C Additional Estimation Results
(PRELIMINARY AND INCOMPLETE!!!
(TO BE MADE AVAILABLE UPON REQUEST

C.1 Asymptotic Linearity of P(Z):
Using Theorem 3 of Heckman, Ichimura and Todd, for any 0 < p <p, < p, we get?0

[]5(2) — P(z)}fl(:v, z) = %ZQ/JNP(XM Zi, Disx,z) + bp(2) + Rp(2),

j=1
where N~V23"N  Rp(X;, Zi) = 0,(1), plimy s N2 3N bp(X;, Z;) = bp < o0,
ElYnp(Xi, Zi, Diy; X, Z|X = x,Z = z] = 0. The particular forms of ¢)yp and bp are given by
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D,
bp(z,z) = h%Pel[M;N(z)]’lfl(x, z) Z [/ u?© -uQ(S)P(S)(Z), 9P K () du,

s=p+1
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where P®) denotes the s-th order derivative of P and d, = dim(Z). And if p = p,, the estimator
has the same form, but with bp(z) = o(h%p).

C.2 Estimating hy(x, P(z))

This appendix has two goals: first to show that the local polynomial regression estimator of hg
is asymptotically linear with trimming; second, to show that its derivative with respect to P is
uniformly consistent for the derivative of hg with respect to P. To show that local polynomial
regression estimator of hq is asymptotically linear with trimming, we follow arguments similar to
those in the proof of theorem 3 of Heckman, Ichimura and Todd.

Write Y = m+e = X5, (20)5;, (20) + 75, (X, ¥0) +€, where e =Y — E(Y[X). In our case —(1—
D)Y will play the role of Y in HIT, and the vector (P(Z), X) will play the role of X in HIT. In the

26Tf we were only estimating E(D|Z), i.e. if we did not have the later steps of our estimation procedure, we
would use a trimming function that is based on the estimated density of Z, and we would only need that F(D|Z) is
D, smooth with p, > d,. But we need to employ another trimming function at a later step, and for that trimming
function to be well behaved it must be that fx z and E(D|Z) are both p-smooth with p > dim(X, Z). We could,
in principle, state the result of this section in terms of p only, but to have a bias term that is O(hlj\, p) we would
need to assume more moments of K* are 0.



first part of this section, we will use Y and S to denote (1—D)Y and (P(Z), X). Let d, = d,+1%",
(5’1 _ SO)QP

so = (P(20), o), Sp(s0) = : , H = diag(1, hiypta,, - - - B tords—1)ypd—1)1);

~

W (so)=h}y dzag KN SﬁNiSLO o K SJFYN}TO M]?N(S()) = NﬁlH/Sp(So),W(So)Sp(So)H
and M)y (so) = E [M;LN(S())] Just as in Heckman, Ichimura and Todd, we will consider the case,
where p, the order of the polynomial terms included, is less than p, < p*®. To do that partition,

S (s0) = [Sp(s0), S5, (s0)] and B (s0) = [B;(s0)" ﬁ;h( o). Then,

1B,(s0) — B;(s0)) 10

H[M}(s0)] "N~ H' S, (s0) W (s0)" T1o
H[M!(50)] "N ~1H'S, (50)' W (50) S5, (50) B, (50)L10

A

+ H[M;LN(S())]_lN_IH/Sp<So)/W<S(]>T§h (80)]10

+

We need to show that es[3,(so) — B;(sg)]flo is asymptotically linear.

C.2.1 First Step

As our first step, we claim that

ea H[M" (s0)| ENT2H'S, (s0)' W (s0)e" 1o = 2 H[ My (s0)] "N~ H'S,(s0)' W (s0)e"Ip + Ry (s0)

p.

where ey =

(0, ,0) and YN Ri(P(Z),X;)/V'N = 0,(1). Note that e;H = ﬁeg. Let
o(P(Z), X) [M (P(Z), X)I 7" A (P(Z)), X;) = ea[ My (P(Z;), X;)] ™, and

Iy ={yn: SUD(3,2)e4, Vv (2, 2) — ea[ My (, 2)] 7 < €y}

Let
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_ ; (P(Z;),X;)—(P(Z;),X;) (P(Z;),X)—(P(Z4),X;) = =
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where I; € Z;, which defined in Appendix (C.4).
Also let gng be the same as gy except with vy replaced by vno, and I 1; and I 1; replaced by I;
and /1;. And define gy similarly with 4y, Ilz and IIJ replacing ’YN,IM and Ilj, respectively. With

2TIn this section we pretend that the estimation is done as if the actual values of P(Z;) are observed. In a
later section we are going to show that this does not affect the asymptotic variance of our estimator as long as
P(Z;) — P(Z;) = 0p(hnu), which is only true if P is estimated on a region where the density of (X, Z) is bounded
away from 0. This is the reason we trim every observation in defining w.

ZWe introduce p, for the same reason we introduced pp. For additional information please refer to footnote

(C.1).



this new notation 1/vN Y, Ri(X;, Z;) = 3, Zj[gN(g?,Xi, Ziy X5, Z;) — gno(el, Xi, Zi, X5, Z5)].
To show that this sum is 0,(1), we first need to show that . 3", gn (e}, Xi, Zi, X;, Z;) is equicon-
tinuous over Gy in a neighborhood of gno(el, X;, Z;, X, Z;) and that with probability approach-
ing to 1, gn(el, Xi, Z;, X;, Z;) lies within the neighborhood over which equicontinuity is estab-
lished. For the first step, we try using this lemma. To apply that lemma, we need to have a degen-
erate U-process, and ), Zj gy (el X;, Z;, X, Z;) is not degenerate. To deal with this issue, we
first split the Y-, 3. g (e}, Xi, Zi, X, Z;) process into two sums: >, 3., g (e}, Xi, Zi, X;, Z;)
and ), gn(ef, Xi, Z;). The latter process is symmetric. To see that it is also degenerate, we

VX (P(Z).x0) \ € .
observe that ((P(Z’)’Xl})LN}(lP(ZZ)’Xl)> " is a row vector whose first component equals 1 and all other

components equal 0.

1 dz+2
gN<E?,X7;,Zi) = N_3/2’}/N(P(Zi),Xi)€ll€zh (h_) K(O)
Nh

K(0)

Elgn(el, X3, Z;)] = E['YN(P(Zi);Xi)ellE(gﬂXi,P(Zi)]W

=0

Thus, Y, gn(el, Xi, Z;) is degenerate.

b7 X 7 Ry 7. % 7
Next, define g?V = o (e 7X“Z“X],Z])+gN(€] ’XPZ],X“ZZ)) Lz = (8?7 Xia ZZ>7 ¢N(LZ) = E[.Q?V(Lh l)|Ll]

= Elg% (I, L;)|L;], and g% (L;, L;) = g?V(LZ-, L;) — én(L;) — ¢n(L;) as in Heckman, Ichimura and
Todd, so that >, >, g% (Li, L) = 32, 3 9% (L Lj)+3°N 2(N—1)¢n(Ls). To show equicon-
tinuity of our original process we need to show that that each of the processes Zf\;l gy (ef, X3, Zy),
> i 24 Gn(Li; Lj) and SV 2(N — 1)¢n(L;) are degenerate. We already verified that the first
of these is degenerate. To show that the latter two are degenerate, one could use law of iterated
expectations and the independence of (¢, U) from (X, Z) in a similar fashion to argue that

1 #
!
(P(Zo,xi}i—(P(zj),xj) Qp g PEDXD-(PEN XD
Nh J hnp g

h 5
ON(Li)=5 -y N™21(Xi,Z) E yn (P(Z5).X;)
Nh

Thus, ¢on(el, Xs, Z;) = % for some measurable function t(X;, Z;). Now we can go
Nh
through the same arguments as above and show that E[¢y(e!, X;, Z;)] = 0. Thus, all the processes
are degenerate, and lemma 3 is applicable to each of them. So the next step is the verification of
the conditions of the equicontinuity lemma. B
Let Iy; be as in Appendix (C.4). Then |gn(el, X;, Z;)| < N=3/2C|e}||e?| K (0)11;, and

N 2
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This shows that condition (i) of the equicontinuity lemma holds for the >, g,(g!, X;, Z;) process
it N h?\,ﬂj ? — o0. Condition (ii) holds under the same assumption by the dominated convergence
theorem.



