
Estimating Time-Series Models
The Box-Jenkins methodology for �tting a model to a scalar time series fxtg consists of �ve

steps:

1. Decide on the order of di¤erencing d that is needed to produce a stationary series yt =
(1�L)dxt that can be approximated by an ARMA(p,q) model (with intercept if the mean of
yt is not zero).

2. By inspecting the sample autocorrelations and partial autocorrelations of fytg, determine
tentative values for p and q.

3. Estimate the lag coe¢ cients by approximate maximum likelihood assuming normally distrib-
uted innovations.

4. Compute approximate standard errors and con�dence intervals for the unknown coe¢ cients.

5. Using various diagnostics, check if the tentative model was indeed appropriate.

Box and Jenkins suggest informal ways to perform the �rst two steps. A formal treatment of
step 1 will appear in the second half of the course. A formal approach to step 2 can be developed
using the theory of nonnested model selection; see, for example, the book Time Series: Theory and
Methods by Brockwell and Davis. Here we shall discuss steps 3-5. Finally, in Section 6 we extend
the discussion to ARMAX models.

1 Some Alternative Estimators

Consider the stationary ARMA(p,q) model Ap(L)yt = Bq(L)"t where the "t are white noise with
zero mean and variance �2: The lag polynomials

Ap(L) = 1� �1L� � � � � �pLp and Bq(L) = 1 + �1L+ � � �+ �qLq

are assumed to be invertible and have no common factors. Let � be the column vector of the
m = p+ q unknown lag coe¢ cients. Suppose we want to estimate the unknown parameters � and
�2 using the vector of observations y = (y1; :::; yT )0: If the "t�s are jointly normal, so are the yt�s.
Let 
(�) be a T � T matrix de�ned by Eyy0 = �2
(�). Except for an additive constant, the
Gaussian log likelihood function is

L(�; �2) = �1
2
ln j
(�)j � T

2
ln�2 � 1

2�2
y0
(�)�1y:

Note that, for given �; L is maximized when �2 = T�1y0
(�)�1y: Thus the concentrated log
likelihood function is

L�(�) = max
�2

L(�; �2) = �1
2
ln j
(�)j � T

2
ln
y0
(�)�1y

T
� T

2
: (1)

Three alternative methods are commonly used in practice for estimating �:

1. Quasi Maximum Likelihood maximizes L� in the parameter space of �:

2. Unconditional Least Squares uses the fact that j
(�)j is negligible in large samples and min-
imizes y0
(�)�1y: This method is described in more detail in Section 4 below.
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3. Conditional Least Squares: If one conditions on y1; :::yp and sets "p; "p�1; � � � ; "p�q+1 to zero,
the likelihood for the remaining y�s has the same form as (1) but j
(�)j becomes a constant
and y0
(�)�1y becomes e0e; where e = ("p+1; � � � ; "T ): As discussed in Section 2 below,
mimimizing e0e is a problem in nonlinear least squares and can be accomplished using the
Gauss-Newton algorithm.

Because it is computationally the simplest, conditional least squares is commonly used in prac-
tice. It can be shown that all three estimators have the same limiting distribution even if the errors
are not normal. We have the following basic result:

Theorem 1 Assume

i. the parameter space for � is such that the roots of Ap(z) = 0 and Bq(z) = 0 are outside the
unit circle and there are no common roots,

ii. the true value �0 is in the interior of the parameter space,

iii. the "t are i.i.d. with mean zero and variance �2:

Then all three estimators of �0 and �2 converge in probability to the true value. Furthermore,
for all three estimators,

p
T (�̂ � �0) converges in distribution to a normal random variable with

mean zero and covariance matrix

V = �2
�
E

�
@"t
@�

@"t
@�0

���1
.

If the "t are normally distributed, the estimators are asymptotically e¢ cient.

Note that, except for the e¢ ciency result, we do not need to assume the innovations are in
fact normally distributed. Although the asymptotic variance expression does require that the
innovations be conditionally homoskedastic, the i.i.d. assumption can be weakened. For example,
Assumption iii can be replaced by the following without a¤ecting the result:

iii�. both "t and "2t � �2 are martingale di¤erence sequences (with respect to the past history of
"t); that is, E("tj "t�1; "t�2; :::) = 0 and E("2t � �2j"t�1; "t�2; :::) = 0: In addition, E"2+�t <1
for some � > 0:

For a proof of the theorem, see W. Fuller, Introduction to Statistical Time Series, 2nd edition,
pp. 429-43.

