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1 Discrete-Time Stationary Processes

1.1 Introduction

A discrete-time random process is a doubly in�nite sequence of random variables fytg de�ned
for all integer t: Such a process is said to be strictly stationary if, for any integer r; the joint
distribution of any �nite subset, say ya; yb; :::; yk; is the same as that of ya+r; yb+r; :::; yk+r:
This is often expressed loosely by the phrase �calendar time does not matter.� The sequence
is said to be weakly (or covariance) stationary if each yt has the same mean and if the
covariance between each pair yt and ys depends only on the time di¤erence jt � sj: Strict
stationarity implies weak stationarity as long as the second moments exist. Unless otherwise
stated, �stationarity�will be used in these notes to mean weak stationarity.

Stationarity puts a great deal of structure on a time series. To characterize the second-
order moments of an arbitrary �nite random sequence y1; :::; yT ; we need to specify T means,
T variances, and T (T�1)=2 covariances. Stationarity reduces this to one mean, one variance,
and T � 1 covariances. More generally, the second-order moment properties of a weakly sta-
tionary process are completely described by its mean and its autocovariances r = E(ytyt+r)
for all nonnegative integer r: (Note �r = r:) It is often more convenient to present this
information in the form of the mean, the variance 0; and the autocorrelations �r = r=0
for r > 0: To simplify the notation, we shall typically assume that the mean is zero.

The weakly stationary process f"tg is said to be white noise if the "t are uncorrelated
with mean zero and �nite variance �2: An in�nite sequence fytg is said to be a time-invariant
linear process if it can be expressed in the form

yt =
1X

j=�1
cj"t�j

for some white noise process f"tg and some in�nite sequence of real numbers fcjg that are
square summable; that is

P
c2j < 1: Then yt is well de�ned in the sense of mean square

convergence of the in�nite sum. Usually we will make the stronger assumption that the c0s
are absolutely summable:

P
jcj j <1: Using the lag operator

C(L) =
1X

j=�1
cjL

j

where L is de�ned by Lxt � xt�1; L�1xt � xt+1; and L0xt = xt; we can write more suc-
cinctly yt = C(L)"t: C(L) is sometimes called a linear �lter. We will usually set c0 = 1:
Linear processes with absolutely summable coe¢ cients are always weakly stationary with
autocovariances given by

r = �
2

1X
j=�1

cjcj+r .

These autocovariances will also be absolutely summable. If cj = 0 when j < 0 so C(L) is a
polynomial in L; C(L) is said to be a one-sided backwards �lter; fytg is then called a moving
average process and is sometimes said to be causal. If Cq(L) is a polynomial of �nite order q;
the moving average process yt = Cq(L)"t is said to be an MA(q) process. Its autocovariances
are zero after lag q:

There are generally many di¤erent sequences fcjg that can generate the same valid
autocovariance sequence. For example, it is easily veri�ed that the two MA(1) models

yt = (1 + �L)"t f"tg white noise with variance �2

yt = (1 +
1

�
L)�t f�tg white noise with variance �2�2
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have the same autocovariances, so the MA representation is not unique when j�j 6= 1:
In general we have the following result: As long as c0 6= 0; the polynomial Cq(L) can
always be factored as

Cq(L) = (�1 � L)(�2 � L) � � � (�q � L)
c0

�1 � � ��q

where the ��s are solutions of the equation Cq(�) = 0: Let C�q (L) be the polynomial
obtained by replacing one or more of the ��s by its reciprocal. Then there exists a positive
scalar ! such that the models

yt = Cq(L)"t f"tg white noise with variance �2

yt = C�q (L)�t f�tg white noise with variance !�2

have the same autocovariances.

1.2 Autoregressive Models

A common approach to modelling assumes that the observable time series fytg is a stationary
solution of a stochastic di¤erence equation. The AR(1) model where, for all integer t; the
y�s satisfy yt = �yt�1+ "t for white noise f"tg is a simple example. Sometimes the di¤erence
equation describes a behavioral or technological relation or has been obtained by algebraic
manipulation from such a relation; more commonly, the equation is simply a convenient
way to describe a series with a particular autocorrelation pattern. These notes discuss some
statistical issues for a general class of di¤erence equation models.