Z3),Xi)—(P(Z;),X;)
hnn

Next, we recall that K (-) is zero outside a compact set, so that when H(P(

‘is

"too large” K ((P(Z")’Xi)_(P(Zj)’Xj)> = (. This implies that there exist C, C; such that any element

hnn
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(P(Z])7XJ>|| S CQhNh}. Then

dg+2 _ _
lgn (el X4,2:,X,Z;) | <N —3/2CC11{|[(P(Z:),X:)—(P(Z5),X;)[|<Cahnn } ﬁ ST (X5, 2)Th (X4, Z0)

Thus, as long as N h%zﬁ) — 00, conditions (i) and (ii) are satisfied for the process
Zi ijéi gN(€£L7 XZ‘, Zi7 Xj, Zj) as Well

To verify the same conditions for the 2N ¢(-) process, note that 2N ¢y (!, X;, Z;)| < 2N~V2C|eh|.
Then the expression on the right hand side of this inequality provides an envelope for this process.
Since YN ANTIC2E ((el)?) = 4C2E ((€!)?) < oo, the first condition of Lemma 3 of HIT holds
for the 2N¢ process. On the other hand, since E ((e)?) < oo, (e!)?1{|e}| > V/nys} — 0 as
n — oo, almost everywhere. Moreover, (/)?1{|el| > \/ns-} < (e)?. Therefore, we could apply
the Dominated Convergence Theorem to get that

Vo >0, lim Z4n_1CzE ((5?)21 {|5f| > \/ﬁ%}) =0
=1

n—o0 4

Now we move on to verifying condition (iii) of Lemma 3 of HIT for our three processes. First, let
gk and g% be any two elements of G;y. Then

N (el X, 23, X5, Z5) — gx (el X, 20, X5, Z5)| < N73POW{|[(P(Z), X3) — (P(Z;), X;)|] < Cohavn}

! -
e (1 - AT
Nh
b= RS, + hAS) ~ 28T

Since N h?{%,j 2 00, the £? covering number of G,y family is bounded by the product of the
covering numbers of 7Z; and I'y. By the Kolmogorov-Tihomirov lemma and the results given in
Appendix (C.4), we know that the third condition of the equicontinuity lemma is satisfied since
p>d, +1and Nh%?/log N — oo.

The arguments so far showed equicontinuity of the process Zfil Zjvzl gn (€M, Xi, Zi, X5, Z;)
over Giy in a neighborhood of gno(e?, X;, Zi, X;, Z;).

C.2.2 Second Step:
Next, we move on to the term that will contain the bias:

exH [ M (50)] "N ~1H'S! (50)W (50)S5(50) By (s0) 110 = sea[ Ml (P(20), 7)) 7t x

N,

P3 P3 P(2),X,;)—(P(20),z0) @0 P(Z;),X;)—(P(z0),x
§1p+1 1:21 (P(Z;) ,Lh)N}(L (20),70) ((P(Zi)7Xi)—(P(Zo),SC0))Q(k>[m(k>(P(zo),a:o)}’Kh (P(Z;) Zh)N}(L (20),70)




We add and subtract

~ o A10 i 05 @]’ L
62[M£N(80)]_1 Z %E { [(S S]) ] (SZ - S])Q(k)Kh (u) |S] = SO} [m(k)(s[))]'

h h
k=p+1 Nh Nh

This gives us three terms. The difference of the first two terms can be shown to be o0,(1) by
appealing to the equicontinuity lemma. In particular, we take vy, I'y, and Z; as before and

define

#,

i Q
i 11 (P(Z;),X)—(P(Z;),X;) P (P(Z),X;)—(P(Z5),X;)
on (X0, 20X, 2)= <5 pbtes o ((P(Z1),X)~(P(2;),X;) W K T
(RLL] Nh Q#l #
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e o ((P(Z:).X0)=(P(2;),X,))2®) K" o X, P(Zy) Y
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Letgn (X, Zi, X, Z;) and gno(Xi, Zi, X, Z;) be defined in the same way as before. Moreover, let
Gon = {9n(Xi, Zi, X, Z;)|yn(X;, Z;) € I'n}. Then going through the same steps as in Step 1,
we can ShOW that 1/\/NZjV:1 RQI(Xj, Zj) = sz\il Zj-\;l[gN(Xi, Zi, Xj, Zj)_gNO(Xi7 ZZ-, Xj, Z])] =
0p(1). Thus, we are left with the term

() D0 E{[(M)Qp]/<si—sj>@“ffh (%) \SJ:SO}[m“)(soﬂ'fw

k=p+1 hv hvn Nh
The last expression equals
IR ea[ My (s0)] 7
§:p+1 |:f uQ(O) . uQ(k)m(k)(SO>/ . uQ(ﬁ_l)K(u)dU, e f uQ(p) B uQ(k)m(k) (80)/ . uQ(ﬁ_k)K(fu/>du]
xf@_k)(so)/flo
We need
Plimy oo 1/V/N SN BB ey [ M,,(S5)] %
X PR (SN I(X;, Z;) = by, < 00

All the terms involving (X;, Z;) are bounded with probability 1. Since N h%’z’i_l) — a < oo this
is indeed true.

C.2.3 Third Step:

Here we focus on the esH[M"y(s9)] "N~ H'S!(s0)W (s0)75, (s0)T10 term. Since exH = 1/hypes,

this term equals
1 ~ .
h_Nhe2 [Mth(So)]ilNilH/S;(So)W(SO)T’ph(So)]lo



Following the same steps as in the proof of lemma 8 of Heckman, Ichimura and Todd, we can
show that N~V H'X!(so)W (s0)rp, (30) = 0p (AR ).
Combining all these results, we conclude that under the assumptions given in the Appendix B,

N
. 1 . R
[ho(p,l')_ho(p,x)] NZ Nho _(1_D’L)}/;7:U7 Z)+bh0(p7x7z)+Rho(p7xaz)
where N=V2 SN R, (P(Zi, X, Z:) = 0,(1), plimy_, N2 N b, (P(Z), X3, Zi) = by, < 00,

and E[Ynn, (P(Z;), X, D;Y;; P(Z;), Xi, Zi|P(Z;) = p, Xi = ¢, Z; = x] = 0, p = P(z). Moreover,
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(PE).X)=(P@w) W gen (PENXD=(PE0) hop (o 2y
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C.2.4 Asymptotic linearity of EO(P(z),x):
To show this, we need to use Lemma 1 of Heckman, Ichimura and Todd. Recall that
Lemma C.1 (Heckman, Ichimura and Todd (1998)) Suppose that:

