

)2

< ∞

This shows that condition (i) of the equicontinuity lemma holds for the
∑

i gn(εh
i , Xi, Zi) process

if Nhdx+2
Nh →∞. Condition (ii) holds under the same assumption by the dominated convergence

theorem.
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Next, we recall that K(·) is zero outside a compact set, so that when
∣∣∣
∣∣∣ (P (Zi),Xi)−(P (Zj),Xj)

hNh

∣∣∣
∣∣∣ is

”too large” K
(

(P (Zi),Xi)−(P (Zj),Xj)

hNh

)
= 0. This implies that there exist C1, C2 such that any element

of

[(
(P (Zi),Xi)−(P (Zj),Xj)

hNh

)Qp
]′

K
(

(P (Zi),Xi)−(P (Zj),Xj)

hNh

)
is bounded by C1

(
1

hNh

)dx+1

1{||(P (Zi), Xi)−
(P (Zj), Xj)|| ≤ C2hNh}. Then

|gN (εh
i ,Xi,Zi,Xj ,Zj)|≤N−3/2CC11{||(P (Zi),Xi)−(P (Zj),Xj)||≤C2hNh}

�
1

hNh

�dx+2|εh
i |I1(Xj ,Zj)I1(Xi,Zi)

Thus, as long as Nh
(dx+2)
Nh →∞, conditions (i) and (ii) are satisfied for the process∑

i

∑
j 6=i gN(εh

i , Xi, Zi, Xj, Zj) as well.

To verify the same conditions for the 2Nφ(·) process, note that |2NφN(εh
i , Xi, Zi)| ≤ 2N−1/2C|εh

i |.
Then the expression on the right hand side of this inequality provides an envelope for this process.
Since

∑N
i=1 4N−1C2E

(
(εh

i )
2
)

= 4C2E
(
(εh

i )
2
)

< ∞, the first condition of Lemma 3 of HIT holds
for the 2Nφ process. On the other hand, since E

(
(εh

i )
2
)

< ∞, (εh
i )

21{|εh
i | >

√
n δ

2C
} → 0 as

n →∞, almost everywhere. Moreover, (εh
i )

21{|εh
i | >

√
n δ

2C
} ≤ (εh

i )
2. Therefore, we could apply

the Dominated Convergence Theorem to get that

∀δ > 0, lim
n→∞

n∑
i=1

4n−1C2E

(
(εh

i )
21

{
|εh

i | >
√

n
δ

2C

})
= 0

Now we move on to verifying condition (iii) of Lemma 3 of HIT for our three processes. First, let
g1

N and g2
N be any two elements of G1N . Then

|g1
N(εh

i , Xi, Zi, Xj, Zj)− g2
N(εh

i , Xi, Zi, Xj, Zj)| ≤ N−3/2C11{||(P (Zi), Xi)− (P (Zj), Xj)|| ≤ C2hNh}
× |εh

i |
hdx+2

Nh

(
|I1

1j − I2
1j| ||γ1

n(Sj)||I1i

+ |I1
1i − I2

1i| ||γ1
n(Sj)||I1j + |γ1

n(Sj)− γ2
n(Sj)|I1jI1i

)

Since Nhdx+2
Nh → ∞, the L2 covering number of G1N family is bounded by the product of the

covering numbers of I1 and ΓN . By the Kolmogorov-Tihomirov lemma and the results given in
Appendix (C.4), we know that the third condition of the equicontinuity lemma is satisfied since
p̃ > dx + 1 and Nhdx+2

Nh / log N →∞.

The arguments so far showed equicontinuity of the process
∑N

i=1

∑N
j=1 gN(εh

i , Xi, Zi, Xj, Zj)

over G1N in a neighborhood of gN0(ε
h
i , Xi, Zi, Xj, Zj).

C.2.2 Second Step:

Next, we move on to the term that will contain the bias:

e2H[M̂h
pN(s0)]

−1N−1H ′S ′p(s0)W (s0)Sp(s0)β
∗
p (s0)Î10 = Î10

Nhdx+2
Nh

e2[M̂
h
pN(P (z0), x0)]

−1×
Pph

k=p+1

Pph
i=1

��
(P (Zi),Xi)−(P (z0),x0)

hNh

�Qp
�′

((P (Zi),Xi)−(P (z0),x0))Q(k)[m(k)(P (z0),x0)]′Kh
�

(P (Zi),Xi)−(P (z0),x0)

hNh

�
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We add and subtract

e2[M̂
h
pN(s0)]

−1

ph∑

k=p+1

Î10

hdx+2
Nh

E

{[(
Si − Sj

hNh

)Qp
]′

(Si − Sj)
Q(k)Kh

(
Si − Sj

hNh

)
|Sj = s0

}
[m(k)(s0)]

′

This gives us three terms. The difference of the first two terms can be shown to be op(1) by
appealing to the equicontinuity lemma. In particular, we take γN , ΓN , and I1 as before and
define

gN (Xi,Zi,Xj ,Zj)=
γNjĨ1j

N3/2h
dx+2
Nh

"�
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�Qp
#′

((P (Zi),Xi)−(P (Zj),Xj))
Q(k)Kh

�
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�
[m

(k)
j ]′

− Ĩ1jγNj

N3/2h
dx+2
Nh

E

""�
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�Qp
#′

((P (Zi),Xi)−(P (Zj),Xj))
Q(k)Kh

�
(P (Zi),Xi)−(P (Zj),Xj)

hNh

�
|Xj ,P (Zj)

#
[m

(k)
j ]′

LetĝN(Xi, Zi, Xj, Zj) and gN0(Xi, Zi, Xj, Zj) be defined in the same way as before. Moreover, let
G2N := {gN(Xi, Zi, Xj, Zj)|γN(Xj, Zj) ∈ ΓN}. Then going through the same steps as in Step 1,

we can show that 1/
√

N
∑N

j=1 R̂21(Xj, Zj) =
∑N

i=1

∑N
j=1[ĝN(Xi, Zi, Xj, Zj)−gN0(Xi, Zi, Xj, Zj)] =

op(1). Thus, we are left with the term

e2[M̂
h
pN(s0)]

−1

ph∑

k=p+1

1

hdx+2
Nh

E

{[(
Si − Sj

hNh

)Qp
]′

(Si − Sj)
Q(k)Kh

(
Si − Sj

hNh

)
|Sj = s0

}
[m(k)(s0)]

′Î10

The last expression equals

hp−1
N e2[Mp(s0)]

−1×∑p
k=p+1

[∫
uQ(0) · uQ(k)m(k)(s0)

′ · uQ(p−1)K(u)du, ...,
∫

uQ(p) · uQ(k)m(k)(s0)
′ · uQ(p−k)K(u)du

]

×f (p−k)(s0)
′Î10

We need

plimN→∞1/
√

N
∑N

i=1 hp−1
N e2[Mp(Si)]

−1×∑p
k=p+1

[∫
uQ(0) · uQ(k)m(k)(Si)

′ · uQ(p−1)K(u)du, ...,
∫

uQ(p) · uQ(k)m(k)(Si)
′ · uQ(p−1)K(u)du

]

×f (p−k)(Si)
′Î(Xi, Zi) = bh0 < ∞

All the terms involving (Xi, Zi) are bounded with probability 1. Since Nh
2(ph−1)
Nh → a < ∞ this

is indeed true.

C.2.3 Third Step:

Here we focus on the e2H[M̂h
pN(s0)]

−1N−1H ′S ′p(s0)W (s0)rph
(s0)Î10 term. Since e2H = 1/hNhe2,

this term equals
1

hNh

e2[M̂
h
pN(s0)]

−1N−1H ′S ′p(s0)W (s0)rph
(s0)Î10
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Following the same steps as in the proof of lemma 8 of Heckman, Ichimura and Todd, we can
show that N−1H ′X ′

p(s0)W (s0)rph
(s0) = op(h

ph+1
Nh ).