If j�j < 1 in the above AR(1) model, we obtain by recursive substitution the moving
average

yt =

1X
j=0

�j"t�j : (1)

Since the moving average coe¢ cients are square summable, this is a well-de�ned stationary
solution to the di¤erence equation. This representation can also be obtained using lag opera-
tors. Writing the di¤erence equation as (1��L)yt = "t; multiplying both sides by 1=(1��L);
and using its power series expansion, we �nd

yt =
1

1� �L"t = (1 + �L+ �
2L2 + � � �)"t =

1X
j=0

�j"t�j :

From di¤erence-equation theory, we know that any time series fytg of the form

yt =
1X
j=0

�j"t�j +A�
t

for some constant A is a solution to yt = �yt�1+ "t: This is a well-de�ned stationary process
only if A = 0 and j�j < 1.

If j�j > 1; the in�nite sum (1) is not the mean-square limit of a sequence of random
variables and does not constitute a meaningful solution to the di¤erence equation. But,
setting � = 1=�; we �nd that the di¤erence equation has the well-de�ned stationary
solution

yt =
1

1� �L"t = �
1

L

�

1� �L�1 "t = �
�

L
(1+�L�1+�2L�2+ � � �)"t = �

1X
j=1

�j"t+j ;
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a convergent forward �lter of f"tg. (This solution could also be obtained by recursive
substitution using the implied forward di¤erence equation yt = �yt+1 � �"t+1:) Note
that now yt�1 is correlated with "t so the equation yt = �yt�1 + "t does not represent
a linear regression.

Thus, as long as j�j 6= 1; there exists a unique stationary solution to the di¤erence equation
yt = �yt�1+"t. The autocovariances for this stationary AR(1) process are r = �

jrj�2"=(1��2)
if j�j < 1 and r = ��jrj�2�2"=(1���2) if j�j > 1: This implies that, if j�j is neither zero nor
one, the two models

yt = �yt�1 + "t; f"tg white noise with variance �2

yt = ��1yt�1 + �t; f�tg white noise with variance �2=�2

have stationary solutions with the same second-order moments for the observable data and are
in this sense equivalent models. We shall normally work with the model whose autoregressive
coe¢ cient is less than one in absolute value so a backward moving average representation
exists and the �error�will be uncorrelated with the �regressor.�Indeed, many authors reserve
the words �stationary AR(1) model�for this invertible case.

Let
Ap(L) = 1� a1L� � � � � apLp

be a polynomial of order p in the lag operator L so that

Ap(L)yt = yt � a1yt�1 � � � � � apyt�p:

Then, a pth order autoregressive model can be written concisely as Ap(L)yt = "t: If there
exists a lag polynomial C(L) (possibly of in�nite order as long as it contains only nonnegative
powers of L and the cj are square summable) such that Ap(L)C(L) = 1, then C(L) � Ap(L)�1
is called the inverse of Ap(L). Since Ap(L) can be factored as

Ap(L) = (�1 � L)(�2 � L) � � � (�p � L)
1

�1 � � ��p

where the ��s are the p (possibly complex) roots of the polynomial equation Ap(�) = 0; Ap(L)
has an inverse if and only if all these roots lie outside the unit circle in the complex plane.
If Ap(L) is invertible, the di¤erence equation Ap(L)yt = "t can be solved to express yt as an
in�nite moving average yt = A�1p (L)"t; where

A�1p (L) =

pY
j=1

(1� ��1j L)
�1 =

pY
j=1

(1 + ��1j L+ �
�2
j L

2 + � � � ) = 1 + c1L+ c2L2 + � � �

This is the unique stationary solution to the di¤erence equation. (Note that if any of the
��s are inside the unit circle, replacing them with their reciprocals in the factorization yields
an invertible polynomial with the same autocorrelation function as before. Since the moving
average representation is useful for developing forecasts and estimates, we will always use the
invertible version of Ap(L): Again, many authors call this version �the� stationary AR(p)
model. Others call it a �causal�AR model. If any root lies on the unit circle, no stationary
solution of the di¤erence equation exists.)