2 Conditional Least Squares

Maximum likelihood estimation is computationally demanding when the sample size T is large
since the calculation involves inverting the T � T matrix 
 and computing its determinant. Later
we shall show how a computational algorithm known as the Kalman �lter can be employed to
obtain exact maximum likelihood estimates by doing these calculations recursively. In practice,
most empirical economists maximize an approximation to the likelihood based on a slight change
in the initial conditions. For example, in the AR(p) model, if we condition on the �rst p values
y1; :::; yp and examine the process starting at t = p+1, maximum likelihood is equivalent to a least
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squares regression of yt on its p lagged values. We now show that a similar modi�cation of initial
conditions in the general ARMA case leads to a nonlinear least squares regression.

In every invertible ARMA(p,q) model, the observed y�s have a moving average representation
expressing them linearly to current and lagged "�s. Hence the likelihood function (the joint density
of the observed y�s) can be derived from the density of the "�s using familiar change-of-variable
techniques. Unfortunately, the mapping y to " is typically not one-to-one, so the calculation is
nontrivial. However, conditioning on the observed values y1; :::; yp and on "p = "p�1 = ::: =
"p�q+1 = 0 necessarily leads to a one-to-one mapping. Let e be the vector of white noise innovations
("p+1; :::; "T )

0 and let y be the vector of observations (yp+1; :::; yT )0: Then, by successive substitution,
we can write e = Dy + d where D is a triangular matrix with ones on the diagonal; the vector d
depends on y1; :::; yp and is nonrandom because of our conditioning. Thus we can write e = e(y; �)
where the Jacobian j@e=@yj does not depend on �. If e=� is standard normal, the change-of-variable
rule gives the density for y having the form

f(y) = (2��2)�(T�p)=2 expf�1
2
e(y; �)0e(y; �)=�2g

Maximum likelihood estimates of � can be obtained by minimizing e0e: Although e is linear in y; it
is nonlinear in � as long as q (the number of moving average coe¢ cients to be estimated) is greater
than zero. This nonlinear least squares problem can be solved using the Gauss-Newton algorithm.
Let m = p + q be the number of unknown parameters in � and let n = T � p be the number of
observations after conditioning. (If there is an intercept, then m = p + q + 1:) Then, de�ning the
n�m matrix Z(�;y) � @e=@�0 and starting with some initial guess �0 , we use the recursion

�r+1 = �r � (Z 0rZr)�1Z 0rer

where Zr = Z(�r;y) and er = e(�r;y): When Z 0r�
r ' 0, one stops.

For example, suppose yt = �yt�1+"t+�"t�1 and we treat y1 as �xed and assume "1 = 0. Then,
using the equation "t = yt � �yt�1 � �"t�1 with "1 = 0, we �nd

"2 = y2 � �y1;
"3 = y3 � (�+ �)y2 + ��y1;
"4 = y4 � (�+ �)y3 + �(�+ �)y2 � ��2y1; etc.

Clearly, the Jacobian matrix @"=@y is triangular with determinant equal to one. However, we do
not have to explicitly solve for the "0s in terms of the y�s. Under normality, the MLE which
minimizes the sum of squared innovations can be computed using the following G-N algorithm:

1. For some initial �0 = (�0; �0)0 and starting with the initial condition

"1 = @"1=@� = @"1=@� = 0 ,

build up the vector e0 and the (T � 1)� 2 matrix Z0 = [@e=@�; @e=@�] using the recursions

"t = yt � �0yt�1 � �0"t�1
@"t=@� = �yt�1 � �0@"t�1=@�
@"t=@� = �"t�1 � �0@"t�1=@�

2. Regress e0 on Z0 and compute �1 = �0 � (Z 00Z0)�1Z 00e0:
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3. Redo steps one and two using �1 in place of �0 so �2 = �1 � (Z 01Z1)�1Z 01e1:

4. Continue to convergence.

Of course, this algorithm fails if, at iteration r, Zr has rank less than 2. So, for example, one
should not start with the initial choice �0 = (0; 0)0:

Note that exogenous regressors can be easily handled by the Gauss-Newton algorithm. For
example, if the model is

yt = �yt�1 + xt + "t + �"t�1

then Z is the (T � 1)� 3 matrix [@e=@�; @"=@�; @"=@] and the recursions are

"t = yt � �0yt�1 � 0xt � �0"t�1
@"t=@� = �yt�1 � �0@"t�1=@�
@"t=@� = �"t�1 � �0@"t�1=@�
@"t=@ = �xt � �0@"t�1=@

Of course, to insure that the algorithm converges to a global (and not just a local) minimum,
alternative starting values should be used. Or at least the starting values should be chosen as some
consistent method-of-moments estimator that has high probability of being near the true parameter
value.