Combining all these results, we conclude that under the assumptions given in the Appendix B,

[
ĥ0(p, x)− h0(p, x)

]
Î1(x, z) =

1

N

N∑
i=1

ψNh0(P (Zi), Xi,−(1−Di)Yi; x, z) + b̂h0(p, x, z) + R̂h0(p, x, z)

where N−1/2
∑N

i=1 R̂h0(P (Zi, Xi, Zi) = op(1), plimN→∞N−1/2
∑N

i=1 b̂h0(P (Zi), Xi, Zi) = bh0 < ∞,
and E[ψNh0(P (Zi), Xi, DiYi; P (Zi), Xi, Zi|P (Zi) = p,Xi = x, Zi = x] = 0, p = P (z). Moreover,

ψNh0
(P (Zi),Xi,−(1−Di)Yi;p,x,z)= 1

h
dx+2
Nh

e2[Mh
p,N (P (z),x)]−1

��
(P (Zi),Xi)−(P (z),x)

hNh

�Qp
�′

Kh
�

(P (Zi),Xi)−(P (z),x)

hNh

�
ε
h0
i I1(x,z)

C.2.4 Asymptotic linearity of ĥ0(P̂ (z), x):

To show this, we need to use Lemma 1 of Heckman, Ichimura and Todd. Recall that

Lemma C.1 (Heckman, Ichimura and Todd (1998)) Suppose that:

1. Both P̂ (z) and ĝ(p, t) are asymptotically linear with trimming where

[
P̂ (z)− P (z)

]
I
(
(x, z) ∈ Â1

)
= N−1

N∑
j=1

ψNP (Dj, Zj; x, z) + b̂P (x, z) + R̂P (x, z)

[
ĝ(p, t)− g(p, t)

]
I
(
(x, z) ∈ Â1

)
= N−1

N∑
j=1

ψNg(Yj, Tj, P (Zj); p, t, z) + b̂g(p, t, z) + R̂g(p, t, z);

2. ∂ĝ(p, t)/∂p and P̂ (z) are uniformly consistent and converge to ∂g(p, t)/∂p and P (z), respec-
tively and ∂g(p, t)/∂p is continuous;

3. plimN→∞N−1/2
∑N

i=1 b̂g(P (Zi), Ti, Zi) = bg and

plimN→∞N−1/2
∑N

i=1
∂g(P (Zi),Ti)

∂p
b̂P (P (Zi), Ti, Zi) = bgP ;

4. plimN→∞N−1/2
∑N

i=1

[
∂ĝ(P Ti

(Zi),Ti)

∂p
− ∂g(P (Zi),Ti)

∂p

]
R̂P (P (Zi), Ti, Zi) = 0, and

plimN→∞N−1/2
∑N

i=1

[
∂ĝ(P Ti

(Zi),Ti)

∂p
− ∂g(P (Zi),Ti)

∂p

]
b̂P (P (Zi), Ti, Zi) = 0;

5. plimN→∞N−3/2
∑N

i=1

[
∂ĝ(P Ti

(Zi),Ti)

∂p
− ∂g(P (Zi),Ti)

∂p

]
ψNP (Dj, Zj; Ti, Zi) = 0.
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then ĝ(P̂ (z), t) is also asymptotically linear with trimming where

[
ĝ(P̂ (z), t)− g(P (z), t)

]
I
(
(x, z) ∈ Â1

)
= N−1

N∑
j=1

[
ψNg(Yj, Tj, P (Zj), Zj; P (z), t, z)

+ ∂g(t, P (z))/∂p · I1jψNP (Dj, Zj, Xj; x, z)
]

+ b̂g(x, z) + R̂g(x, z),

and plimN→∞
∑N

i=1 b̂g(Xi, Zi) = bg + bgP .

In our case, g(p, x) = ∂
∂p

E
(− (1−D)Y |P (Z) = p,X = x

)
. The verification of the conditions for

Lemma 1 of HIT for the case where g itself is the derivative of some conditional expectation with
respect to one of the conditioning variables is not really different from what Heckman, Ichimura
and Todd have. The only potential difference is in the proof of theorem 4, but even there, their
argument holds for the entire ∇β̂ vector, not just the first component. Therefore,
[
ĥ0(P̂ (z),x)−h0(P (z),x)

]
I
(
(x,z)∈Â1

)
= N−1

PN
j=1

h
ψNh0

(−(1−Dj)Yj ,P (Zj),Xj ;P (z),x,z)+
∂h0(P (z),x)

∂p
I1jψnP (Dj ,Zj ;x,z)

i

+ b̂ĥ0
(x, z) + R̂ĥ0

(x, z)

with plimN→∞
1√
N

∑N
j=1 b̂ĥ0

(Xj, Zj) = bh0 + bh0P < ∞, and plimN→∞
1√
N

∑N
j=1 R̂ĥ0

(Xj, Zj) = 0.

C.3 Estimating q(h0(x, P (z)), P (z))

We need to estimate E(Y |D = 1, h1(X, P (Z)), P (Z)) = E(DY |h1(X,P (Z)),P (Z))
P (Z)

. We are going to

use local polynomial regression to estimate E(DY |h1(X, P (Z)), P (Z)). As a result, the analysis
here is very similar to the proof of their theorem 3. The only difference is that we evaluate this
estimator at the value of the random vector (h0(Xi, P (Zi)), P (Zi)), which is different from the
random vector we condition on. As long as the support of h0(Xi, P (Zi)) overlaps with the support
of h1(Xi, P (Zi)) this is well defined.

To simplify the following expressions, define T1i := (h1(Xi, P (Zi)), P (Zi)), and
T0i := (h0(Xi, P (Zi)), P (Zi)). Let t1 and t0 denote a value in the interior of the support of T1

and T0, respectively. And let p0 denote that point in the interior of the support of P (Z) that
corresponds to t0. Let Î1i and I1i be as before. Let Î2i := 1{f̂ĥ1,P̂ (ĥ0(Xi, P̂ (Zi)), P̂ (Zi)) ≥ q02},
and I2i := 1{fh1,P (h0(Xi, P (Zi)), P (Zi)) ≥ q02}. Our goal is to derive the asymptotic distribution
of

1√
N

∑N
i=1

[
Di

(
q̂(h0i, Pi)− q(h0i, Pi)

)]
Î1(Xi, Zi)Î2(Xi, Zi)

Let Tp(t0) :=




(T11 − t0)
Qp

...
(T1N − t0)

Qp


, εq

i := DiYi − E(DiYi|T1i), and M q
pN(t0) = E[M̂ q

pN(t0)], where

W q(t0):=h−2
Nqdiag

�
Kq

�
T11−t0

hNq

�
,...,Kq

�
T1N−t0

hNq

��
, M̂ q

pN(t0) = N−1Hq ′Tp(t0)
′W q(t0)Tp(t0)H

q.
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where Hq is defined in the same way as H in section (C.2) with hNq replacing hNh. Then

1√
N

∑N
j=1 Dj[q̂(T0j)− q(T0j)]Î1j Î2j = 1

N
√

N

∑N
j=1

Dj

P (Zj)
e1[M̂

q
pN(T0j)]

−1Hq ′T ′
p(T0j)W

q(T0j)ε
q Î1j Î2j

+ 1
N
√

N

∑N
j=1

Dj

P (Zj)
e1[M̂

q
pN(T0j)]

−1Hq ′Tp(T0j)
′(T0j)W

q(T0j)T p(T0j)β
∗
p(T0j)Î1j Î2j

+ 1
N
√

N

∑N
j=1

Dj

P (Zj)
e1[M̂

q
pN(T0j)]

−1Hq ′T ′
p(T0j)W

q(T0j)rp(T0j)Î1j Î2j.

C.3.1 First Term:

Our goal in this section is to show that

1

N
√

N

N∑
j=1

N1∑
i=1

Dj

P (Zj)
e1[M̂

q
pN(T0j)]

−1

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0j

hNq

)
Î1j Î2j

− 1

N
√

N

N∑
j=1

N1∑
i=1

Dj

P (Zj)
e1[M

q
pN(T0j)]

−1

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0j

hNq

)
I1jI2j = op(1).

Define γq
N0(T0j) = e1[M

q
pN(T0j)]

−1, γ̂q
N(T0j) = e1[M̂

q
pN(T0j)]

−1. Let

Γq
N = {γq

N :sup{||γq
N (x,z)−e1[Mq

pN (x,z)]−1||≤εγq}:(x,z)∈A1}.