The autocorrelation function for an AR(p) process with invertible lag polynomial can be
found by solving a di¤erence equation. Suppose

yt = �1yt�1 + � � �+ �pyt�p + "t: (2)
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Since we are assuming invertibility, yt has a moving average representation and Eyt"s =
0 when t < s: Then, for positive integer r; multiplying both sides of (2) by yt�r; taking
expectations, and dividing by 0;we �nd the Y ule�Walker equations

�r = �1�r�1 + �2�r�2 + � � �+ �p�r�p:

Thus the autocorrelations satisfy the homogeneous pth order di¤erence equation Ap(L)�t = 0:
The initial conditions are given by the facts �0 = 1; �1 = ��1; :::The high-order autocorrela-
tions ultimately die o¤ exponentially to zero.

For any weakly stationary process fytg; let Vr be the r�r covariance matrix for (y1; :::; yr)
and let Cr be the r-dimensional column vector (1; :::; r)

0: Then the rth partial autocorre-
lation is de�ned as the rth element of V �1r Cr: The �rst partial autocorrelation coe¢ cient
is just the �rst ordinary autocorrelation coe¢ cient �1: For the AR(p) process (2), the pth
partial autocorrelation coe¢ cient is �p and the higher order coe¢ cients are zero.

1.3 Beveridge-Nelson Decompositions

Any equation relating variables at di¤erent dates can be rewritten so that some level variables
are replaced by �rst-di¤erenced variables. Suppose, for example, fytg is a stationary MA(2)
process so yt = "t + c1"t�1 + c2"t�2: By rearranging terms, it is easily veri�ed that this
equation can be rewritten as

yt = (1 + c1 + c2)"t � (c1 + c2)4"t � c24"t�1:

More generally, suppose yt = C(L)"t where C(L) =
P1
i=0 ciL

i: Then the MA representation
can be rewritten as

yt = C(1)"t + C
�(L)4"t

where C�(L) =
P1
i=0 c

�
iL

i and c�i = �
P1
j=i+1 cj : The coe¢ cients c

�
i are absolutely summable

as long as
P1
i=0 ijcij <1. De�ning vt = C�(L)"t; this implies that yt has the representation

yt = c"t +4vt

where c = C(1) and vt is a stationary process. This representation is often called the
Beveridge-Nelson decomposition of the MA process and is very useful when deriving as-
ymptotic properties of sample moments. For example, suppose one wanted to show that the
standardized sample average of the dependent y data is asymptotically normal. Since

T�1=2
TP
t=1
yt = cT

�1=2
TP
t=1
"t + T

�1=2(vT � v0)

and the �nal term converges in probability to zero as T ! 1, one only need verify that
the standardized average of the "0s is asymptotically normal. If the "�s are i.i.d. with �nite
variance, this follows from a standard central limit theorem.

A similar decomposition holds for AR processes. Suppose yt = �1yt�1+�2yt�2+ "t: It is
easy to verify that this equation can be rewritten as 4yt = (�1+�2� 1)yt�1��24yt�1+ "t:
More generally, if A(L)yt = "t; where A(L) = 1�

P1
i=1 aiL

i and
P1
i=1 ijaij <1; then yt has

the alternative representation

4yt = �A(1)yt�1 +A�(L)4yt�1 + "t

where A�(L) =
P1
i=1 a

�
iL

i; a�i = �
P1
j=i+2 aj and

P1
i=1 ja�i j < 1: The usefulness of this

representation will become apparent later when we consider unit root models.
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1.4 Stationary ARMA Models

Let Ap(L) = 1�a1L�� � ��apLp and Bq(L) = 1+b1L+ :::+bqLq be polynomials in L having
no common factors. Let f"tg be white noise. A time series fytg satisfying the di¤erence
equation

Ap(L)yt = Bq(L)"t

is called a zero-mean ARMA(p,q) process. A unique stationary solution exists as long as none
of the roots of the equation Ap(z) = 0 lie on the unit circle. If all the roots lie strictly outside
the unit circle, then Ap(L) has an inverse and the series has a moving average representation
yt = Ap(L)