If the model has been estimated by the Gauss-Newton algorithm, then a natural estimate of
the asymptotic covariance matrix V is s2(Z 0Z=T )�1, where Z = de=d� and s2 = e0e=(n�m); both
e and Z are evaluated at the estimate �̂ from the �nal iteration. That is, we behave as though �̂
is normal with mean �0 and variance matrix s2(Z 0Z)�1: The usual tests and con�dence regions
based on the t and F-distributions are asymptotically valid.

The G-N algorithm maximizes an approximation to the likelihood since "1 is not really 0 and
y1 is not really constant. However, the G-N estimate is usually close to the actual MLE as long as
the parameters are far away from the noninvertibility boundaries j�j = 1 and j�j = 1.

3 Score Tests for ARMA Parameters

Score test statistics are typically much easer to compute than Wald test statistics but are asymp-
totically equivalent. If the null hypothesis puts r independent constraints on �, we need only �nd
the constrained MLE e� which involves a lower dimensional nonlinear estimation problem. Using
the output of a Gauss-Newton iteration, we would evaluate e and the full n�m matrix Z at e� so
the estimated score is eZ 0ee=es2 and the estimated information matrix is eZ 0 eZ=es2. If

ee0 eZ( eZ 0 eZ)�1 eZ 0eees2
is large compared to a chi-square(r) critical value, one rejects the hypothesis. If � is composed of
two subvectors (�1; �2) and the null hypothesis is �2 = a; the score statistic takes a simpler form.
Partitioning the matrix Z as (Z1; Z2); we note that eZ 01ee = 0: Thus the score statistic becomesee0 eZ 02( eZ 02 eZ2 � eZ 02 eZ1( eZ 01 eZ1)�1 eZ 01 eZ2)�1 eZ 02eees2 .

Score statistics are particularly useful for diagnostic checking. After �tting an ARMA(p,q)
model, one might want to see whether an ARMA(p+1,q) or an ARMA(p,q+1) provides a signi�-
cantly better �t. Since eZ1 and ee have already been computed, one need only compute the additional
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vector eZ2: There is no need to compute another Gauss-Newton set of iterations. Note that a score
test of the hypothesis that an ARMA(p,q) is appropriate (in a maintained ARMA(p+1,q+1) model)
would fail since eZ2 would have rank 1. This re�ects the fact that, under the null hypothesis, the
AR and the MA polynomials have a common factor.

An alternative diagnostic test is also commonly used. If an ARMA(p,q) model is adequate, then
the estimated innovations should behave like white noise. The low order sample autocorrelations of
a white-noise series are asymptotically independent N(0; T�1) variables. So T times the sum of the
�rst k squared sample autocorrelations would be approximately distributed as chi-square-k. If the
autocorrelations are computed from the ee; the estimated innovations after �tting an ARMA(p,q)
model, the asymptotic theory is a¤ected by the estimation. For large k and T , the Box-Pierce
portmanteau statistic

T (e�21 + e�22 + � � �e�2k)
is approximately distributed as chi square with k�p�q degrees of freedom if the model is correctly
speci�ed.

4 Unconditional Least Squares and Backcasting

Although no longer used much in practice, unconditional least squares is another way to avoid
the computational di¢ culties involved in maximizing the exact Gaussian likelihood function. It
avoids calculating j
j by simply ignoring it. It simpli�es the calculation of y0
(�)�1y; by the
trick of "backcasting." Let " be the vector ("�m; "�m+1; � � � ; "T )0 where m is some large posi-
tive integer. Then the vector of observations y = (y1; � � � yT )0 can be approximated by y = D"
where D is a triangular matrix of moving average coe¢ cients. It follows that Eyy0 � �2DD0 and
y0
�1y � "0D0(DD0)�1D": It is easy to verify that, under normality, the conditional expectation
of " given y is

"c � E("jy) = (E"y0)(Eyy0)�1y � D0(DD0)�1y �D0(DD0)�1D":

Since D0(DD0)�1D is idempotent, it follows that

y0
�1y � "0D0(DD0)�1D" � "0c"c:

Thus we �nd that estimation method 2 is equivalent to minimizing the sum of squares of the
expected current and past innovations.