Next, we define

Gq
1N :=

{
gN : gN(εq

i , Xi, Zi; Dj, Xj, Zj)

= N−3/2γq
N(T0j)

Dj

P (Zj)

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0j

hNq

)
Ĩ1j Ĩ2j

}

gN0(ε
q
i , Xi, Zi; Dj, Xj, Zj) = N−3/2γq

N0(T0j)
Dj

P (Zj)

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0j

hNq

)
I1jI2j

with Ĩ1 ∈ I1, Ĩ2 ∈ I2 and γq
N ∈ Γq

N , and I1, I2 as in Appendix C.4. We are going to try to show that

the process
∑N

i=1

∑N
j=1 gN(εq

i , Xi, Zi; Dj, Xj, Zj) is equicontinuous over Gq
1N in a neighborhood of

gN0(ε
q
i , Xi, Zi; Dj, Xj, Zj), and that ĝN(εq

i , Xi, Zi; Dj, Xj, Zj) lies in the neighborhood over which
we establish equicontinuity with probability approaching to 1.

The equicontinuity lemma is applicable to symmetric, degenerate U-processes only, and∑N
i=1

∑N
j=1 gN(εq

i , Xi, Zi; Dj, Xj, Zj) is neither symmetric nor degenerate. But we can analyze this
process in multiple steps. First, note that

∑
i

∑
j gN(εq

i , Xi, Zi; Dj, Xj, Zj) =
∑

i gN(εq
i , Di, Xi, Zi)

+
∑

i

∑
j 6=i gN(εq

i , Xi, Zi; Dj, Xj, Zj).
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The first piece is a symmetric, but not degenerate U-process. To remedy this consider first

g̃N(εq
i , Di, Xi, Zi) := N−3/2γq

N(T0i)
Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0i

hNq

)
Ĩ1iĨ2i

− E

{
N−3/2γq

N(T0i)
Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0i

hNq

)
Ĩ1iĨ2i

}

This process is degenerate, and satisfies all the conditions of the lemma 3 of Heckman, Ichimura
and Todd. But it is only one piece of the

∑N
i=1 gN(εq

i , Di, Xi, Zi) process. The other piece is

N∑
i=1

E

{
N−3/2γq

N(T0i)
Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0i

hNq

)
Ĩ1iĨ2i

}

= N−1/2E

{
γq

N(T0i)
Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0i

hNq

)
Ĩ1iĨ2i

}

We have to make sure that the limit of this is 0. We know that any element of
"�

T1i−T0i
hNq

�Qp
#′

Kq((T1i−

T0i)/(hNq)) is bounded by C1h
−2
NqI{||T1i − T0i|| ≤ C2hNq} for some finite C1 and C2. On the other

hand, |Di| ≤ 1, |Ĩ1iĨ2i| ≤ 1 E|εq
i | < ∞, and P (Zi) is almost surely bounded away from 0.

Combining these facts with Nh4
Nq →∞, we get that the desired limit is in fact 0.

Next, we focus on the part containing different indices. Let Si := (εq
i , Di, Xi, Zi). Define

g0
N(Si, Sj) =

1

2
N−3/2γq

N(T0j)
Dj

P (Zj)

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

q

(
T1i − T0j

hNq

)
Ĩ1j Ĩ2j

+
1

2
N−3/2γq

N(T0i)
Di

P (Zi)

[(
T1j − T0i

hNq

)Qp
]′

h−2
Nqε

q
jK

q

(
T1j − T0i

hNq

)
Ĩ1iĨ2i

Define φN(Si) = E[g0
N(Si, Sj)|Si]. Then,

φN(Si) = 1
2
N−3/2h−2

NqE

{
γN(T0j)

Dj

P (Zj)

[(
T1i−T0j

hNq

)Qp
]′

εq
i K

q
(

T1i−T0j

hNq

)
Ĩ1j Ĩ2j|εq

i , Di, Xi, Zi

}

This is of the form ϕN(T1i)ε
q
i , and E

(
ϕN(T1i)ε

q
i

)
= E

[
ϕN(T1i)E(εq

i |T1i)
]

= 0. Thus we can define

g̃0
N(Si, Sj) := g0

N(Si, Sj) − φN(Si) − φN(Sj). The process
∑

i

∑
j 6=i g̃

0
N(Si, Sj) is a degenerate U-

process of order two. On the other hand, the above calculations show that
∑

i 2(N − 1)φN(Si)
is a degenerate order one process. Since |Di| ≤ 1 and P (Zi) is bounded away from 0, and
Ĩ1iĨ2i ≤ Ĩ1i ≤ I∗1i := 1{fX,Z(Xi, Zi) ≥ q01 − εf1} the same steps as on p. 287 of HIT prove that
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each of these processes satisfies the first two conditions of the equicontinuity lemma. For the third
condition, take any g

(1)
N , g

(2)
N ∈ G1N .

|g(1)
N − g

(2)
N | =

∣∣∣N−3/2 Dj

P (Zj)
h−2

Nqε
q
i K

(
T1i−T0j

hNq

)∣∣∣

×
∣∣∣∣γ

(1)
N (T0j)

[(
T1i−T0j

hNq

)Qp
]′

Ĩ
(1)
1j Ĩ

(1)
2j − γ

(2)
N (T0j)

Dj

P (Zj)

[(
T1i−T0j

hNq

)Qp
]′

Ĩ
(2)
1j Ĩ

(2)
2j

∣∣∣∣

≤
∣∣∣N−3/2 Dj

P (Zj)
h−2

Nqε
q
i K

(
T1i−T0j

hNq

)∣∣∣
∣∣∣∣
(
γ

(1)
N (T0j)− γ

(2)
N (T0j)

) [(
T1i−T0j

hNq

)Qp
]′

Ĩ
(1)
1j Ĩ

(1)
2j

∣∣∣∣

+
∣∣∣N−3/2 Dj

P (Zj)
h−2

Nqε
q
i K

(
T1i−T0j

hNq

)∣∣∣
∣∣∣∣γ

(2)
N (T0j)

[(
T1i−T0j

hNq

)Qp
]′

Ĩ
(1)
2j

∣∣∣∣
∣∣∣Ĩ(1)

1j − Ĩ
(2)
1j

∣∣∣

+
∣∣∣N−3/2 Dj

P (Zj)
h−2

Nqε
q
i K

(
T1i−T0j

hNq

)∣∣∣
∣∣∣∣γ

(2)
N (T0j)

[(
T1i−T0j

hNq

)Qp
]′

Ĩ
(2)
1j

∣∣∣∣
∣∣∣Ĩ(1)

2j − Ĩ
(2)
2j

∣∣∣

Therefore, the third condition of the equicontinuity lemma will hold, if each of the families
ΓN , I1, I2 satisfy it. By Assumption (4.3(b)) and 4 of HIT, ΓN satisfies this condition. On the
other hand, in section (C.4), we verify this condition for I1.

Combining all these results, we conclude that the process
∑N

j=1

∑N
i=1 gN(εq

i , T1i, T0j) is equicon-
tinuous over G1N in a neighborhood of gN0(ε

q
i , T1i, Dj, T0j, Xj, Zj).

Lemma 5 and 6 of HIT can be used to show that sup(x,z)∈A1∩A2
||M̂pN(h0(x, P (z)), P (z)) −

MpN(h0(x, P (z)), P (z))|| → 0. This result combined with the arguments at the beginning shows
that ĝN(εq

i , T1i, T0j) lies in the neighborhood of gN0(ε
q
i , T1i, T0j, Xj, Zj) over which equicontinuity

was shown.