�1Bq(L)"t. If Bq(L) is invertible, yt also has a (possibly in�nite) autoregressive
representation Bq(L)�1Ap(L)yt = "t. If some of the roots of either Ap(z) = 0 or Bq(z) = 0 are
inside the unit circle, they can be replaced by their reciprocals in the factorization of Ap(L)
or Bq(L) without changing the autocorrelations of the fytg process. Thus, as long as neither
polynomial has a unit root, we will choose the invertible versions; the unique stationary
solution to the di¤erence equation will then have both an autoregressive and moving average
representation. Indeed, ARMA models can be motivated by the assumption that fytg has
in�nite AR and MA representations

yt = C(L)"t and D(L)yt = "t

where the polynomial C(L) can be well approximated by Bq(L)=Ap(L) and the polynomial
D(L) can be well approximated by Ap(L)=Bq(L):

If one or more roots of Ap(L) = 0 lie on the unit circle, then there is no stationary solution
to the di¤erence equation. If those roots are real and positive, then taking di¤erences will
produce a stationary series. Unit roots of Bq(L) = 0 do not a¤ect the existence of a stationary
solution to the di¤erence equation, but typically indicate that the time series fytg has been
overdi¤erenced. In an in�uential book, Box and Jenkins argue that, after perhaps taking �rst
or second di¤erences, many real-world time series can be well approximated as stationary
invertible ARMA(p,q) processes with small values for p and q: If d di¤erences are needed to
produce stationarity, the process is denoted ARIMA(p,d,q). If fytg is ARIMA (p,d,q), then
f�dytg is ARMA(p,q); hence, properties of ARIMA processes can easily be derived from the
properties of ARMA processes.

The autocovariances for an ARMA(p,q) process with invertible lag polynomials can be
found as follows. Since Eyt"s = 0 when t < s; if we multiply both sides of

yt = �1yt�1 + � � �+ �pyt�p + "t + �1"t�1 + � � �+ �q"t�q (3)

by the term yt�r and take expectations, we �nd

r = �1r�1 + �2r�2 + � � �+ �pr�p r > q (4)

r = �1r�1 + �2r�2 + � � �+ �pr�p + �rEyt�r"t�r + � � �+ �qEyt�r"t�q 0 � r � q

Thus the autocovariances of order q + 1 and higher satisfy the same di¤erence equation as
the autocovariances of an AR(p) process. The high-order autocovariances ultimately die o¤
exponentially to zero. The low-order autocovariances can be found by multiplying both sides
of equation (3) by "t�r for r = 0; ::; q and taking expectations. The resulting equations can
be used with (4) above to solve for the �s.

ARMAmodels arise quite naturally from the aggregation of ARmodels. SupposeAp(L)xt =
ut and Bq(L)zt = vt where ut and vt are independent white noise processes. Then, if the lag
polynomials are invertible,

yt � xt + zt =
ut

Ap(L)
+

vt
Bq(L)

=
Bq(L)ut +Ap(L)vt
Ap(L)Bq(L)

:
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But Bq(L)ut + Ap(L)vt is a moving average process of order r = max(p; q) and Ap(L)Bq(L)
is a lag polynomial of order s = p+ q: Hence yt is an ARMA(s,r) process. More generally, a
linear combination of AR processes will be an ARMA process.

1.5 Nonstationary ARMA Models

The discussion in the previous paragraphs assumes the equation Ap(L)yt = Bq(L)"t holds for
all integer t. This is unnecessarily strong given that we often only need to model an observed
�nite-length series y1; :::; yT . An alternative is to assume that the di¤erence equation holds
only for t = p + 1; :::; T and to make speci�c assumptions on the initial random variables
y1; :::; yp. It can be shown that, as long as A(L) has an inverse, there always exist initial
conditions such that the observed series is stationary and has the same autocovariances (up
to order T � 1) as that generated by the di¤erence equation with in�nite history.

Of course, we do not have to assume stationarity. Sometimes it is convenient to assume
special initial conditions that may introduce a little nonstationarity but simplify forecasting
and estimation. Or, if the di¤erence equation arises from some physical experiment as in
many engineering applications, the initial conditions may describe the actual state of the
system when the experiment started. With arbitrary initial conditions, the nonstationary
ARMA process is well de�ned even if the autoregressive lag polynomial has unit roots.

