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Asymptotic Approximations

1 Introduction

When exact sampling distributions for estimators and test statistics are not available, econo-
metricians often rely on approximations obtained from asymptotic arguments. These ap-
proximations are sometimes quite accurate and can often be constructed without a complete
specification of the population distribution for the data. Suppose Fn(x) is the unknown cu-
mulative distribution function (cdf) for some statistic based on a sample of size n. If it can
be shown that the sequence of functions F1(x), F2(x), ... converges rapidly to a known limit
F (x) as n tends to infinity, then we might use F (x) as an approximation to Fn(x) even for
moderate values of n. The quality of the approximation depends on the speed of convergence,
but can be checked by computer simulation.

The simplest example of this approach is the average of independent draws from a dis-
tribution possessing a finite variance. Let Y n = n−1

Pn
1 Yi , where the Y ’s are i.i.d. with

E[Yi] = µ and var[Yi] = σ2. By an easy calculation, we find that Y n has mean µ and variance
σ2/n. Although the exact distribution of Y n depends on the distribution of the Y ’s, a simple
asymptotic approximation is always available. The cdf Fn for Y n is quite sensitive to the value
of n so we would not expect the limit of the sequence F1, F2, ... to yield a good approximation
to Fn unless n is very large. But the standardized random variable Sn =

√
n(Y n − µ)/σ has

mean zero and variance one for every n; its cdf, say F ∗n , is much less sensitive to the value
of n. Thus, if we could find the limit F ∗ of the sequence F ∗1 , F

∗
2 , ..., we might be willing to

use it as an approximation to the distribution of Sn even if n is quite small. As discussed
in section 3 below, the sequence F ∗1 , F

∗
2 , ... necessarily converges to the standard normal cdf.

This leads us to approximate Fn by the cdf of a N(µ, σ2/n) distribution.
Many estimators and test statistics used in econometrics are complicated nonlinear func-

tions of the data and are not covered by the standard theorems which deal with sums of
random variables. However, these statistics can often be approximated by sums and are still
amenable to asymptotic analysis. A general algorithm for approximating distributions is
given in Section 5 below. A brief introduction to the theory underlying these approximations
is sketched in Sections 2-4.

2 Convergence in Probability

A sequence of random variables {Sn} is said to converge in probability to a constant c if, for
any ε > 0, P [|Sn − c| > ε] tends to zero as n tends to infinity. In that case we write Sn

p→ c
or plim Sn = c (short for ”the probability limit of Sn is c.”) If {Xn} is a sequence of random
variables such that plim(nrXn) = 0, we sometimes write Xn = op(n−r). Thus Xn = c+ op(1)
is another way of saying that plim Xn = c.

The weak law of large numbers states that the sample average Y = n−1
P
i Yi of n i.i.d.

random variables having finite population expectation θ converges in probability to that
expectation. We say that Y is a consistent estimator of θ.

Proof of consistency when Y ’s have finite variance: If var(Yi) = σ2 then var(Y ) = σ2/n
and, by Chebyshev’s inequality, P [|Y − θ| > ε] ≤ σ2/ε2n. If the variance is not finite,
a more delicate argument is needed.
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We need not restrict ourselves to the i.i.d. case. Consider again the sample average Y =
n−1

Pn
t=1 Yt, where now the Y ’s are a stationary time series with mean θ and covariances of

the form cov(Yt, Ys) = γ|t−s|. By Chebyshev’s inequality, Y
p→ θ as long as

var[Y ] = n−2
nX
t=1

nX
s=1

cov(Yt, Ys) = n−1
n−1X

r=−n+1
(1− |r|

n
)γr

tends to zero. This will necessarily occur if the sequence of autocovariances γr tends to zero
as r tends to infinity.

Probability limits can be found for sequences other than those constructed from sample
sums. For example, the sample median of n i.i.d. draws from a continuous distribution can
be shown to converge in probability to the population median. The concept of convergence
in probability can also be generalized to vectors and matrices. If {Sn} is a sequence of p× q
random matrices where p and q do not depend on n, then we say that plim Sn = A if each
element of Sn converges in probability to the corresponding element of the p × q matrix A.
For example, if Sn = n−1X 0u, where the n × p matrix X is nonrandom and the n elements
of the vector u are zero-mean uncorrelated random variables with common variance σ2, a
sufficient condition for plim Sn = 0 is that the elements of X are bounded in absolute value
by some number M .