1. Both p(z) and g(p,t) are asymptotically linear with trimming where

A

[ﬁ(z) — P(2)]I((z,2) € Al) =N"! ZwNp(Dj, Zj;x,2) + bp(x, 2) + Rp(x, 2)

[9(p. 1) = g(p, )] I ((2,2) € A1) = N~ szvg (Y5, T3 P(Z;);pt, 2) +by(p, t, 2) + Ry (p,t, 2);

2. 84(p,t)/dp and P(z) are uniformly consistent and converge to dg(p,t)/dp and P(z), respec-
tiwely and dg(p,t)/0p is continuous;

3. plimy_ N~V b, (P(Z), T}, Z;) = b, and
plimy_, N~/ ZZV1 MbP(P(Zz‘)aTia Z;) = bgp;

4. plimy_ NV2YY [BELEIT) 0P ANT) ] o (P(2,), T, Z:) = 0, and

L o 8p dp =
plimy_ N2 5N [APLET) _ our@a] . p(z,) T, Z,) = 0;

5. plimy_, N3/ ZZ 1 ag(PTg;Zi)’Ti) - ag(Pgii)’Ti) Unp(Dj, Z; T, Z;) = 0.



then §(P(z),t) is also asymptotically linear with trimming where

[9(P(2),) = g(P(2), 1)1 ((2,2) € A1) = N~ Z Ung(Y), Tj, P(Z5), Z; P(2), 1, 2)

+ 8g(t,P( ))/0p - Lijnp(Dy, Zj, X5, 2)]
+ b(x,2) + Rz, 2),
and pth—)oo ZN b (X Z) - bg + bgP'

In our case, g(p,z) = %E( — (1= D)Y|P(Z) =p, X = x). The verification of the conditions for
Lemma 1 of HIT for the case where g itself is the derivative of some conditional expectation with
respect to one of the conditioning variables is not really different from what Heckman, Ichimura
and Todd have. The only potential difference is in the proof of theorem 4, but even there, their
argument holds for the entire VB vector, not just the first component. Therefore,

i
Ohq(P(z),x
op

h
[ho(P2)0)-ho(P()0)] 1((@2)€A1) = N71T N g (—(1-Dy)Y5, P(Z5), X5iP(2),2)+ L1 (D, Z5,2)

+ ZA)BO (x,z) + Ri}o (x,z)

with plimNHoo\/L]v Zjvzl Z;;LO(Xj, Z;) = bpy + bpyp < 00, and plim]\,ﬂoo\/%v Zjvzl R;ZO (X;,Z;) =0.
C.3 Estimating q(ho(x, P(z)), P(2))

We need to estimate E(Y|D = 1,h(X,P(Z)),P(Z)) = E(Dy‘hl(gé)(z))’})(z)). We are going to
use local polynomial regression to estimate F(DY |hi(X, P(Z)), P(Z)). As a result, the analysis
here is very similar to the proof of their theorem 3. The only difference is that we evaluate this
estimator at the value of the random vector (ho(X;, P(Z;)), P(Z;)), which is different from the
random vector we condition on. As long as the support of ho(X;, P(Z;)) overlaps with the support
of hy(X;, P(Z;)) this is well defined.
To simplify the following expressions, define Ty; := (h1(X;, P(Z;)), P(Z;)), and

Toi := (ho(X;, P(Z;)), P(Z;)). Let t; and ty denote a value in the interior of the support of T3
and Tg, respectively. And let py denote that point in the interior of the support of P(Z) that
corresponds to to. Let I;; and Iy; be as before. Let I := 1{fh P(ho(Xl,P(Z)) P(Z) > qoa},
and Iy; := 1{fn, p(ho(Xi, P(Z)), P(Z;)) > qo2}. Our goal is to derive the asymptotic distribution
of

\/Lﬁ S [D:(q(hos, P,) — q(h, Pi))}ﬁ(Xu Z)Iy(Xs, 7))

(Thy —to)<r
Let Tp<t0) = y 5;-1 = Dl}/; — E(DzK’Th); and MgN<t0) = E[MSN<t0)], where
(Tin —to)r
Wq(to)::h]}idiag K1 T}LIT?) ..... K14 nhNil\;th , MSN(to) = N_lHq/Tp(t())/Wq(to)Tp(to)Hq.



where HY is defined in the same way as H in section (C.2) with hy, replacing hyy,. Then

N . S N D, - _ _—
T 21 Dild(Tog) — a(Tog)l i1z = w5 2051 pegy 1Mo (Tog)]~ HY T (Tog )W (To )Ly Iy
D; ~ _ = —* P
+ R pery LMy (Tog)| = HOT,(To)' (Tog )W (Tog ) T(Tog) B5(To) 1112
D; ~ _ ..
et pray My (Top)| ™ HY Ty (Tos )W (Tog )rp(Tog) 1y .
C.3.1 First Term:

Our goal in this section is to show that

/
Ty — To; \ <" T —To;\ » -
<—1 OJ> ]thququ (—1h Oj)fljfm‘

N 1
1 D; -

—_E § e [M2y (To;)] ™

NVN j=1 i=1 P(Zj) 1[ pN( OJ)] th Ngq

N M @]’
> er[M9 (Ty,)] ! <—J) h25§’K‘1<—J)[»I~:o 1).

N\/N p P(ZJ) 1[ pN( 0])] th Ngq th 15425 P( )
Define vo(To,) = e [Myy (To;)] ™, 4%(To) = ex[My (Ti;)] . Let
LY = Odsup{lhg @) —e My (2,2)] " [<eyg}:(@.2) €4 }.

Next, we define

_ D;
= N7 (Toy) 52

/
T =T\ |, Tu—Ty\ ; ;
h2elge | 222 "2 )\ [..],.
( th ) NqEz th 15425

P(Z;)
!/
D, T —To; \ 7| . _ Ty — Ty,
gNo(ég,Xi,Zi;Dj,Xj,Zj) = N73/2’y]qVO<TOj)P(ZJ') < th OJ) ] hN?Jgqu <%> IleQj
J q q

with [; € Z;, I € T, and 4 € 'Y, and 77, Z as in Appendix C.4. We are going to try to show that
the process Zfil Zjvzl gn(el, Xi, Z;; D;, X, Z;) is equicontinuous over Gy in a neighborhood of
gno(e}, Xi, Zi; Dy, X5, Z5), and that gy (!, Xy, Zi; D;, X, Z;) lies in the neighborhood over which
we establish equicontinuity with probability approaching to 1.

The equicontinuity lemma is applicable to symmetric, degenerate U-processes only, and
Zi]\il Zjvzl gn (e}, X4, Zi; Dy, X, Z;) is neither symmetric nor degenerate. But we can analyze this
process in multiple steps. First, note that ), Zj gn(el, X, Zi; Dy, X5, Z;) = . gn(el, Dy, Xi, Z;)
+ 222098 (e Xy Zis Dy, X, 7).