1.6 State-Space Models

Suppose the scalar process fytg is generated as

yt = b
0�t + ut t = 1; 2; :::

where f�tg is an unobserved p-dimensional vector process generated by the �rst-order di¤er-
ence equation

�t = A�t�1 + vt t = 1; 2; :::

A is a nonrandom square matrix, b is a nonrandom vector, fvtg is a vector white noise
process;and futg is a scalar white noise process independent of fvtg and the initial value
�0: The �t are called state variables and the process fytg is said to have a state-space
representation. It turns out that every ARMA process has a state-space representation. Thus
the class of state space models includes the class of ARMA models. As we shall show later,
some results about ARMA models can be derived most easily as special cases of results for
state-space models.

State-space models are sometimes called hidden Markov models in the statistical litera-
ture. The unobserved state variables �t are Markovian; that is, the conditional distribution
of �t given its past history depends only on the most recent past history �t�1: Although
the observed variables yt are not Markovian, they inherit some of the simplicity of Markov
processes. In particular, general algorithms have been developed for computing the likelihood
function for normal state-space models.

1.7 Long Memory Processes

In contrast to ARMA processes whose autocorrelations ultimately drop o¤ to zero at a geo-
metric rate, long memory processes have autocorrelations that drop o¤much more slowly. An
example is the fractionally di¤erenced process generated by the stochastic di¤erence equation

(1� L)dyt = "t (5)
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where f"tg is white noise, d 2 (�0:5; 0:5); and the fractional di¤erence operator (1 � L)d is
de�ned by its power series expansion

(1� L)d = 1� dL+ 1
2
d(d� 1)L2 + � � � .

It can be shown that equation (5) always has a stationary solution with moving average
representation of the form

yt = (1� L)�d"t =
P1
j=0 cj"t�j

where, for large j and d 6= 0,

cj �
jd�1

�(d)
and �j �

�(1� d)
�(d)

j2d�1 .

When 0 < d < 0:5; the moving average coe¢ cients fcjg are square summable, but not
absolutely summable. The autocorrelation coe¢ cients f�jg drop o¤ slowly and are not even
square summable when 0:25 � d < 0:5:

A generalization of (5) is the fractionally di¤erenced ARIMA(p,d,q) model

Ap(L)(1� L)dyt = Bq(L)"t
where Ap and Bq are invertible lag polynomials of �nite orders and d 2 (�0:5; 0:5). In
contrast to the case where d is a positive integer, this di¤erence equation has a stationary
solution fytg; although with long memory properties.

2 Prediction

Let Y be a scalar random variable and let x be a (possibly in�nite dimensional) vector random
variable de�ned on the same probability space. The best predictor of Y given x is de�ned to
be that function g�(x) such that E[Y � g(x)]2 is minimized. Assuming that second moments
exist, we �nd g�(x) = E(Y jx) . The best linear predictor of Y given x (denoted P (Y jx)) is
de�ned to be that scalar a + b0x such that E[Y � a � b0x]2 is minimized. Again assuming
second moments exist, we �nd that the solution must satisfy

cxy = Vxxb
� and a� = EY � b�0Ex

where cxy is the column vector of covariances between Y and x and Vxx is the covariance
matrix for x. If Vxx is �nite dimensional and nonsingular, we �nd

P (Y jx) = EY + c0xyV �1xx (x� Ex):

The mean square prediction error using this optimal linear predictor is

E(Y � P (Y jx))2 = var(Y )� c0xyV �1xx cxy .

When x is a vector of high dimension, inverting Vxx is computationally demanding. Some-
times one can compute (or at least approximate) P (Y jx) without explicitly �nding the inverse.
The best linear predictor has the following useful properties:

1. The prediction error e � Y � P (Y jx) has mean zero and is uncorrelated with every
element of x:

2. For constants a; b; and c, P (aY + bZ + cjx) = aP (Y jx) + bP (Zjx) + c:

3. If Y is uncorrelated with each element of x; then P (Y jx) = EY:

4. If Y is an element of x or a linear combination of elements of x; then P (Y jx) = Y:

5. P (Y jx) = P [P (Y jx; z)jx]:
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2.1 Prediction of an ARMA Series

Convenient expressions for P (Y jx) can be found in the special case where Y and x are
realizations at di¤erent dates of the stationary ARMA(p,q) process A(L)yt = B(L)"t: In
particular, for any integer s > 0; let PT (yT+s) be the best linear predictor of yT+s given the
in�nite history yT ; yT�1; yT�2; :::: Suppose A(L) and B(L) are both invertible. Then yT+s
can be written as a moving average

yT+s =
B(L)