PROOF: For nonrandom c, E[c0Sn] = 0 and var[c0Sn] = σ2c0X 0Xc/n2 ≤ σ2M2kc0c/n→ 0.

3 Convergence in Distribution

A sequence of random variables Sn is said to converge in distribution to the random variable
X if the cdf of Sn converges to the cdf of X at all continuity points of the later function. The
Lindeberg-Levy central limit theorem says that, if the random variables Y1, ..., Yn are i.i.d.
with mean µ and variance σ2, the cdf for Sn = n−1/2

Pn
j=1(Yj −µ)/σ converges to the cdf of

a N(0, 1) variate as n tends to infinity. This is often written Sn
d→ N(0, 1).

SKETCH OF PROOF: For t in a neighborhood of the origin, define the characteristic
function for (Y − µ)/σ as ψ(t) ≡ Eeit(Y−µ)/σ where i =

√
−1. Note that ψ is neces-

sarily twice differentiable with ψ(0) = 1,ψ0(0) = 0 and ψ00(0) = −1. By Taylor’s
Theorem we have ψ(t) = 1− t2/2+ o(t2) as t→ 0. But the characteristic function for
Sn is

ψS(t) = Ee
itS = [ψ(t/

√
n)]n = [1− t2/2n+ o(n−1)]n.

Hence, as n → ∞,ψS(t) → e−t
2/2. It can be shown that the characteristic function

uniquely determines a distribution. Since the limiting characteristic function is that of a
N(0, 1), the limiting distribution must also be N(0, 1).

Again, it is possible to drop the i.i.d. assumption and extend to the vector case. We
state, without proof, a few important limit theorems for sample sums.

1. If the random vectors Y1, ..., Yn are i.i.d. with mean µ and variance matrix Ω, the joint
cdf for Sn = n−1/2

Pn
j=1(Yj − µ) converges to the cdf of a multivariate normal vector

with mean zero and variance matrix Ω.
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2. (Lyapunov) Let Y1, ..., Yn be mutually independent k-dimensional random vectors with
EYi = µi. Define An =

Pn
i=1 var(Yi).If, as n tends to infinity, An/n tends to a positive

definite limit matrix A and the absolute third moments E|Yki − µki|3 are uniformly
bounded as n→∞, then A−1/2n

Pn
i=1(Yi − µi) converges to a N(0, Ik) distribution.

3. Let X be an n×k nonrandom matrix and let u be a vector of n i.i.d. random variables
with zero mean and unit variance. If the elements of X are uniformly bounded and the
smallest characteristic root of X 0X grows without bound as n tends to infinity, then
the limiting distribution of (X 0X)−1/2X 0u is N(0, I).

4. Suppose Y1, ..., Yn are consecutive observations from a stationary scalar time series
process with moving average representation Yt =

P∞
j=0 cjεt−j , where the εt are i.i.d.

with mean zero and variance σ2. If
P∞
j=0 |cj | < ∞ and

P∞
j=0 cj = d 6= 0, then the

limiting distribution of n−1/2
Pn
1 Yt is N(0, σ

2d2).

5. Suppose the time series Y1, ..., Yn is a martingale difference sequence; that is, the con-
ditional expectations E(Yt|Y1, Y2, ..., Yt−1) = 0 for all integer t ≤ n. Suppose the third
absolute moments E|Y 3n | are bounded and lim n−1

Pn
t=1E(Y

2
t ) = σ2 as n→∞. Then,

if plim n−1
Pn
t=1 Y

2
t = σ2, the limiting distribution of n−1/2

Pn
1 Yt is N(0, σ

2).

Asymptotic normality is not restricted to statistics based on sums. Consider again the
sample median M of n i.i.d. draws from a continuous density f with population median θ.
Then it can be shown that

√
n(M − θ)2f(θ) has a limiting N(0,1) distribution as long as

f(θ) > 0. Thus, in large samples, one might approximate the distribution of M by a normal
with mean θ and variance [4nf2(θ)]−1.