The first piece is a symmetric, but not degenerate U-process. To remedy this consider first

!
D, T — o\ 9O T —To\ - -
in(e? Dy X3, Z5) = N73240 (Ty;) ——" S h2edfa [ 2220 [
gn(ed, Di, Xy, Z;) VN(O)P(ZZ») ing Ng€i Iing 1id2
!
D; Ty — Toi \ <" Ty —Toi\ - -
_ EI!IN- 3/2 q zﬁZ ) 14 01 h_2 qKq 14 01 ]z-[z
{ ( O)P(Zi) ( th ngz th e

This process is degenerate, and satisfies all the conditions of the lemma 3 of Heckman, Ichimura
and Todd. But it is only one piece of the Zfil gn(el, Di, Xy, Z;) process. The other piece is

N Q.1
D. T, —Th: P T, —Th: -~ o~
j :E 3/2 q T 3 12 02 h_2 qKq 17 07 Iz]z
{ Tl (%) ( hivg Vi hvg )

!

D; Ty — Toi \ % Ty — T

:N_1/2E q ,11Z 7 17 01 h72 qKq i — L0z ]ij
{”( ey | T

#/
We have to make sure that the limit of this is 0. We know that any element of % o Ka((Tyi—
Toi)/(hng)) 18 bounded by C’lh;,?lI{HTu — Toi|] < Caohpg} for some finite Cy and Cy. On the other
hand, |D;| < 1, |[;ly] < 1 E|e!] < oo, and P(Z;) is almost surely bounded away from 0.
Combining these facts with N hjl\,q — 00, we get that the desired limit is in fact 0.
Next, we focus on the part containing different indices. Let S; := (e7, D;, X;, Z;). Define

!
1 D; Ty — To: \ " T — T, -
0 _ 3/2 q Li 0j -2 _q71-q i — £0j
S;,S:) = =N~ T h qpca (1 20 T
QN( ]) 9 ( OJ)P(ZJ> ( th ) ] NgCi ( th ) 15425
/
1 D; Tyi — To: \ <" Ty — Ty \ = =
ZN™ 3/2 q 7—1Z ) 1j 01 h_Q a4 17 — 404 Izlz
+ 9 ( O)P(ZZ) ( th quj th 142

Define ¢n(S;) = E[gx(S;, S;)[Si]. Then,

, 7\ @
on(S;) = sN2hE {7 (TOJ)P(Z) [(M) } 1K <T1—NqTOJ> L1552, D,,XZ,Z}

hNg

This is of the form ¢y (T7;)e!, and E(on(Ty)el) = E [@N(TM)E(C‘?]TM)} = 0. Thus we can define
G (Si;95) = g (Si, Sj) — on(Si) — dn(S;). The process -, 3., G (5, S;) is a degenerate U-
process of order two. On the other hand, the above calculations show that > . 2(N — 1)¢n(S;)
is a degenerate order one process. Since |D;| < 1 and P(Z;) is bounded away from 0, and

I < I; < I = Y fx2(Xi, Z;) > qo1 — €1} the same steps as on p. 287 of HIT prove that



each of these processes satlsﬁes the first two conditions of the equicontinuity lemma. For the third
condition, take any g](\,), gN € Gin.

(1) (2) D Tvi—To;
98 — o | = |V pihntet i (T )|

hng
O (7)) [(%)Q”],@@ ”(Tog) ] [(%ﬁ‘j)@’]/i{?fg)
< v nstetn () | o)~ [ ()] Ay
s = MO {(TI;N%:()])QP] i
)

@p
T —Ti T1;—T(
Snstetic (B b [ () ) 12

hing
Therefore, the third condition of the equicontinuity lemma will hold, if each of the families
Iy, 7,7, satisty it. By Assumption (4.3(b)) and 4 of HIT, I'y satisfies this condition. On the
other hand, in section (C.4), we verify this condition for Z;.
Combining all these results, we conclude that the process Zjvzl SN gn(€d, Ty, Tyy) is equicon-
tinuous over Gy in a neighborhood of gno(ef, Thi, Dj, Toj, X, Z;).

[ _
Iy -1

+‘N‘3/2 D h2elK (—T“_T‘“)
. q~i

‘N 3/2

(1) ~2‘

Lemma 5 and 6 of HIT can be used to show that sup(, .jca,na, | M,n (ho(z, P(2)), P(2)) —
M,n(ho(x, P(2)), P(2))|| — 0. This result combined with the arguments at the beginning shows
that gn (e}, T, To;) lies in the neighborhood of gno(ef, T1i, To;, X, Z;) over which equicontinuity
was shown.

C.3.2 Second Term:

Next, we look at

\/— ZD ex[Myn (To)] ™ N H'Ty (Tog)' (Tog )W (To) T(Tog) By(Tog) s
7=1
Fix the evaluation point (dy,xo,20) such that (zg,29) € A3 N As. Let Py = P(z), to =
(ho(xo, P(20)), P(z0). Then each term in this sum equals:
do

e H[ My (to)] "N~ lp

H'T,(t )W(to)Tﬁ(to)Bj(to)floEo

D D
. T — 40\ - .
— -1 —1_ _0 1 \QS) [, (8) ! i — 0
= Al 3 N Y )" -t 5 (H)
s=p+1 q =1
We add and subtract
- — ( D. ) Ty:—Th - QP#, Ty:—Th.: ) A~
e [Myn(to)] ™" Y1 ﬁE WZJ]) iquj (T1i=To;) ¥ K %qu |Toj=to, Xj=z0,Zj=20 [m'*)(to)]'l10120
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This gives us three terms. But the difference of the two terms is handled in the same way as in
lemma 2. In particular, we take v, and I';, as before and define

gn(Thi, Tog, Dj, Xja"Zj) = N_S/QVN(TOj)hN?;

# # #1
) ) Q! ) ) ) ) ) ! ) )
D Ty, —To Ty, —To D Ty, —To Ty, —To
X P(ij) 72]\[(1 1 (T1i—To;) 9K 7}21\](1 L —FE 7P(ij) ZLNq 1 (T1i=Toj) 2 K 721\[(1 L Tos,X;,Z;5
x [m® (To;))' T Iy,

Letgn (Thi, Toj, X;, Z5) and gno(Thi, Toj, X, Z;) be defined in the same way as before. More-
over, let Gon = {gn(Thi, To;, X, Z;)|7n(To;) € T'n}. Then going through the same steps as
in lemma 2 we can show that 1/\/NZjV:1 Ry (Ty;, Dj) = Zf\il Z;yzl[gN(Tu,Toj,Dj,Xj,Zj) -
gno(Ti, Tog, Dy, X, Zj)] = 0,(1).
Then we deal with the term
C " o, 7 D
_ D T1;—To; p (Tu—Toj)Q(s)K T1;—

- _ Ty ..
ellMpn (to)] ™" b4y ﬁE p(zjj) g qu [Toj=to,X;=20,Z;=20 [m) (o)) T10l20
q

which in turn equals

. er ([Mpn (to)] ™" = [My(t0)] ™)
C # ?