C.3.2 Second Term:

Next, we look at

1√
N

N∑
j=1

Dje1[M̂pN(T0j)]
−1N−1H ′Tp(T0j)

′(T0j)W (T0j)T p(T0j)β
∗
p(T0j)Î1j Î2j

Fix the evaluation point (d0, x0, z0) such that (x0, z0) ∈ A1 ∩ A2. Let P0 = P (z0), t0 =
(h0(x0, P (z0)), P (z0). Then each term in this sum equals:

e1H[M̂pN(t0)]
−1N−1 d0

P0

H ′T ′
p(t0)W (t0)T p(t0)β

∗
p (t0)Î10Î20

= e1[M̂pN(t0)]
−1

p∑
s=p+1

N−1 1

h2
Nq

p∑
i=1

d0

P0

[(
T1i − t0

hNq

)Qp
]′

(T1i − t0)
Q(s)[m(s)(t0)]

′K
(

T1i − t0
hNq

)
Î10Î20

We add and subtract

e1[M̂pN (t0)]−1
Pp

s=p+1
1

h2
Nq

E

(
Dj

P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

(T1i−T0j)
Q(s)K

�
T1i−T0j

hNq

�
|T0j=t0,Xj=x0,Zj=z0

)
[m(s)(t0)]′Î10Î20
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This gives us three terms. But the difference of the two terms is handled in the same way as in
lemma 2. In particular, we take γn and Γn as before and define

gN(T1i, T0j, Dj, Xj, Zj) = N−3/2γN(T0j)h
−2
Nq

×
 

Dj
P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

(T1i−T0j)
Q(s)K

�
T1i−T0j

hNq

�
−E

"
Dj

P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

(T1i−T0j)
Q(s)K

�
T1i−T0j

hNq

�∣∣∣T0j ,Xj ,Zj

#!

×[m(s)(T0j)]
′Ĩ1j Ĩ2j

LetĝN(T1i, T0j, Xj, Zj) and gN0(T1i, T0j, Xj, Zj) be defined in the same way as before. More-
over, let G2N := {gn(T1i, T0j, Xj, Zj)|γN(T0j) ∈ ΓN}. Then going through the same steps as

in lemma 2 we can show that 1/
√

N
∑N

j=1 R̂21(T0j, Dj) =
∑N

i=1

∑N
j=1[ĝN(T1i, T0j, Dj, Xj, Zj) −

gN0(T1i, T0j, Dj, Xj, Zj)] = op(1).
Then we deal with the term

e1[M̂pN (t0)]−1
Pp

s=p+1
1

h2
Nq

E

(
Dj

P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

(T1i−T0j)
Q(s)K

�
T1i−T0j

hNq

�
|T0j=t0,Xj=x0,Zj=z0

)
[m(s)(t0)]′Î10Î20

which in turn equals

e1

(
[M̂pN(t0)]

−1 − [Mp(t0)]
−1

)

·Pp
s=p+1

1

h2
Nq

E

(
Dj

P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

(T1i−T0j)
Q(s)K

�
T1i−T0j

hNq

�
|T0j=t0,Xj=x0,Zj=z0

)
[m(s)(t0)]′Î10Î20

+e1[Mp(t0)]−1
Pp

s=p+1
1

h2
Nq

E

(
Dj

P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

(T1i−T0j)
Q(s)K

�
T1i−T0j

hNq

�
|T0j=t0,Xj=x0,Zj=z0

)
[m(s)(t0)]′Î10Î20

The first expression can be treated in the same way as in lemma 2. If t0 = (h0(x0, P (z0)), P (z0)),
the last expression equals

e1[Mp(t0)]−1
Pp

s=p+1
1

h2
Nq

P (z0)
E

(
Dj

"�
T1i−t0

hNq

�Qp
#′

(T1i−t0)Q(s)K

�
T1i−t0

hNq

�
|T0j=t0,Xj=x0,Zj=z0

)
[m(s)(t0)]′Î10Î20

=e1[Mp(t0)]−1
Pp

s=p+1
1

h2
Nq

P (z0)
E(Dj |Zj=z0)E

("�
T1i−t0

hNq

�Qp
#′

(T1i−t0)Q(s)K

�
T1i−t0

hNq

�)
[m(s)(t0)]′

=hp
Nqe1[Mp(t0)]−1

Pp
s=p+1[

R
uQ(0)·uQ(s)m(s)(t0)′·uQ(p−1)K(u)du,...,

R
uQ(p)·uQ(s)m(s)(t0)′·uQ(p−s)K(u)du]f (p−s)(t0)′

We need

plimN→∞1/
√

N
∑N

i=1 hp
Nqe1[Mp(T0i)]

−1×
∑p

s=p+1

[∫
uQ(0) · uQ(s)m(s)(T0i)

′ · uQ(p−1)K(u)du, ...,
∫

uQ(p) · uQ(s)m(s)(T0i)
′ · uQ(p−1)K(u)du

]

×f (p−s)(T0i)
′ = bq < ∞

All the terms involving T0i = (h0(Xi, P (Zi)), P (Zi)) are bounded with probability 1. Thus, if
Nh2p

Nq → c < ∞ then we are OK.
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C.3.3 Third Term:

We claim that under our assumptions, for each evaluation point (d0, x0, z0) such that (x0, z0) ∈
A1 ∩ A2,

e1[M̂pN(t0)]
−1N−1 d0

P (z0)
H ′T ′

p(t0)W (t0)rp+1(t0)Î10Î20 = op(h
p+1
Nq )

But, as in lemma 8 of HIT,

N−1|| d0

P (z0)
H ′T ′

p(t0)W (t0)rp+1(t0)Î10Î20|| ≤ N−1h
(p+1)
Nq

×
∣∣∣∣∣

∣∣∣∣∣
∑
i∈I1

d0

P (z0)

[(
T1i − t0

hNq

)Qp
]′ (

T1i − t0
hNq

)Q(p+1)

[m(p+1)(ti)−m(p+1)(t0)]
1

h2
Nq

K

(
T1i − t0

hNq

)∣∣∣∣∣

∣∣∣∣∣

≤ N−1o(hp+1
Nq )

N∑
i=1

∣∣∣∣∣

∣∣∣∣∣

[(
T1i − t0

hNq

)Qp
]′ (

T1i − t0
hNq

)Q(p+1)
1

h2
Nq

K

(
T1i − t0

hNq

)∣∣∣∣∣

∣∣∣∣∣ = op(h
p+1
Nq )

By lemma 5 of HIT, for any t0 such that fh1(X,P (Z)),P (Z)(t0) > 0, for sufficiently large N , M̂pN(t0)

will be nonsingular. Therefore, every element of the matrix [M̂pN(t0)]
−1 has finite norm.

C.3.4 Conclusion:

1√
N

∑N
j=1 Dj

(
q̂(h0j, Pj)− q(h0j, Pj)

)
Î1j Î2j =AE

1√
NN

∑N
j=1

∑N
i=1

Dj

P (Zj)
[MpN(h0j, Pj)]

−1

[(
(h1i,Pi)−(h0j ,Pj)

hNq

)Qp
]′

1
h2

Nq
K

(
(h1i,Pi)−(h0j ,Pj)

hNq

)
εq

i I1jI2j + bq

where εq
i = DiYi − E

[
DiYi|h1

(
Xi, P (Zi)

)
, P (Zi)

]

C.4 Issues in Trimming

The estimation method in this paper uses two trimming functions. One of the trimming functions
is based on the estimated density f̂X,Z(x, z). The other one is based on f̂ĥ1,P̂ . The first part
of this appendix shows that the family of functions that contains the first trimming function
has an envelope and satisfies the conditions of the equcicontinuity lemma. The second part of
the appendix verifies the same condition for the trimming function which is based on the kernel
density estimator of fh1,P . We observe the values of (X, Z). Suppose the support of (X,Z) is a
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connected29 subset of Rd, with d < ∞. Also let

H1 := {f : sup
x,z
|f(x, z)− fX,Z(x, z)| ≤ εf1, f has smoothness q > d, inf

(x,z)∈Aq

||Df(x, z)|| ≥ θ1}

∩ {f : sup
x,z
|fj(x, z)− (fX,Z)j(x, z)| ≤ εj

f1, }

I1 := {I((x, z) ∈ Ã1) : Ã = {(x, z) : f(x, z) ≥ q01} for some f ∈ H1}

A1 := {(x, z) : fX,Z(x, z) ≥ q01 − εf1}
Aq := {(x, z) : q01 + εf1 ≥ fX,Z(x, z) ≥ q01 − εf1}
A1 := {(x, z) : fX,Z(x, z) ≥ q01}

where θ1 > 0, and the subscripts denote the jth partial derivative of the associated function. First
we observe that under the assumptions of Silverman’s Theorem A on fX,Z , the kernel function
and the bandwidth sequence used to estimate this density function

sup(x,z)∈supp(X,Z)

∣∣∣f̂(x, z)− fX,Z(x, z)
∣∣∣ → 0 a.s. sup(x,z)∈supp(X,Z)

∣∣∣f̂j(x, z)− fX,Z,j(x, z)
∣∣∣ → 0 a.s.

for j ∈ {1, ..., d}, where the subscript j denotes the jthpartial derivative. Using this result, we
can claim that 1A(s) is an envelope for I1.