4 Some Useful Facts

There are many results that allow us to deduce the limiting behavior of functions of convergent
random sequences. Let {Xn} and {Yn} be sequences of p-dimension random vectors, let {Wn}
be a sequence of p×q random matrices, and let {Zn} be a sequence of q-dimensional random
vectors. Let g : Rp → R and h : Rq → R be functions not depending on n. Then, using
standard limit arguments, one can prove the following useful facts:

1. Slutsky’s Theorem: If plim Xn = a and g is continuous at a, then plim g(Xn) = g(a).

2. If Xn
d→ X and plim(Xn − Yn) = 0, then Yn d→ X.

3. If plim Xn = a, plim Wn = B, and Zn
d→ Z, then the random vector Xn + BnZn

converges in distribution to a+BZ.

4. If Zn
d→ Z and h(·) is everywhere continuous, then h(Zn) d→ h(Z).

5. The delta method : If g(·) is differentiable at a and √n(Xn − a) d→ X, then

√
n[g(Xn)− g(a)] d→ c0X,

where c is the gradient vector Dg evaluated at a.
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5 Approximating Distributions

Using the concepts of convergence in probability and convergence in distribution, we can
now describe more precisely the asymptotic approach to approximating the distribution of a
p-dimensional sample statistic Tn:

1. If the center or the dispersion of Tn changes substantially with sample size n, find a
new variable Sn = h(Tn, n) whose center and dispersion are not sensitive to n. (We
assume the mapping from T to S is one-to-one.) If plim Tn = θ, the linear mapping
Sn =

√
n(Tn − θ) often works. Sn is sometimes referred to as a ”standardized” or a

”normalized” version of the statistic Tn .

2. Find the limiting distribution of Sn. Often this can be accomplished by showing that
Sn can be rewritten as AnXn+ bn, where An is a matrix converging in probability to a
nonrandom matrix A, bn is a vector converging in probability to a zero vector, and Xn
converges in distribution to a random vector X with cdf F ; the limiting distribution of
Sn is then the distribution of AX. If X is N(0,Σ), then the limiting distribution of Sn
is N(0, AΣA0).

3. Approximate the distribution of T by inverting the standardizing transformation. If,
for example, the limiting distribution of

√
n(Tn − θ) is N(0, AΣA0), this means ap-

proximating the distribution of Tn by a normal with mean θ and covariance matrix
AΣA0/n.

As an example, let y = Xβ + u where X is an n ×K matrix and E[u] = 0. The OLS
estimator b = β + (X 0X)−1X 0u is normal if X is nonrandom and u is normal. But a normal
approximation can be justified under much weaker conditions. Suppose we can show that plim
X 0u/n = 0 and plim X 0X/n = A, where A is nonsingular. Then, plim b = β+A0 = β . If, in
addition, plim u0u/n = σ2, then s2

p→ σ2, where s2 = (y−Xb)0(y−Xb)/(n−K). If, using one
of the central limit theorems given in Section 3 above, we can show that (X 0X)−1/2X 0u

d→
N(0, σ2I), then it follows that (X 0X)1/2(b− β)/s

d→ N(0, I). In large samples, we might act
as though b were distributed as N[β , s2(X 0X)−1]. We could form an approximate confidence
set for β using the fact that (b− β)0X 0X(b− β)/s2 is asymptotically chi-squared.

As a second example, consider the approximate distribution of b1b2, the product of the first
two components of the LS estimator b just considered. By Slutsky’s theorem, plim(b1b2) =
β1β2 as long as plim b = β. Furthermore, the delta method says that

√
n(b1b2−β1β2) has the

same limiting distribution as β2
√
n(b1−β1)+β1

√
n(b2−β2). Thus, in large samples, we might

behave as though b1b2 were normal with mean β1β2 and variance β
2
2q11 + β21q22 + 2β1β2q12

where qij is the ij element of s2(X 0X)−1. [Note: if β1 and β1 are both zero, the limiting
distribution of

√
n(b1b2 − β1β2) is degenerate; normalizing by n, instead of

√
n is needed.]
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