A(L)
"T+s = "T+s + c1"T+s�1 + � � �+ cs"T + cs+1"T�1 + � � �

The best forecast of future "�s is zero. Current and past "�s can be perfectly predicted from
the autoregressive representation. Thus

PT (yT+s) = cs"T + cs+1"T�1 + � � � =
�
B(L)

A(L)Ls

�
+

"T =

�
B(L)

A(L)Ls

�
+

A(L)

B(L)
yT

where D(L)+ is de�ned to be the lag polynomial D(L) with terms containing negative powers
of L dropped.

When s = 1; this expression simpli�es since�
B(L)

A(L)L

�
+

=
1

L

�
B(L)

A(L)
� 1
�
=
B(L)�A(L)
A(L)L

:

We �nd

PT (yT+1) =
B(L)�A(L)
B(L)L

yT

which implies PT (yT+1) = yT+1�"T+1: That is, if fytg is the stationary solution of an ARMA
model with invertible lag polynomials, "t is the di¤erence between yt and the best linear
predictor of yt given its past history. The "t are often called innovations and interpreted as
new information entering the system at time t.

Of course, in practice we can only make predictions based on a �nite past history. If we
truncate the in�nite autoregression, it can serve as an approximation to the best linear pre-
dictor given a �nite past history. As we shall see later, the Kalman �lter provides an e¢ cient
computer algorithm for computing the best one-step-ahead linear predictor P (yT+1jy1; :::; yT )
exactly.

2.2 Wold Decomposition Theorem

A stationary process fytg is said to be deterministic if PT (yT+1) = yT+1; that is, if it can
be linearly predicted without error from its past history. Clearly, ARMA processes are never
deterministic unless the innovation variance is zero. TheWold decomposition theorem asserts
that every weakly stationary process can be written as the sum of a deterministic process and
a moving average process. If the moving average coe¢ cients drop o¤ to zero rapidly after
some �nite lag, the moving average part can be approximated by an ARMA(p,q) process.
Hence this theorem suggests that ARMA models should capture the second-order moment
properties of many stationary time series after any perfectly predictable component has been
removed. The exceptional cases where the moving average coe¢ cients decline only slowly
will be discussed later.

2.3 Signal Extraction

An interesting example of prediction is the so-called signal extraction problem. Suppose an
observed time series yt is the sum of a signal component ut and a noise component vt

yt = ut + vt

9



where ut and vt are independent unobserved stationary processes. Given a realization of
the time series fytg; we want to �nd the best linear predictor of ut: The answer can be
expressed simply using generating functions. If fxtg is a stationary time series with absolutely
summable autocovariance function x(r), its autocovariance generating function is de�ned to
be the linear �lter

Gx(L) =
1X

r=�1
x(r)L

r:

The best linear predictor ût = B(L)yt must satisfy

Eyt�r(ut �
P
i biyt�i) = 0 for all integer r:

This implies u(r) =
P
i biy(r � i) which implies

Gu(L) =
1X

r=�1
u(r)L

r =
1X

r=�1

1X
i=�1

biL
iy(r � i)Lr�i = B(L)Gy(L):

The best linear predictor is

ût =
Gu(L)

Gy(L)
yt =

Gu(L)

Gu(L) +Gv(L)
yt:

Recall that, if yt = C(L)"t; then r = �
2
P
j cjcj+r . It follows that

Gy(L) =
1X

r=�1
y(r)L

r = �2
1X

r=�1

1X
j=�1

cjL
�jcj+rL

j+r = �2C(L�1)C(L):

Hence if ut and vt are independent ARMA processes P (L)ut = Q(L) "t and R(L)vt = S(L)�t;
the best linear predictor is

ût =
�2"

Q(L)Q(L�1)
P (L)P (L�1)

�2"
Q(L)Q(L�1)
P (L)P (L�1) + �

2
�
S(L)S(L�1)
R(L)R(L�1)

yt

as long as P (L) and R(L) are invertible.