Next, we verify that I1 satisfies the third condition of the equicontinuity lemma. Our argu-
ments will rely on a lemma due to Kolmogorov and Tihomirov.

Definition C.1 Let E be a connected compact subset of a finite dimensional Banach space. Sup-
pose the metric dimension of E equals d. Consider bounded real valued functions on E with norm
equal ||f || = sups∈E |f(s)|. A function in this space has smoothness q > 0 (q = p+a, p an integer,
0 < a ≤ 1) if for arbitrary vectors s ∈ E, s + h ∈ E, we have

f(s + h) =

p∑

k=0

1

k!
Bk(h, s) + R(h, s) (13)

where Bk(h, s) is a homogeneous form of degree k in h and

|R(h, s)| ≤ C||h||q

where C is a certain constant. All of the functions f that satisfy (C.1) and (13) with a fixed
constant C form the class FE

q (C).

29Connectedness of the support is needed for the application of the Mean Value Theorem. If the support is not
connected but could be partitioned into finitely many connected subsets, then the argument can be made for each
connected piece separately.
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Lemma C.2 (Kolmogorov-Tihomirov Lemma): For every set B ⊂ FE
q (C) bounded in

the sense of the metric as in Definition (C.1), we have
(

1
ε

)d/q
= O(Cε(B)), where Cε(B) =

log2 D(ε,B), and D(ε,B) is the ε packing number (in the norm as in Definition (C.1)) of the set
B.

By this lemma, we know that the class of functions which consists of restrictions of elements of
H1 to A1 satisfies the third condition of the equicontinuity lemma in the sup norm. Using this
information, we need to verify that I1 also satisfies that condition. Before we start with that
proof, let us show thew following preliminary result:

Claim C.1 A1 and Aq are compact.

Proof: The sets [q0 − εf ,∞) and [q01 − εf1, q01 + εf1] are closed in R when it is equipped with
the Euclidean (absolute value) metric. Since fX,Z is continuous, this implies that A1 and Aq are
closed in (Rd, || · ||). If we show that A1 is also bounded, we will have shown that both A1 and Aq

are compact. Suppose toward a contradiction A1 is unbounded. This means that for each J > 0,
Rd \ BJ(0) must contain infinitely many elements of A1. We will pick a sequence of elements of
A1 recursively. Pick s1 ∈ B1(0)∩A1. Suppose for j ≥ 2, we have already picked s1, ..., sj−1. Then
pick sj ∈ (Bj(0) \ Bj−1/2(0)) ∩ A1. The {sj}∞j=1 is an unbounded sequence contained in A1, such
that ||si − sj|| > 1/2 whenever i 6= j. Let r := (q01 − εf1)/2. Since fX,Z is uniformly continuous,
there exists ν̃ > 0 such that ||t− s|| < ν̃ ⇒ |fX,Z(t)− fX,Z(s)| < r. Let ν := min {ν̃, 1/2}. Then
for each j, t ∈ Bν(sj) ⇒ fX,Z(t) > (q01 − εf1)/2. Moreover, for i 6= j, Bν(si) ∩Bν(sj) = ∅. Then

1 ≥ P
(∪∞j=1Bν(sj)

)
=

∞∑
j=1

P (Bν(sj)) > (q01 − εf1)/2
∞∑

j=1

Leb(Bν(sj))

which is a contradiction. ¥

Remark C.1 The above arguments also imply that

1. Aq has finitely many disjoint components30, so that we could write Aq = ∪L
l=1Ql, with

dH(Ql, Qk) > 0 for l 6= k,

2. there exists M1 ∈ R such that ∀f ∈ H1, sup(x,z)∈A1
|f(x, z)| ≤ M1, and

3. there exists M2 ∈ R such that ∀f ∈ H1, sup(x,z)∈A1
||Df(x, z)|| ≤ M2.

Claim C.2 For any f, g ∈ H1, such that sup(x,z)∈A1
|f(x, z)−g(x, z)| < η ≤ εf1, and for δ = η/θ1,

{f ≥ q0 > g} ⊆ ({s : f(s) = q0} ⊕Bδ(0)
) ∩ Aq

where A⊕B := {a + b : a ∈ A, b ∈ B}, and Bδ(0) denotes the ball around 0 with radius δ.

30A component of a set E is a connected subset E0 ⊆ E such that there is no connected set in E containing E0

other than E0 itself.
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Proof: First, consider s ∈ {f ≥ q0 > g}. f ∈ H1 ⇒ f(s)−εf1 ≤ fX,Z(s) ≤ f(s)+εf1. Combining
this with f(s) ≥ q01 we get fS(s) ≥ q01−εf1. Similarly, g ∈ H1 ⇒ g(s)−εf1 ≤ fX,Z(s) ≤ g(s)+εf1.
And combining this with g(s) < q01 we get fX,Z(s) ≤ q01+εf1. Thus, fX,Z(s) ∈ [q01−εf1, q01+εf1].
This shows that {f ≥ q0 > g} ⊆ Aq. If Aq \ ({x : f(x) = q01} ⊕ Bδ(0)) = ∅, we have nothing
more to prove. Else, consider any s ∈ Aq \ ({x : f(x) = q01} ⊕ Bδ(0)). Our goal is to show
that s ∈ Rd \ {f ≥ q0 > g}. Toward this goal, pick u ∈ {x : f(x) = q01} that is closest to
s. Note that, since ||s − u|| is a continuous function of u and {x : f(x) = q01} is compact,
such a point must exist. Moreover, u must be in the same component of Aq as s, and the line
segment joining u to s must be contained in that component of Aq. Thus, ||Df(ũ)|| > θ1 for
any ũ lying on the line segment between s and u. Using the mean value theorem, we know that
|f(s)− f(u)| = |f(s)− q01| = |Df(ũ) · (s− u)| = ||Df(ũ)|| · ||s− u|| · | cos α|, where α denotes the
angle between s and u. But ||Df(ũ)|| > θ1 by our previous arguments, and | cos α| = 1 because
u is the member of the q01-level set of f that is closest to s31. Combining these arguments, we
get that |f(s)| > q01 + η. Note that if f(s) < q01, there is nothing to prove. On the other hand,
if f(s) > q01 + η, then |f(s) − g(s)| < η implies that g(s) must also be strictly larger than q01,
which means that s cannot belong to {f ≥ q0 > g}. ¥

Claim C.3 I1 satisfies the third condition of the equicontinuity lemma.

Proof: Let τ > 0 and let {f 1, ..., fJ} be the maximal η-separated subset of H1 restricted to A1

in the sup norm, with τ > η > 0. The relationship between η and τ will be clear later. For
j ∈ {1, ..., J}, let Ij := {s : f j(s) ≥ q01}. We are going to try to demonstrate that {I1, ..., IJ} is
maximal τ -separated subset of I1 in the L2 norm. For this claim to be true it must be that for
each element I of I1, there exists j ∈ {1, .., J} such that

∫ ∣∣I − Ij
∣∣2 dP = P ({I 6= Ij}) < τ.