P D; Tyi—Ty; @P Ty;—Tg; PO
! 1L _~0j (T1;—To; )P K 71;]\] % | Toj=to,Xj=x0,Zj=20 [m ) (to)]' 10120

P A E J 4
s= .
p+ hrg P(Zy) Nq
#, D
T

C
T PO
ZTL]O] |Toj=to, Xj=z0,Zj=20 [m*)(to)]'l10120

P_ D. Ty —Th P
M -1 P 1 J 1: -0y Y N
+er[Mp(to)] s=ptl n% g P(Z) hng (T1i~Toj)* K

The first expression can be treated in the same way as in lemma 2. If tq = (ho(zo, P(20)), P(20)),
the last expression equals

(G #, D

- Qp
Ty, —t Ty, —t -
f—pr1 mE D; }JTQO (Tri—t0) 9K }quO |Toj=to,Xj=x0,Zj=20 [m ) (to)]' 10120
- G o, >
_ D T1,;,—t T1,—t
=e1[Mp(to)] ™' T_pis W PGy b EDslZ=200E S0 (Tri—to) @K L0 [m) (to))
q

P R _ R _ _
Z:pﬂ[ uQRO) Q) m () (4) w@P—1) K (u)du,..., uQ(p).uQ(S)m(S)(to)'.uQ(pfs)K(u)du]f(pfS)(tO)'

e [Mp(to)] L

=%, er[Mp(to)] !
We need

plimy_ o 1/VN S W en[My(To;)] ~*
Xf(ﬁ_s) (TOi), = bq < 00

All the terms involving Ty; = (ho(Xi, P(Z;)), P(Z;)) are bounded with probability 1. Thus, if
Nh%’q — ¢ < oo then we are OK.
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C.3.3 Third Term:

We claim that under our assumptions, for each evaluation point (dy, o, 20) such that (g, 29) €
AN A,

do
P(20)

e1[Myy (to)] "N H'T)(to)W (to)rps1(to) Tio 20 = 0, (AL

But, as in lemma 8 of HIT,

N

P(z)
>

P(20)

i€l

HT/(tQ>W(tQ)Tp+1(to)]m[zo|| < N™ 1hp+1

/ —
1) (B0} o o (T
m t;) — mPth (¢ K
(P = P (t) ol K (P
/ —
p+1 > T —to\ | (T — 1\ 1 Ty —to
< o0 S Ly
th th th th

=1
By lemma 5 of HIT, for any ¢, such that fx,(x,p(z)),rz)(to) > 0, for sufficiently large N, MpN<t0)
will be nonsingular. Therefore, every element, of the matrix [M,y(t;)] " has finite norm.

X

= 0p( h?\ft]l )

C.3.4 Conclusion:

e 301 D (lhoy, Py) = qhoy, Py) I lo; =7

_ hi:,P)—(ho;,P; @]’ h1i,P;)—(ho;,P;
fNZJ 122 1P [ pN(h0J7P)] ! {<( : ;)W(q = ])> /ﬁLNqK(( - ) (UJ ))5311]'123""[7(1

C.4 Issues in Trimming

The estimation method in this paper uses two trimming functions. One of the trimming functions
is based on the estimated density f:Xz(ZL‘,Z). The other one is based on f;ll’ p- The first part
of this appendix shows that the family of functions that contains the first trimming function
has an envelope and satisfies the conditions of the equcicontinuity lemma. The second part of
the appendix verifies the same condition for the trimming function which is based on the kernel
density estimator of f;, p. We observe the values of (X, 7). Suppose the support of (X, 7) is a

12



connected? subset of R?, with d < co. Also let
Hy = {f:sup|f(x,2) — fxz(x, 2)| <e€p, f has smoothness q>d, inf |[|Df(z,z)|| >0}
T,z (z,2)€Aq

N Afsuplfi(@,2) = (fxz)i(@ 2)l < €.}

I, = {I((z,2) € A A= {(z,2): f(x,2) > qu} for some f € Hy}

Ay = {(z,2): fxz(2,2) > qon — €51}
Ay = {(@,2) g +ep1 > fxz(m,2) > qor — €41}
Ay = {(z,2): fxz(z,2) > qo1}

where §, > 0, and the subscripts denote the j** partial derivative of the associated function. First
we observe that under the assumptions of Silverman’s Theorem A on fx z, the kernel function
and the bandwidth sequence used to estimate this density function

Sup(x z)esupp(X,2) f( ) fX,Z(x7 Z) —0as. Sup(x,z)esupp(X,Z) fj(xu Z) - fX,ZJ(x? Z) — Oas.

for j € {1,...,d}, where the subscript j denotes the j"partial derivative. Using this result, we
can claim that 14(s) is an envelope for Z;.

Next, we verify that Z; satisfies the third condition of the equicontinuity lemma. Our argu-
ments will rely on a lemma due to Kolmogorov and Tihomirov.

Definition C.1 Let E be a connected compact subset of a finite dimensional Banach space. Sup-
pose the metric dimension of E equals d. Consider bounded real valued functions on E with norm
equal || f|| = sup,ep | f(s)|. A function in this space has smoothness ¢ > 0 (q = p+a, p an integer,
0 < a < 1)if for arbitrary vectors s € E, s+ h € E, we have

f(s+h) :i% (h,s)+ R(h,s) (13)

where By (h, s) is a homogeneous form of degree k in h and
|R(h, s)| < C|h]]

where C is a certain constant. All of the functions f that satisfy (C.1) and (13) with a fized
constant C' form the class F’(C).

29Connectedness of the support is needed for the application of the Mean Value Theorem. If the support is not
connected but could be partitioned into finitely many connected subsets, then the argument can be made for each
connected piece separately.
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Lemma C.2 (Kolmogorov-Tihomirov Lemma): For every set B C F[(C) bounded in
the sense of the metric as in Definition (C.1), we have (%)d/q = O(C.(B)), where C.(B) =

log, D(e, B), and D(e, B) is the € packing number (in the norm as in Definition (C.1)) of the set
B.

By this lemma, we know that the class of functions which consists of restrictions of elements of
H, to A, satisfies the third condition of the equicontinuity lemma in the sup norm. Using this
information, we need to verify that Z; also satisfies that condition. Before we start with that
proof, let us show thew following preliminary result:

Claim C.1 A; and Zq are compact.

Proof: The sets [qo — €7,00) and [go1 — €51, q01 + €71] are closed in R when it is equipped with
the Euclidean (absolute value) metric. Since fx 7 is continuous, this implies that A; and A, are
closed in (R%, || -||). If we show that A, is also bounded, we will have shown that both A; and A,

are compact. Suppose toward a contradiction A; is unbounded. This means that for each J > O,
R?\ B;(0) must contain infinitely many elements of A;. We will pick a sequence of elements of
A recursively. Pick s; € By(0) NA;. Suppose for j > 2, we have already picked si, ..., s;_1. Then
pick s; € (B;(0) \ Bj_12(0)) N A;. The {s;}52, is an unbounded sequence contained in Ay, such
that |[s; — s;|| > 1/2 whenever ¢ # j. Let r := (go1 — €71)/2. Since fx z is uniformly continuous,
there exists 7 > 0 such that ||t — s|| < 7 = |fx z(t) — fxz(s)| <r. Let v := min {7, 1/2}. Then
for each j, t € B,(s;) = fxz(t) > (qo1 — €71)/2. Moreover, for i # j, B,(s;) N B,(s;) = 0. Then

1> P (U2,B ZP > (o1 — €41) /QZLeb s;))

which is a contradiction. Il
Remark C.1 The above arqguments also imply that

1. A, has finitely many disjoint components®, so that we could write A, = UE,Q;, with

dH(Ql,Qk) >0 fO’I" [ 7é k,
2. there exists My € R such that Vf € Hi, sup, ez, |f(x,2)] < My, and

5. there exists My € R such that Vf € Hi, sup, e, ||Df (2, 2)|| < Ma.
Claim C.2 Forany f,g € Hi, such that sup, , cz, [f(2,2)—g(x, 2)| <n < €y, and foré =n/b;,
{f 2 a0 >g} < ({s:f(s) =} & Bs(0)) N4,

where A® B:={a+b:a€ A, be B}, and Bs(0) denotes the ball around 0 with radius 0.