3 ARMAX Models

The ARMA model can be generalized to allow for the mean of yt to depend on the exogenous
variables x1t; x2t; :::; xKt, possibly with some lag. Many dynamic economic relations can be
expressed in the so-called ARMAX form

A(L)yt = �+ F1(L)x1t + :::+ Fk(L)xkt +B(L)"t

where A, B, and the F�s are low-order lag polynomials and � is a scalar intercept.

3.1 Distributed Lags

ARMAX models are commonly employed in the context of distributed lag estimation. For
example, suppose some economic variable y moves over time in response to some variable x,
but perhaps with some lag. One might write

yt = �+ �C(L)xt + ut; D(L)ut = "t (6)
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where the "t are white noise and D is an invertible lag polynomial. The �rst equation rep-
resents the (causal) distributed lag relation; the second equation models the autocorrelation
structure of the errors (capturing omitted e¤ects). The variable x is assumed to be exoge-
nous; that is, E["tjpast y�s and all x�s] = 0. Although such models can be estimated by OLS
or GLS, the number of parameters in C(L) is likely to be large and the resulting collinearity
will result in large standard errors.

The rational distributed lag approach uses ratios of low-order polynomials to approximate
the (possibly high order) polynomials C(L) and D(L). If

C(L) =
P (L)

Q(L)
and D(L) =

A(L)

B(L)
;

then we obtain the ARMAX model

A(L)Q(L)yt = �+ �A(L)P (L)xt +Q(L)B(L)"t: (7)

The simplest version of the rational lag model (�rst proposed by Koyck) assumes no auto-
correlation in the residuals and geometrically declining weights in C(L) so A(L) = B(L) =
P (L) = 1 and Q(L) = 1� �L: Then (7) becomes

yt = �+ �yt�1 + �xt + wt

where wt = "t��"t�1: A least squares regression is not appropriate because yt�1 is correlated
with wt: Instead, the parameters are commonly estimated by the method of instrumental
variables, using xt�1 as instrument for yt�1. This ignores the constraint that the error
distribution depends on the coe¢ cient �:

In general, models like (6) can be estimated by the method of instrumental variables
or, more e¢ ciently, by Gaussian maximum likelihood. Unfortunately, consistent estimation
of the ARMAX model by either method requires that the lag orders are known. Box and
Jenkins suggest possible ways to estimate these orders, but it is not clear that they are very
successful.

In practice, we are often unwilling to pretend we know the orders of the lag polynomials.
In that case, we might just run an OLS regression of yt on (xt; xt�1; :::; xt�p) for some fairly
large value of p. If the true order of the lag polynomial is less than p; this estimate of C(L)
will be unbiased even if the errors are autocorrelated. A look at the residuals might suggest
a second-stage GLS estimator. Estimating a long distributed lag by OLS or GLS is likely to
lead to collinearity problems. Although this will typically not seriously a¤ect the precision of
the estimate of the long-run multiplier, it will lead to large standard errors for individual lag
parameters. To lessen collinearity, one can impose constraints on the lag coe¢ cients. Forcing
the cj to lie on a polynomial in j leads to a linear regression with fewer parameters. For
example, if p = 4 and

C(L) = 1 + c1L+ c2L
2 + c3L

3 + c4L
4;

the linear constraint that cj = (4�j)=4 yields a regression (with intercept) of yt on the single
explanatory variable

x�t =
4xt + 3xt�1 + 2xt�2 + xt�3

4
:

Since this polynomial distributed lag approach never introduces lagged y�s as regressors,
standard linear model theory holds. The main cost is that the �rst p observations needed
to construct x� are lost; with 50 years of annual data and a lag length of 10, one would lose
20% of the observations.

These approaches to distributed lag estimation assume that the x�s are exogenous. The
equation is usually given a causal interpretation as the response of some economic variable to
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changes in its determinants. How do we know that the direction of causality is not reversed?
or that both variables are caused by a third variable? Sims has argued that, before attempting
to �t a distributed lag, one should �rst regress yt on some past, current and future x�s. If the
future x�s appear with signi�cant coe¢ cients, the assumption that x is exogenous is suspect.
We shall discuss such exogeneity tests in more detail when we consider multivariate dynamic
models.