Note that

P ({I 6= Ij}) = P ({I 6= Ij}) + P ({I 6= Ij}) = P ({f ≥ q0 > f j}) + P ({f j ≥ q0 > f}),

where f is an element of H1 that is associated with I. Using claim (C.2), with δ = η/θ1,

P ({f ≥ q0 > f j}) + P ({f j ≥ q0 > f}) ≤ P
(
({s : f(s) = q0} ⊕Bδ(0)) ∩ Aq

)

+ P
(
({s : f j(s) = q0} ⊕Bδ(0)) ∩ Aq

)

31To see this, let Usu be an open set containing the component of Aq that s and u belong to. Let f |Usu denote
the restriction of f to Usu. Now u solves min

∑d
i=1(si − ui)2 such that u ∈ {x : f |Usu(x) = q01}. The first order

conditions of this problem tell us that if s 6= u, then the fi(u) must be proportional to si − ui. Reversing s and
u in this problem says fi(s) must also be proportional to si − ui. Since ũ is on the line segment joining s and u,
and since derivative is a linear operator, fi(ũ) must also be proportional to si − ui. This last fact tells us that
| cos α| = 1.
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=
L∑

l=1

P
(
({s : f(s) = q0} ⊕ Bδ(0)) ∩Ql

)
+

L∑

l=1

P
(
({s : f j(s) = q0} ⊕ Bδ(0)) ∩Ql

)

≤ M1

L∑

l=1

(
Leb

(
({s : f(s) = q0} ⊕Bδ(0)) ∩Ql

)
+ Leb

(
({s : f j(s) = q0} ⊕ Bδ(0)) ∩Ql

))
,

where we used the second part of Remark (C.1) to write the last inequality. On the other hand,
using the last part of Remark (C.1), the compactness of Aq and the formula for surface areas of
smooth, parametrized manifolds we could show that for each f ∈ H1, the d−1 dimensional volume
of the smooth surface {s : f(s) = q01}∩Ql ≤ R for some R < ∞. Then the last expression above
is less than or equal to 4M1LRη

θ1
. Letting τ = 4M1LRη

θ1
, we can conclude that τ -packing number for I1

in the L2 norm is the same as η-packing number for H1 in the sup norm32. Since by Kolmogorov-
Tihomirov lemma, the latter satisfies the desired condition of the equicontinuity lemma, so does
the former. ¥

Next we turn to our trimming problem. We have to employ two trimming functions. The
first function is needed to guarantee that the estimator ˆP (z) is uniformly consistent for E(D|Z).
The second trimming function is needed because we need to have a uniformly consistent estimate
for E(DY |h1(X,P (Z)), P (Z)) evaluated at the value (h0(X, P (Z)), P (Z)) takes. Our previous
arguments the first trimming function satisfies the conditions of the equicontinuity lemma. We
need to define a family of functions that will contain our second trimming function. For this
purpose we define

Bz = {z ∈ supp(Z) : (x, z) ∈ A1, for some x ∈ supp(X)}

and33

ΨP = {g : sup
z∈Bz

|g(z)− P (z)| ≤ εP , g has smoothness q > d, inf
z∈Bzq

||Dg(z)|| ≥ θP}

Ψ′
P = ΨP ∩ {g : sup

z∈Bz

|g(z)− P (z)| = oP (h̃3
N2)}

Ψh = {ϕ : sup
P̃∈ΨP

sup
(x,z)∈A1

|ϕ(x, P̃ (z))− h0(x, P (z))| ≤ εh, ϕ has smoothness q > d}

∩ {ϕ : sup
P̃∈ΨP

sup
(x,z)∈A1

|ϕ(x, P̃ (z))− h0(x, P (z))| = oP (h̃3
N2)}

∩ {ϕ : inf{||Dxϕ(x, P̃ (z))|| : (x, z) ∈ Aq, P̃ ∈ ΨP} ≥ θhx}
∩ {ϕ : inf{||DP ϕ(x, P̃ (z))|| : (x, z) ∈ Aq, P̃ ∈ ΨP} ≥ θhP}

32Since sup |f − f j | < η →
√

E|f − f j |2 < η, the η-packing number for H1 in the sup norm is at least as large
as the η-packing number for H1 in the L2 norm.

33In these definitions all the θ’s are strictly greater than 0, and h̃N2 denotes the smoothing parameter that is
used in the trimmed kernel density estimation of fh1,P .
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H2 = {f : ∃Ĩ1 ∈ I1, d̃
(
f(ϕ, P̃ ), fh1,P (h0, P )

)
≤ εf2}

∩ {f : f has smoothness q > d, inf
(x,z,P̃ ,ϕ)∈Aq×ΨP×Ψh

||Df(ϕ(x, P̃ (z)), P̃ (z))|| ≥ θ2}

where

d̃(f(ϕ,P̃ ),fh1,P (h0,P )):=sup(ϕ,P̃ )∈Ψh×ΨP
sup(x,z)∈A1

|f(ϕ(x,P̃ (z)),P̃ (z))−fh1,P (h0(x,P (z)),P (z))|

I2 = {I((x, z) ∈ Ã2) : Ã2 = {(x, z) ∈ A1 : f(ϕ(x, P̃ (z)), P̃ (z)) ≥ q02} for some f∈H2,ϕ∈Ψh,P̃∈ΨP }

Going through arguments similar to those above we can verify the third condition of the equicon-

tinuity lemma for I2. But we still need to verify that d̃
(
f̂ĥ1,P̂ (ϕ, P̃ ), fh1,P (h0, P )

)
≤ εf2 for suf-

ficiently large N with probability approaching to 1 34. To guarantee this, we need ĥ1(Xi, P̂ (Zi))
and P̂ (Zi) to be uniformly consistent for h1(Xi, P (Zi)) and P (Zi). However, this occurs only
when the density of (X,Z) is bounded away from 0. Therefore, in the kernel density estimation
of fh1,P we have to trim out those observations at which fX,Z is very small. Let K̃2 be a Lipschitz
function with Lipschitz constant equal to M3

35 and define

f̂ĥ1,P̂

(
ϕ(x, P̃ (z)), P̃ (z)

)
:=

1

Nh̃2
N2

N∑
i=1

K̃2

(
(ĥ1(Xi, P̂ (Zi)), P̂ (Zi))− (ϕ(x, P̃ (z)), P̃ (z))

h̃N2

)
Î1(Xi, Zi)

f̂h1,P

(
ϕ(x, P̃ (z)), P̃ (z)

)
:=

1

Nh̃2
N2

N∑
i=1

K̃2

(
(h1(Xi, P (Zi)), P (Zi))− (ϕ(x, P̃ (z)), P̃ (z))

h̃N2

)
Î1(Xi, Zi)

Adding and subtracting some terms yields

|f̂ĥ1,P̂ (ϕ(x, P̃ (z)), P̃ (z))− fh1,P (h0(x, P (z)), P (z))| ≤ (14)∣∣∣f̂ĥ1,P̂ (ϕ(x, P̃ (z)), P̃ (z))− f̂ĥ1,P̂ (h0(x, P (z)), P (z))
∣∣∣

+
∣∣∣f̂ĥ1,P̂ (h0(x, P (z)), P (z))− f̂h1,P (h0(x, P (z)), P (z))

∣∣∣
+

∣∣∣f̂h1,P (h0(x, P (z)), P (z))− fh1,P (h0(x, P (z)), P (z))
∣∣∣

Our goal is to show that each of the above terms is less than or equal to εf2/3 with probability
approaching to 1 for sufficiently large N . Let us start with the first one:

|f̂ĥ1,P̂ (ϕ(x, P̃ (z)), P̃ (z))− f̂ĥ1,P̂ (h0(x, P (z)), P (z))| ≤
1

Nh̃2
N2

∑N
i=1

∣∣∣K̃2

(
(ĥ1(Xi,P̂ (Zi)),P̂ (Zi))−(ϕ(x,P̃ (z)),P̃ (z))

h̃N2

)
− K̃2

(
(ĥ1(Xi,P̂ (Zi)),P̂ (Zi))−(h0(x,P (z)),P (z))

h̃N2

)∣∣∣ Î1(Xi, Zi)

≤ M3

h̃3
N2

[∣∣∣ϕ(x, P̃ (z))− h0(x, P (z))
∣∣∣ +

∣∣∣P̃ (z)− P (z)
∣∣∣
]

34Note that the first trimming function Î1 would eventually eliminate observations which lie outside of A1 with
probability approaching to 1. So in terms of the second trimming function, we only need to worry about (x, z)
values in A1.