30A component of a set F is a connected subset Fy C E such that there is no connected set in E containing Ej
other than Fjy itself.
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Proof: First, consider s € {f > qo > g}. f € Hi = f(s)—epn < fxz(s) < f(s)+€s. Combining
this with f(s) > go1 we get fs(s) > qo1—€s1. Similarly, g € Hy = g(s)—ep < fx,z(s) < g(s)+ep.
And combining this with g(s) < go1 we get fx z(s) < qo1+€p1. Thus, fx z(s) € [go1 —€f1, o1 +€51]-
This shows that {f > qo > g} € A,. If A,\ ({z : f(x) = g1} ® B;(0)) = (), we have nothing
more to prove. Else, consider any s € A, \ ({z : f(z) = qu} ® Bs(0)). Our goal is to show
that s € R\ {f > qo > g}. Toward this goal, pick u € {x : f(x) = g1} that is closest to
s. Note that, since ||s — u|| is a continuous function of u and {z : f(x) = gn} is compact,
such a point must exist. Moreover, © must be in the same component of Zq as s, and the line
segment joining u to s must be contained in that component of A,. Thus, ||Df(a@)|| > 6, for
any @ lying on the line segment between s and u. Using the mean value theorem, we know that
lf(s) = f(u)| =1f(s) —qoi| = |Df(a)-(s—u)| = ||Df(@)||-||s —u|| - | cos a|, where o denotes the
angle between s and u. But ||[Df(@)|| > 8, by our previous arguments, and |cosa| = 1 because
u is the member of the go-level set of f that is closest to s3!. Combining these arguments, we
get that |f(s)| > qo1 +n. Note that if f(s) < qo1, there is nothing to prove. On the other hand,
if f(s) > qo1 + 1, then |f(s) — g(s)| < n implies that g(s) must also be strictly larger than g,
which means that s cannot belong to {f > ¢y > g}. B

Claim C.3 7, satisfies the third condition of the equicontinuity lemma.

Proof: Let 7 > 0 and let {f',..., f/} be the maximal 7-separated subset of H; restricted to A,
in the sup norm, with 7 > 7 > 0. The relationship between n and 7 will be clear later. For
je{l,..,J}, let ' :={s: fi(s) > qo1}. We are going to try to demonstrate that {I',..., 7} is
maximal 7-separated subset of Z; in the £2 norm. For this claim to be true it must be that for
each element I of Z;, there exists j € {1, .., J} such that

/ I - F[?dP=P{I # I'}) <.
Note that

PUI#ADY) =PI #D)+P{I+DY) =P{f2a> N+ PAP 20> 1),

where f is an element of H; that is associated with /. Using claim (C.2), with § = /6,

P{f>aq>FH)+PHf >a>f}) < P(({s:f(s)=q}®Bs5(0)NA,)
+ P(({s: f/(s) = g0} ® Bs(0)) N A,)

31To see this, let US* be an open set containing the component of A, that s and u belong to. Let f|U** denote
the restriction of f to U**. Now u solves min Z?:l(si — u;)? such that u € {z : f|[U*“(x) = qo1}. The first order
conditions of this problem tell us that if s # u, then the f;(u) must be proportional to s; — u;. Reversing s and
w in this problem says f;(s) must also be proportional to s; — u;. Since @ is on the line segment joining s and wu,
and since derivative is a linear operator, f;(%) must also be proportional to s; — u;. This last fact tells us that
|cosa| = 1.
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=Y P f(5) =k @ Bs(0) N Q1) + >° P((s (5) = ao} & Bs(0)) N Q)
<My (Leb(({s () = a0} @ Bal0)) N Q1) + Leb(({s : (5) = o} @ Bs(0) N @1)).

=1

where we used the second part of Remark (C.1) to write the last inequality. On the other hand,
using the last part of Remark (C.1), the compactness of A, and the formula for surface areas of
smooth, parametrized manifolds we could show that for each f € H;, the d—1 dimensional volume
of the smooth surface {s : f(s) = g} NQ; < R for some R < co. Then the last expression above

is less than or equal to %ﬂ. Letting 7 = A‘M(;ﬂ, we can conclude that 7-packing number for Z;
1 1

in the £2 norm is the same as n-packing number for H; in the sup norm?2. Since by Kolmogorov-
Tihomirov lemma, the latter satisfies the desired condition of the equicontinuity lemma, so does
the former. W

Next we turn to our trimming problem. We have to employ two trimming functions. The
first function is needed to guarantee that the estimator P(z) is uniformly consistent for E(D|Z).
The second trimming function is needed because we need to have a uniformly consistent estimate
for E(DY|h(X, P(Z)), P(Z)) evaluated at the value (ho(X, P(Z)), P(Z)) takes. Our previous
arguments the first trimming function satisfies the conditions of the equicontinuity lemma. We
need to define a family of functions that will contain our second trimming function. For this
purpose we define

B, = {ze€supp(Z): (v,2) € Ay, for some z € supp(X)}
and*

Up = {g:sup|g(z) — P(2)| < e€p, g has smoothness ¢ > d, inf [|Dg(2)|| > 8p}
2€B. 2€Bzq

U, = Upn{g:suplg(z) — P(2)] = op(h,)}
ZGBZ
U, = {p:sup sup |p(z,P(2)) — holz, P(2))| < en, ¢ has smoothness q > d}
PeUp (z,2)EA;
N {p:sup sup (e, P(2)) = ho(w, P(2))] = op(his)}
PeVp (z,2)€AL
N A{p:nf{|[Dep(z, P(2))]| : (w,2) € A4, P € Up} > 0),}
A (g (Do, PO - (5,2) € Ay P € Up} > B,0)

32Since sup |f — f/| < n — /E|f — f|> < n, the n-packing number for H; in the sup norm is at least as large
as the n-packing number for H; in the £2 norm.

33In these definitions all the §’s are strictly greater than 0, and hya denotes the smoothing parameter that is
used in the trimmed kernel density estimation of f, p.
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H, = {f:3LeT, d(f(%]s)yfhl,P(hoaP)) < €p2}
N {f:f has smoothness q > d, inf IDf(p(z, P(2)), P(2))|| > 6,}

(a:,z,ﬁ,cp)equ‘llp XUy,

where

A(F(9.P).fny 2 (1o P)):=SUD 5y e, s SUD (s 2y, 1 (@@ P(2),P(2)~ fiy P (o (2, P(2)),P(2)]

T, = {I((z,2) € Ay) : Ay = {(x,2) € Ay : f(o(x, P(2)), P(2)) > qo2} for some fers pew, Pevp)
Going through arguments similar to those above we can verify the third condition of the equicon-
tinuity lemma for Z,. But we still need to verify that d (fﬁl,ﬁ<907 P), fu,.p(ho, P)) < €9 for suf-
ficiently large N with probability approaching to 1 **. To guarantee this, we need h(X;, P(Z}))
and P(Z;) to be uniformly consistent for hy(X;, P(Z;)) and P(Z;). However, this occurs only
when the density of (X, Z) is bounded away from 0. Therefore, in the kernel density estimation

of fr, p we have to trim out those observations at which fx z is very small. Let f(g be a Lipschitz
function with Lipschitz constant equal to M3 *° and define