3.2 Problems in Interpreting Dynamic Regression Models

Even if we are sure that x is exogenous, there can be conceptual problems in interpreting
dynamic economic models. Some of the problems can be illustrated by the following simple
example. Suppose one theory is that people set yt based on its past value yt�1 and on the
past value of some exogenous variable xt�1. Given yt�1 and xt�1, the past is irrelevant. The
model is

yt = �yt�1 + �xt�1 + "t

where "t represent other determinants of yt and is assumed to be white noise. Another theory
is that people set yt as a geometrically declining weighted average of past x�s:

yt =
�

1� �Lxt�1 + ut

where ut represents other determinants of yt . If (1��L)ut is white noise, the two models are
equivalent: it is not possible to tell from the data which theory is correct. This does not matter
if our goal is forecasting in a world where the process generating the data has not changed.
In both cases, E(ytjpast data) = �yt�1 + �xt�1. But suppose the system were interrupted
(say, due to war) and started over again. Then the two models would predict very di¤erent
behavior in the second period. Prior knowledge about the form of autocorrelation in the
errors can be used to distinguish between economically di¤erent models. But in the absence
of such knowledge, it is hard to distinguish among alternative behavioral models containing
lagged endogenous variables. In the distributed lag model (6), the problem was assumed
away by the speci�cation that only lagged x�s enter the behavioral equation. In the absence
of such assumptions, dynamic ARMAX models are open to many possible interpretations.

4 ARCH and GARCH Models

The models investigated so far are based on second-order moments and are designed primarily
to help forecast future values of yt from its past history. That is, the goal was to specify
a simple model for the conditional mean of yt given its past. Sometimes, however, we may
want to base the analysis on higher-order moments. This is particularly the case when the
goal is to model the conditional variance of yt given the past. For example, when analyzing
stock market returns for the purpose of pricing derivative securities, the Black-Scholes theory
requires modelling both the conditional mean and the conditional variance of returns.

An AR(p) model with i.i.d. innovations speci�ces that the conditional expectation of yt
given past values is a linear function of the most recent p past values but the conditional
variance of yt given past values is constant. If we permit the conditional variance to vary
with t we get a model with conditional heteroskedasticity. Suppose, for example,

Cp(L)yt = ut

where E(utjpast y�s) = 0 and

Var(ytjpast y�s) = � +Dq(L)u2t�1

12



so that past deviations of yt from its conditional mean help predict future variability of yt:
Then we have a model exhibiting autoregressive conditional heteroskedasticity (ARCH). The
parameters of this model could be estimated simply (but generally ine¢ ciently) by a two-step
procedure. The ut could be estimated by the residuals from a regression of yt on p lagged y�s;
then the remaining parameters could be estimated from a regression of û2t on q of its lagged
values.

More e¢ cient estimates can be obtained if we are willing to make the somewhat stronger
assumption that the ut�s can be expressed in terms of an underlying i.i.d. process. Speci�cally,
if we assume that

ut =
p
ht"t

where ht = V ar(ytjpast y�s) = �+Dq(L)u2t�1 and the "t are i.i.d. with mean zero and variance
one, then we get the ARCH process described in the previous paragraph. Moreover, if f(")
is the density function for each of the "t; the joint density of the observations yp+q+1; :::; yT
(conditional on observations up to period p+ q) is

TY
t=p+q+1

f

 
Cp(L)ytp

� +Dq(L)[Cp(L)yt�1]2

!
1p

� +Dq(L)[Cp(L)yt�1]2
:

If the density f is known and we are willing to condition on the �rst p + q values, the
parameters of the model can be estimated by maximum likelihood.

Estimation in a high dimensional parameter space can be avoided by approximating Cp(L)
and Dq(L) by ratios of low order polynomials. If, for example, Cp(L) = A(L)=B(L) and
Dq(L) = Q(L)=P (L); then we have a generalized ARCH (or GARCH) process for the condi-
tional variance added on to an ARMA model for the mean:

A(L)yt = B(L)ut

ut =
p
ht"t

P (L)ht = �� +Q(L)u2t�1

Again, under appropriate initial conditions, the parameters can be estimated by maximum
likelihood if the density for "t is known.
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