Box and Jenkins suggested a very clever way of doing this calculation. They noted that
the backwards ARMA model A(L�1)yt = B(L�1)�t has the same autocorrelation properties as
the original model. Thus, given tentative estimates of the parameters, one can �backcast� the
observations y0; y�1; � � � ; y�m: From these values and using the original di¤erence equation, one can
compute best linear predictors of " given y: Hence the Gauss-Newton algorithm can be employed
to minimize y0
�1y just as it is employed to minimize e0e. Details of the calculation can be found
in the Granger and Newbold text.

5 Asymptotic Theory

Proofs of the large-sample results given in the previous sections are nontrivial and rely on a general
asymptotic theory for sums of dependent variables, a theory that is well beyond the scope of these
notes. Here we shall present just a few of the basic ideas.
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Suppose fytg is a stationary AR(1) process generated by yt = �yt�1 + "t with j�j < 1: If � is
estimated by least squares from the observations y0; y1; :::; yT , then the standardized estimator can
be written as

p
T (�� �) = T�1=2

P
yt�1"t

T�1
P
y2t�1

=
NT
DT

where the summations are from 1 to T . If NT converges in distribution to a N(0, A) variable and
if DT converges in probability to the constant B, then the standardized estimator has a limiting
N(0, A=B2) distribution. If bA and bB are consistent estimates, then we might approximate the
distribution of b� by a normal with mean � and variance bA=T bB2:

Note that EDT = �2=(1� �2): To show that DT converges in probability to its expectation, it
is su¢ cient to show that its variance tends to zero as T !1: But

var(DT ) =
1

T 2

T�1X
t=0

T�1X
s=0

cov(y2t ; y
2
s) =

1

T 2

T�1X
r=�T+1

T�1�rX
t=0

cov(y2t ; y
2
t+r)

Suppose the covariances do not depend on t so

var(DT ) =
1

T

T�1X
r=�T+1

(1� jrj
T
)gr

where gr = cov(y2t ; y
2
t+r): If gr ! 0 as r !1, then this variance necessarily converges to zero. The

gr can be computed from the moving average representation for yt: If the "t are i.i.d. and possess
�nite fourth moment, a little algebra shows that

gr = [
2�4

(1� �2)2 +
�4

1� �4 ]�
2r

where �4 is the fourth cumulant of "t: Since j�j < 1;we conclude that indeed DT ! B = �2=(1��2):
Using a more delicate argument, the assumption of a �nite fourth moment can be dropped. Indeed,
the i.i.d. assumption can be replaced by the assumption that "t and "2t��2 are martingale di¤erence
sequences, although the argument is somewhat more tedious.

Showing that the numerator NT is asymptotically normal is a bit more complicated. Let
Ut = yt�1"t so NT = T�1=2

P
Ut: Suppose that both "t and "2t � �2 are stationary martingale

di¤erence sequences. Then fUtg is also a stationary martingale di¤erence sequence and T�1
P
U2t

converges in probability to its expectation

1

T

X
E("2t y

2
t�1) =

�4

1� �2 = �2B

as long as su¢ cient moments exist. Then, using the Taylor series expansion of the exponential
function, the characteristic function for NT can be written as

 (�) = E

TY
t=1

ei�Ut=
p
T = E

TY
t=1

�
1 + i�

Utp
T
� �2U2t

2T
+O(T�3=2)

�

� E
TY
t=1

�
1 + i�

Utp
T

��
1� �2U2t

2T

�

� E
TY
t=1

�
1 + i�

Utp
T

�
e�

P
�2U2s =2T � e��

2B�2=2E

TY
t=1

�
1 + i�

Utp
T

�
;
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where some delicate arguments are needed to justify the indicated approximations. Since Us is a
martingale di¤erence sequence, iterated expectations can be used to show that the �nal expected
product equals one. Thus the limiting characteristic function of NT is that of a N(0, �2B) and hencep
T (�̂ � �) has a limiting normal distribution with variance �2=B = 1 � �2. [Note: if E("2t jpast)

is not a constant but depends on past variables, it may still be the case that NT is asymptotically
normal. However, its asymptotic variance will not equal B. Thus, in the presence of conditional
heteroskedasticity, the �usual�standard errors are incorrect. Robust standard errors are available
and are discussed in Hamilton�s text.]