. 1 i& ((ﬁl(Xi,p(Zi)),f’(Zi)) — (p(x, P(2)), P(2))

fap(ela, P(2)), P(2)) := > L(X;, Z;)

B Nh2, — B
Fu (oo, P(2)), P(2)) = m; SR, (<h1<xi,P<z@->>,P<Z;~l>J>v - <so<x,P<z>>,P<z>>> f(X. 20

Adding and subtracting some terms yields
Fanp (0 P(2)), P(2)) = fu plholz, P(2)), P(2))] < (14)
Fin sl P(2), P(2) = fi, plhola, P(2)), P(2))]
| Fiy pho(@, P(2)), P(2)) = fiu,p(hole, P(2)), P(2)
| (o, P(2)), P(2)) = fup(ho(, P(2)), P(2))|

Our goal is to show that each of the above terms is less than or equal to €f/3 with probability
approaching to 1 for sufficiently large N. Let us start with the first one:

[ fi, (02, P(2)), P(2)) = fi, p(ho(2, P(2)), P(2))] <
i ((fu(Xz-,ﬁ<zz->>ﬁ(@))—@@ﬁ@))ﬁ@))) K <<fu(Xz-ﬁ(zz-))ﬁ(zj))—(ho(xﬂz))f(z)))
2 2

N .
N%vz > it 1(X;, Z;)

hNg hN2

<&[

>~ 73
hiya

o, P(2) = ho(a, P(2))| + | P(2) - P(2)]

34Note that the first trimming function I would eventually eliminate observations which lie outside of A; with
probability approaching to 1. So in terms of the second trimming function, we only need to worry about (z, 2)
values in Aj.

35Later, we may impose other conditions on this kernel function.
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We know that on Ay, both o(, ]5(2)2, and P(z) are uniformly consistent. Moreover, by assump-
tion |¢(x, P(2)) — ho(z, P(2))| and |P(z) — P(z)| are both o,(h%,) on A;.
Next focus on the middle term of (14):

f}}l,ﬁ(hO(I?P(Z))ﬂP(Z)) —fhl’p(ho(I‘?P(Z)),P(Z))

1 Py s (h1(X4,P(24)),P(Z))—=(ho(2,P(2)),P(2)) _ 7= (h1(X3,P(Z;)),P(Z;))—(hg(x,P(2)),P(2))
72 im1 K2 7 Ko 7
Nh%, ho ho

= ‘ z 1 hl(XwP(Z )) - h1<Xi7P(Zi))}jl<Xi7Zi>

I(X4,2;)

+ | Ms Efil [P(Zz) — P(Zi)]jl(Xh Z;)

Nh;o’\,2

Using the results of Appendix C.1:
|-, [P(z) - P<Z<>]f (Xi: )

N
< NT]\;%V:Zizl Ej:1¢NP( ‘NhS Zz 1b (Xi, Z3)

o

L RP(XZ-, Z;)

Nh3

We will split the first term into two sums: one containing the terms where ¢ and j are the same,
and the other, where they are different. To deal with the sum containing terms with the same
indices we will use a law of large numbers:

Theorem C.1 (Chebyshev) Let 51,55, ... be uncorrelated with means py, s, ... and variances
02,03, ... If SN 02 =0(N?) as N — oo then

1 & 1 &
sti - sz_f
i=1 =1

Now

N%:%\TQ sz\il wNP(Xi7 Zi7 D’LaXm ZZ) - N Zz 1 Nh3 hdz el[MiN(Z )] 16/1KP(0)5'LP]M

Using the law of iterated expectations we could show that each term of the above summation has
0 expectation. On the other hand,

MZE (el[MfN(Zi)]_le’l)Q(KP(O))QIU(EZP)Q

[Msel[M AN (Z)] ey KP(0) [ief

Nh?vzh}{fzp ] = lmy—oe

. 1 N
limy oo 72 > o var NETE
N2'"NP

Recall that Nh3% — oo and My to a nonsingular matrix. Thus, as long as N h3;, does not
converge to 0, or does not converge to 0 too fast, the variance condition needed to apply the
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theorem holds and we have?®

plimpy_ o =0

M; P ~1_1 g P P
————e[M,n(Z;)] et KT (0) 1 (X5, Z;)e;
VI

Next, we focus on )N2h3 ZZ L Z#Z Ynp(Xj, Z;, Dy; Xi, Z;)|. Our first step will be appealing to

the Hoeffding, Powell, Stock and Stoker lemma to express the term sum inside the absolute value
as a sum over one index only. Define

1 Z:—Z\ Z;— Zi
DY X2 DY X0 2) = el (S22 (B2 nixz
QhNP hnp hyp
1 Zi — 4 Zi — 4
+ ——e M (Z; Kt (—)I X, Z)eP
ez [(Z22)] wr (BB nox 2

By the law of iterated expectations E[CP(DZ,YZ,X Zi,D;,Y;, X, Z; )} = 0. Moreover, using

] P B
Cauchy-Schwarz inequality, and the facts that N h?vdfj — 00, MPpN converges to a nonsingular ma-
trix and K is 0 outside a compact set we could also show that E[(¢(D;,Y;, X, Z;, D;,Y;, X5, Z;))?]

VERSE
o(N). Therefore, using the Hoeffding, Powell, Stock and Stoker lemma, we can argue that

plimNﬂoo#%z Zz]\il Zj\;l wNP(Xja Zj7 Dj; Xiy Zz’)

N Ynp(X;,Z;,D4;Xi,Z;)

Y My 7 N
= plimy_. \/mplzm]\boo Doim1 D e TE

— iyt Sy B MR 106,29 [(5:2)) K7 (%) et 2]

We can now apply Chebychev’s law of large numbers to this expression. Expectation of each term
is again 0. But we still have to verify that

8 . ) ) #1,9

. P M2 = zi—z: W Zi—Z; =

By oo o7 1e1 h63 E_ E alMpy(Z) ' h(X;.2;) G50 KD St el IbiXezi =0
NP z

By Jensen’s inequality

2

P -1 Z ~2,\\? (P2
h(x [MpN<Zj>1 )) ()" 1D;, X, 2
"

(£ |l 00, 2) [( )}

2

X E{M 2 (i w;;ﬂ) <Kp<ax>> 0.2

36Note that T Loe |Tn| o
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On Ay, ey [M[(Z;)]7" and the density fxz are bounded. Moreover, the kernel function K* is
assumed to have compact support, and hence for some positive C

E{Il(Xj,Zj) (el[M;N(Zj)]l K%)}/)Z = (KP< 2 j>>2 |Di;Xi7Zi} < C

Since, we also have 0% := F(ef')? < o0,

N—ZNME{(E D) B Z>[(%>] " (55) P'D“Y“X“ZDQ}

N M2 2 A 2.C
N Zz_l thPh?Vz P / h?\;j}?, hh?\@

We assumed that Nh3% — oo. Then if \/N hS;, does not go to 0, or if it does not go to 0 too
fast, then the product of v/ Nh%, and v/N hS, will still go to 00®”. Next, we deal with

bp(Xi, Z:)

‘Nhﬁ i= 1

From Appendix C.1, we know that plimNHoo\/LN Zfil Bp(Xi, Z;) = bp < oo. Then if limy_ \/Nﬁ%m
= 00, this term too will be converging to 0 uniformly in probability. Finally, let us look at

iy

sz IRP<X’L7Z)