35Later, we may impose other conditions on this kernel function.
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We know that on A1, both ϕ(x, P̃ (z)), and P̃ (z) are uniformly consistent. Moreover, by assump-
tion |ϕ(x, P̃ (z))− h0(x, P (z))| and |P̃ (z)− P (z)| are both op(h̃

3
N2) on A1.

Next focus on the middle term of (14):
∣∣∣f̂ĥ1,P̂ (h0(x, P (z)), P (z))− f̂h1,P (h0(x, P (z)), P (z))

∣∣∣ =
���� 1

Nh̃2
N2

PN
i=1

�
K̃2

�
(ĥ1(Xi,P̂ (Zi)),P̂ (Zi))−(h0(x,P (z)),P (z))

h̃N2

�
−K̃2

�
(h1(Xi,P (Zi)),P (Zi))−(h0(x,P (z)),P (z))

h̃N2

��
Î1(Xi,Zi)

����

≤
∣∣∣ M3

Nh̃3
N2

∑N
i=1

[
ĥ1(Xi, P̂ (Zi))− h1(Xi, P (Zi))

]
Î1(Xi, Zi)

∣∣∣
+

∣∣∣ M3

Nh̃3
N2

∑N
i=1

[
P̂ (Zi)− P (Zi)

]
Î1(Xi, Zi)

∣∣∣

Using the results of Appendix C.1:
∣∣∣ M3

Nh̃3
N2

∑N
i=1

[
P̂ (Zi)− P (Zi)

]
Î1(Xi, Zi)

∣∣∣
≤

∣∣∣ M3

N2h̃3
N2

∑N
i=1

∑N
j=1 ψNP (Dj, Xj, Zj; Xi, Zi)

∣∣∣ +
∣∣∣ M3

Nh̃3
N2

∑N
i=1 b̂P (Xi, Zi)

∣∣∣
+

∣∣∣ M3

Nh̃3
N2

∑N
i=1 R̂P (Xi, Zi)

∣∣∣

We will split the first term into two sums: one containing the terms where i and j are the same,
and the other, where they are different. To deal with the sum containing terms with the same
indices we will use a law of large numbers:

Theorem C.1 (Chebyshev) Let S1, S2, ... be uncorrelated with means µ1, µ2, ... and variances
σ2

1, σ
2
2, .... If

∑N
i=1 σ2

i = o(N2) as N →∞ then

1

N

N∑
i=1

Si − 1

N

N∑
i=1

µi→P 0

Now

M3

N2h̃3
N2

∑N
i=1 ψNP (Xi, Zi, Di; Xi, Zi) = 1

N

∑N
i=1

M3

Nh̃3
N2hdz

NP

e1[M
P
pN(Zi)]

−1e′1K
P (0)εP

i I1i

Using the law of iterated expectations we could show that each term of the above summation has
0 expectation. On the other hand,

limN→∞ 1
N2

∑N
i=1 var

[
M3e1[MP

pN (Zi)]
−1e′1KP (0)I1iε

P
i

Nh̃3
N2hdz

NP

]
= limN→∞

M2
3 E

�(
e1[MP

pN (Zi)]
−1e′1

)2(
KP (0)

)2

I1i(εP
i )

2
�

N3h̃6
N2h2dz

NP

Recall that Nh2dz
NP → ∞ and MP

pN to a nonsingular matrix. Thus, as long as Nh̃3
N2 does not

converge to 0, or does not converge to 0 too fast, the variance condition needed to apply the
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theorem holds and we have36

plimN→∞

∣∣∣∣∣
1

N

N∑
i=1

M3

Nh̃3
N2h

dz
NP

e1[M
P
pN(Zi)]

−1e′1K
P (0)I1(Xi, Zi)ε

P
i

∣∣∣∣∣ = 0

Next, we focus on
∣∣∣ M3

N2h̃3
N2

∑N
i=1

∑N
j 6=i ψNP (Xj, Zj, Dj; Xi, Zi)

∣∣∣. Our first step will be appealing to

the Hoeffding, Powell, Stock and Stoker lemma to express the term sum inside the absolute value
as a sum over one index only. Define

ζP (Di, Yi, Xi, Zi, Dj, Yj, Xj, Zj) =
1

2hdz
NP

e1[M
P
pN(Zi)]

−1

[(
Zj − Zi

hNP

)]′
KP

(
Zj − Zi

hNP

)
I1(Xi, Zi)ε

P
j

+
1

2hdz
NP

e1[M
P
pN(Zj)]

−1

[(
Zi − Zj

hNP

)]′
KP

(
Zi − Zj

hNP

)
I1(Xj, Zj)ε

P
i

By the law of iterated expectations E
[
ζP (Di, Yi, Xi, Zi, Dj, Yj, Xj, Zj)

]
= 0. Moreover, using

Cauchy-Schwarz inequality, and the facts that Nh2dz
NP →∞, MP pN converges to a nonsingular ma-

trix and KP is 0 outside a compact set we could also show that E
[
(ζP (Di, Yi, Xi, Zi, Dj, Yj, Xj, Zj))

2
]

=
o(N). Therefore, using the Hoeffding, Powell, Stock and Stoker lemma, we can argue that

plimN→∞ M3

N2h̃3
N2

∑N
i=1

∑N
j 6=i ψNP (Xj, Zj, Dj; Xi, Zi)

= plimN→∞ M3√
Nh̃6

N2

plimN→∞
∑N

i=1

∑N
j 6=i

ψNP (Xj ,Zj ,Dj ;Xi,Zi)

N3/2

= plimN→∞ 1
N

∑N
i=1

M3

hdz
NP h̃3

N2

E

[
e1[M

P
pN(Zj)]

−1I1(Xj, Zj)
[(

Zi−Zj

hNP

)]′
KP

(
Zi−Zj

hNP

)
εP

i |Di, Xi, Zi

]

We can now apply Chebychev’s law of large numbers to this expression. Expectation of each term
is again 0. But we still have to verify that

limN→∞ 1
N2

PN
i=1

M2
3

h̃6
N2

E

8
<
:

 
E

"
e1[MP

pN (Zj)]
−1I1(Xj ,Zj)

h�
Zi−Zj
hNP

�i′
1

h
dz
NP

KP
�

Zi−Zj
hNP

�
εP
i |Di,Xi,Zi

#!2
9
=
;=0

By Jensen’s inequality

(
E

[
e1[M

P
pN(Zj)]

−1I1(Xj, Zj)
[(

Zi−Zj

hNP

)]′
1

hdz
NP

KP
(

Zi−Zj

hNP

)
εP

i |Di, Xi, Zi

])2

≤ E

{
I1(Xj, Zj)

(
e1[M

P
pN(Zj)]

−1
[(

Zi−Zj

hNP

)]′)2
1

h2dz
NP

(
KP

(
Zi−Zj

hNP

))2 (
εP

i

)2 |Di, Xi, Zi

}

=
(εP

i )
2

hdz
NP

E

{
I1(Xj, Zj)

(
e1[M

P
pN(Zj)]

−1
[(

Zi−Zj

hNP

)]′)2
1

hdz
NP

(
KP

(
Zi−Zj

hNP

))2

|Di, Xi, Zi

}

36Note that TN
P→ 0 ⇔ |TN | P→ 0
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On A1, e1[M
P
pN(Zj)]

−1 and the density fX,Z are bounded. Moreover, the kernel function KP is

assumed to have compact support, and hence for some positive C̃

E

{
I1(Xj, Zj)

(
e1[M

P
pN(Zj)]

−1
[(

Zi−Zj

hNP

)]′)2
1

hdz
NP

(
KP

(
Zi−Zj

hNP

))2

|Di, Xi, Zi

}
≤ C̃

Since, we also have σ2
P := E(εP

i )2 < ∞,

1
N2

∑N
i=1

M2
3

h̃6
N2

E

{(
E

[
e1[M

P
pN(Zj)]

−1I1(Xj, Zj)
[(

Zi−Zj

hNP

)]′
1

hdz
NP

KP
(

Zi−Zj

hNP

)
εP

i |Di, Yi, Xi, Zi

])2
}

≤ 1
N2

∑N
i=1

M2
3

hdz
NP h̃6

N2

σ2
P C̃ =

M2
3 σ2

P C̃√
Nh2dz

NP

√
Nh̃6

N2

We assumed that Nh2dz
NP → ∞. Then if

√
N h̃6

N2 does not go to 0, or if it does not go to 0 too
fast, then the product of

√
Nhdz

NP and
√

N h̃6
N2 will still go to ∞37. Next, we deal with

∣∣∣ M3

Nh̃3
N2

∑N
i=1 b̂P (Xi, Zi)

∣∣∣

From Appendix C.1, we know that plimN→∞ 1√
N

∑N
i=1 b̂P (Xi, Zi) = bP < ∞. Then if limN→∞

√
Nh̃3

N2

= ∞, this term too will be converging to 0 uniformly in probability. Finally, let us look at

∣∣∣ M3

Nh̃3
N2

∑N
i=1 R̂P (Xi, Zi)

∣∣∣ =
∣∣∣ M3√

Nh̃3
N2

1√
N

∑N
i=1 R̂P (Xi, Zi)

∣∣∣

We know that 1√
N

∑N
i=1 R̂P (Xi, Zi) = op(1). This and our previous assumption that limN→∞

√
Nh̃3

N2 =
∞ jointly imply that this last term also goes to 0 uniformly in probability.