Nh3 Zz 1RP(

We know that \/LN Zf\il Rp(X;, Z;) = 0,(1). This and our previous assumption that limy_.., vV Nh3, =

oo jointly imply that this last term also goes to 0 uniformly in probability.
Next, we study the second part of the middle term in (14). Using Appendix C.2, we can write

A hl(XuP<Z>>—h1<Xi,P<Z->>}f1<Xi,Z~> <

‘th
- S S

+)Nh3 N thl(XZ,Z)

U by, (X, Z:)

VERVE ‘th

Again, we know that plszHoo\/NZ b (Xi,Z;) = by, +byp < 00. So if VN Nh3,y, — oo,
the middle term goes to 0 in probablhty by the continuous mapping theorem. Slmllarly, we
know plimy e —= Ve ZZ 1R (Xi, Z;) = 0. Thus, the same condition guarantees that the last sum
converges to 0 in probablhty As for the first sum, again we can split it into two pieces. One

3TWe could for example, choose hyy = h%L°.
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piece contains the terms where the two indices equal, the other piece contains the terms where
the indices are different:

N2

* > %3;2 (U (D5, Yi, Xy, Zsy X, Z3) + %(Xz', P(Z;))np(Di, Xi, Zi X, Zz))‘

Each term has 0 expectation. To apply Chebychev’s law of large numbers, we need to verify that
the sum of the variances is o(N?). By Cauchy-Schwarz inequality it suffices to verify that

2
My o0 57 ZZJL E[%@\mwz\/hl (D;,Y:, X3, Zi; X;, Z;)%] =

lim e LE [(61[M£]{;(Xi, P(Zl-))]_lell)Q(Khl(0))21_1()(%" Z;) (g}h)Q] =0

N3ﬁ?v2h?v(zz+l) v
1
and
I; A NN p_ME (o x. p(z.)))? D X: 7 X, 7)2] =
NN -0 N2 Zi:l [NQB%,Q(@P( 29 ( Z>>) 7ﬂNP( 1y <hgy Ly <Nqy z)}
. M2 2 _ 2 2 2
limy o N jh%%E [(%(Xi,P(ZZ-))) (er[MI(Z)] 1)) (KP(0)) 11 (X3, Zi) (eF) } =0

The first one is true because the term inside the parentheses is bounded, N ﬁ?\m — oo and
N h%;ﬁﬂ) — 00. The second one is true because N h?\‘,ij; — 00, the term inside the parentheses
is bounded, and N fz?\m — 00. So the sum of terms with ¢+ = j converges to 0 in probability. For
the other sum, we again use Hoeffding, Powell, Stock and Stoker lemma. By arguments similar
to those in Appendix B.2, we can show that

:plimNHOO% ZN %E [QﬂNﬁl(DiaYriaXi:Zi;Dj71/}'7Xj7Zj)‘DZHY;:Xi;Zi]

i=1 7,3
=1 h3,

Then we apply the Chebyshev’s theorem one last time. Again, the expectation of i'" term is 0.
And given that we have already assumed Nh3%, — co, N h%ij ) o0 and N h12, does not go to
0, the variance condition is satisfied. Therefore, this sum converges to 0 in probability as well.

This leaves us with the last piece of (14):

[Fn (ol P(2)), P(2)) = fu, plholw, P(2)), P())| =

(1 (X3, P(20)),P(Z0)) = (o (2, P()),P(2))
hno

i ) 5060 20— e, P, P2
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(0] 1
% PZ_]\L1 %f(2@ (hl(XivP(Zi))vP<Z_i))*(hO(I»P(Z)%P(Z))AIAl
= e hN2
o 1 (0] 1
1 PN @ (hl(Xi,P(Zi)),P(Zi))—(ho(:c,P(z)),P(z)) (hl(Xi,P(Zi)),P(Zi))—(ho(ac,P(z)),P(z))A
NR, =T ho Fina

(X:,2:)=

P _
Ah(Xl-,Zi)+N,~jQN L, K@
2

x[o(Xi, 201y IXZTITITO0 T fx 7~ 2 (X0, 20 | 1P, 20> F(X0, 200}

O( ) 1

P ~ h1(X;,P(Z)),P(Z;) ) = (ho(@,P(2)),P(2)) 5

JFN,;IQ ,N:1 K2@ 7 [
N2 N2

15+ fxz(X,%5)—a 2
(Xi,Z)) 1T XZC,?ZZ)M [f(Xi,Zz')*fX,Z(XmZi)}

Xl{f(Xivzi)Sf(Xi7Zi)}

My goal is to show that each of the last two terms is uniformly o,(1). Let’s focus on the first of
those two. That term equals
o 1

Py Py 1 ~ (h1(Xi7P(Zi))vP(Zz‘))*(h()(z,P(Z)),P(Z))A . 15— Ix,z(X4:Zi)—q01 ;

=1 j=1 NQB?VQEl]iVI KQ@ FLNQ [O'(szzz)} J2 5(X;.2;) 1{f(X17Zz)>f(XuZz)}

% Ky (ijZj_)*(Xi,Zi) “E K (Xj;Zj_)*(Xini) X, (15)
hp1 hn1
O( ) 1

P, P - h1(X;,P(Z;)),P(Z;) ) = (ho(2,P(2)),P(2)) 5 15— Ix,z(XiZy)—q 2

+ oy K@ . Ale(Xi,20)] My LS 1{f(X0,20)> f(Xi,20)}
N2PN N2 v
x B Ky KoZ)=XiZi) |X3.Z; —fx,z(Xi,Z3) (16)

hn1

Using the equicontinuity lemma we will show that (15) is 0,(1). For this purpose, for g € H;,
define 5'(Xz, Z,L) = |g(X1, Zz) — fX,Z(Xi; Zz)’; Lz = 1{9(X17 Zz) > fX,Z(Xi; Z,L)} Then
o 1

Py Py 1 - (hl(Xivp(Zi))vP(Zi))*(hO<IsP(Z))7P<2))A~ 1 Ix.z(XiZ)—a01 -
R Pz o0z Ty ey L
% f(l M —E [{1 M | X:,Z; —fX,Z(szZi)

hn1 hn1

is a degenerate U-process of order one which satisfies the conditions of the equicontinuity lemma.
Finally, (16) is 0,(hx1) by the smoothness of fx z. On the other hand, by using the same tricks,
we can also show that the symmetric term (i.e. the term involving J,) is also uniformly o,(1).

As a result, fr, p(ho(z, P(2)), P(2)) converges in probability uniformly to

Furlho(a, PR). P(2)) =~ D" (U“(X"’P (@), P(Z)) — (s, (), PL)

i=1 hN2

) §I/(Xi, Z;)

Given our assumptions on K5 we can use a strong law of large numbers to show that this converges
to

— K
My

%

L ¢ <<h1<Xi,P(Zi>>,P<Zi>> - <h°(5”’P(Z))’P(Z))> 1(Ay)
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Now the set A; is closed, but we can find a sequence of open sets that are all contained in A;.
Moreover the limit of this sequence of open sets will be A;. Using change of variables theorem by
breaking the set A; into disjoint regions where P and h; have non-zero derivatives, if necessary,
and then using Silverman’s theorem we have the desired result.
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