Next, we study the second part of the middle term in (14). Using Appendix C.2, we can write

∣∣∣ M3

Nh̃3
N2

∑N
i=1

[
ĥ1(Xi, P̂ (Zi))− h1(Xi, P (Zi))

]
Î1(Xi, Zi)

∣∣∣ ≤
∣∣∣ M3

N2h̃3
N2

∑N
i=1

∑N
j=1 ψNĥ1

(Dj, Yj, Xj, Zj; Xi, Zi)
∣∣∣ +

∣∣∣ M3

Nh̃3
N2

∑N
i=1 b̂ĥ1

(Xi, Zi)
∣∣∣

+
∣∣∣ M3

Nh̃3
N2

∑N
i=1 R̂ĥ1

(Xi, Zi)
∣∣∣

Again, we know that plimN→∞ 1√
N

∑N
i=1 b̂ĥ1

(Xi, Zi) = bh1 + bh1P < ∞. So if
√

Nh̃3
N2 → ∞,

the middle term goes to 0 in probability by the continuous mapping theorem. Similarly, we
know plimN→∞ 1√

N

∑N
i=1 R̂ĥ1

(Xi, Zi) = 0. Thus, the same condition guarantees that the last sum
converges to 0 in probability. As for the first sum, again we can split it into two pieces. One

37We could for example, choose h̃N2 = h
dz/6
NP .
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piece contains the terms where the two indices equal, the other piece contains the terms where
the indices are different:

∣∣∣ M3

N2h̃3
N2

∑N
i=1 ψNĥ1

(Di, Yi, Xi, Zi; Xi, Zi)
∣∣∣ =

∣∣∣ 1
N

∑N
i=1

M3

Nh̃3
N2

(
ψNh1(Di, Yi, Xi, Zi; Xi, Zi) + ∂h1

∂P
(Xi, P (Zi))ψNP (Di, Xi, Zi; Xi, Zi)

)∣∣∣

Each term has 0 expectation. To apply Chebychev’s law of large numbers, we need to verify that
the sum of the variances is o(N2). By Cauchy-Schwarz inequality it suffices to verify that

limN→∞ 1
N2

∑N
i=1 E

[ M2
3

N2h̃6
N2

ψNh1(Di, Yi, Xi, Zi; Xi, Zi)
2
]

=

limN→∞
M2

3

N3h̃6
N2h

2(dx+1)
Nh1

E
[(

e1[M
h1
pN(Xi, P (Zi))]

−1e′1
)2(

Kh1(0)
)2

I1(Xi, Zi)
(
εh1

i

)2
]

= 0

and

limN→∞ 1
N2

∑N
i=1 E

[ M2
3

N2h̃6
N2

(
∂h1

∂P
(Xi, P (Zi))

)2
ψNP (Di, Xi, Zi; Xi, Zi)

2
]

=

limN→∞
M2

3

N3h̃6
N2h2dz

NP

E
[(

∂h1

∂P
(Xi, P (Zi))

)2 (
e1[M

P
pN(Zi)]

−1e′1
)2(

KP (0)
)2

I1(Xi, Zi)
(
εP

i

)2
]

= 0

The first one is true because the term inside the parentheses is bounded, Nh̃6
N2 → ∞ and

Nh
2(dx+1)
Nh1

→ ∞. The second one is true because Nh2dz
NP → ∞, the term inside the parentheses

is bounded, and Nh̃6
N2 → ∞. So the sum of terms with i = j converges to 0 in probability. For

the other sum, we again use Hoeffding, Powell, Stock and Stoker lemma. By arguments similar
to those in Appendix B.2, we can show that

plimN→∞ M3

N2h̃3
N2

∑N
i=1

∑N
j 6=i ψNĥ1

(Dj, Yj, Xj, Zj; Xi, Zi) =

= plimN→∞ 1
N

∑N
i=1

M3

h̃3
N2

E
[
ψNĥ1

(Di, Yi, Xi, Zi; Dj, Yj, Xj, Zj)|Di, Yi, Xi, Zi

]

Then we apply the Chebyshev’s theorem one last time. Again, the expectation of ith term is 0.
And given that we have already assumed Nh2dz

NP →∞, Nh
2(dx+1)
Nh1

→∞ and Nh̃12
N2 does not go to

0, the variance condition is satisfied. Therefore, this sum converges to 0 in probability as well.
This leaves us with the last piece of (14):

∣∣∣f̂h1,P (h0(x, P (z)), P (z))− fh1,P (h0(x, P (z)), P (z))
∣∣∣ =

∣∣∣∣ 1
Nh̃2

N2

∑N
i=1 K̃2

((
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

)
Î1(Xi, Zi)− fh1,P (h0(x, P (z)), P (z))

∣∣∣∣
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1
N

PN
i=1

1

h̃2
N2

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
AÎ1(Xi,Zi)=

1

Nh̃2
N2

PN
i=1 K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
AI1(Xi,Zi)+

1

Nh̃2
N2

PN
i=1 K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A

×[σ̂(Xi,Zi)]
−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�[
f̂(Xi,Zi)−fX,Z(Xi,Zi)

]
1{f̂(Xi,Zi)>f(Xi,Zi)}

+ 1

Nh̃2
N2

PN
i=1 K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̂(Xi,Zi)]

−1J̃+
2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�[
f̂(Xi,Zi)−fX,Z(Xi,Zi)

]

×1{f̂(Xi,Zi)≤f(Xi,Zi)}

My goal is to show that each of the last two terms is uniformly op(1). Let’s focus on the first of
those two. That term equals

PN
i=1

PN
j=1

1

N2h̃2
N2

h̃d
N1

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̂(Xi,Zi)]

−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�
1{f̂(Xi,Zi)>f(Xi,Zi)}

×
�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
−E

�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
|Xi,Zi

��
(15)

+
PN

i=1

PN
j=1

1

N2h̃2
N2

h̃d
N1

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̂(Xi,Zi)]

−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�
1{f̂(Xi,Zi)>f(Xi,Zi)}

×
�
E

�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
|Xi,Zi

�
−fX,Z(Xi,Zi)

�
(16)

Using the equicontinuity lemma we will show that (15) is op(1). For this purpose, for g ∈ H1,
define σ̃(Xi, Zi) = |g(Xi, Zi)− fX,Z(Xi, Zi)|, L̃i = 1{g(Xi, Zi) > fX,Z(Xi, Zi)}. Then

PN
i=1

PN
j=1

1

N2h̃2
N2

h̃d
N1

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̃(Xi,Zi)]

−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̃(Xi,Zi)

�
L̃i

×
�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
−E

�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
|Xi,Zi

�
−fX,Z(Xi,Zi)

�

is a degenerate U-process of order one which satisfies the conditions of the equicontinuity lemma.
Finally, (16) is op(h̃N1) by the smoothness of fX,Z . On the other hand, by using the same tricks,
we can also show that the symmetric term (i.e. the term involving J̃+) is also uniformly op(1).

As a result, f̂h1,P (h0(x, P (z)), P (z)) converges in probability uniformly to

f̃h1,P (h0(x, P (z)), P (z)) =
1

Nh̃2
N2

N∑
i=1

K̃2

((
h1(Xi, P (Zi)), P (Zi)

)− (h0(x, P (z)), P (z))

h̃N2

)
I1(Xi, Zi)

Given our assumptions on K̃2 we can use a strong law of large numbers to show that this converges
to

E

[
1

h̃2
N2

K̃2

((
h1(Xi, P (Zi)), P (Zi)

)− (h0(x, P (z)), P (z))

h̃N2

)
1(A1)

]

22



Now the set A1 is closed, but we can find a sequence of open sets that are all contained in A1.
Moreover the limit of this sequence of open sets will be A1. Using change of variables theorem by
breaking the set A1 into disjoint regions where P and h1 have non-zero derivatives, if necessary,
and then using Silverman’s theorem we have the desired result.
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