For general ARMA models, the nonlinear least squares estimator satis�es the �rst order condi-
tions Z(b�)0e(b�) = 0: Expanding e(b�) around the true parameter value �0; we obtain

Z(b�)0[e(�0) + Z(��)(b� � �0)] = 0:
Often we can show that

p
T (b� � �0) =

p
T [Z(b�)0Z(��)]�1Z(b�)0e(�0)

=

�
Z(�0)

0Z(�0)

T

��1 Z(�0)0e(�0)p
T

+ op(1):

� D�1
T NT + op(1):

Using techniques similar to those used above, one can show that DT converges in probability
to a nonrandom nonsingular matrix B and that, under conditional homoskedasticity, NT is a
standardized sum whose summands are a martingale di¤erence sequence and is asymptotically
N(0, �2B). Hence,

p
T (b� � �0) is asymptotically normal with variance �2B�1: Since B can be

estimated by Z(b�)0Z(b�)=T; one says that b� is approximately normal with mean �0 and variance
s2[Z(b�)0Z(b�)]�1

General conditions under which sample moments constructed from a strictly stationary time
series converge in probability (or almost surely) to population moments are often referred to as
ergodic theorems. These rather deep results arise from statistical mechanics and make assumptions
about the probabilities of events that are invariant with respect to a time shift. For example, the
event fyt > 0 for all tg is invariant since it holds if and only if the event fyt+1 > 0 for all tg holds; but
the event fy5 > 0g is not invariant since it does not imply fy6 > 0g: A stationary process is called
indecomposable if all invariant events occur with probability one or zero. A stationary process is
called ergodic if every sample moment converges almost surely to its expectation. The basic ergodic
theorem then says that indecomposablity is a necessary and su¢ cient condition for ergodicity. It
can be shown that stationary normally distributed processes whose autocovariances r tend to zero
(as r tends to in�nity) are indecomposable and hence ergodic. Strong mixing conditions also can
be used. In general, however, except for the case of discrete Markov chains, it is rather di¢ cult to
�nd economically meaningful conditions that imply indecomposability. In practice, we usually just
make assumptions on the summability of autocorrelation or moving average coe¢ cients to prove
convergence of sample moments.

6 Regression with Autocorrelated Errors

As noted in section 2, ARMAX models of the form

A(L)yt = �+ F1(L)x1t + :::+ Fk(L)xkt +B(L)"t
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can be estimated by conditional (nonlinear) least squares as long as the lag polynomials A;B; F1; :::;
Fk are all of low order or are ratios of low order polynomials. This assumes that the orders of the
polynomials are known or can be easily determined. Often we desire an alternative approach that
is robust to speci�cation error in polynomial order.

First we consider the special case where A(L) = I; that is, we have a linear regression model

y = X� + u

where the errors are assumed to be independent of the regressors. The errors are a stationary time
series with mean zero and second-moment matrix 
. If the errors are approximately normal and 

is known, a natural estimator of � is the GLS estimator (X 0
�1X)�1X 0
�1y:Of course, in practice,

 is unknown so a multi-step procedure is often used. First one prewhitens the data by picking
a nonrandom matrix D such that Du is thought to be roughly white noise. Second, one regresses
Dy on DX obtaining residual vector e: (In practice, most empirical economists seem to use the
identity matrix for D so e is the OLS residual.) Fit an ARMA model to the residuals and use this
estimated model to compute the matrix 
̂ . The �nal estimate of � is �̂ = (X 0
̂�1X)�1X 0
̂�1y:
Under regularity conditions on the exogenous variables and some assumptions on the rate at which
the high-order autocovariances tend to zero, it can be shown that if the number of parameters in
the ARMA model for futg are allowed to increase slowly to in�nity as the sample size increases, �̂
is asymptotically equivalent to the GLS estimator with known 
:

A similar result is available for rational distributed lag models. For example, suppose

yt =
�

1� �Lxt + ut;

where ut is stationary with mean zero but covariance matrix 
: If 
 were known one could esti-
mate the remaining paameters by minimizing u0
�1u: Instead one can procede as follows. Find
preliminary consistent estimates of � and �; say by instrumental variables. Fit an ARMA model
to the estimated ût and use that model to compute 
̂: Then estimate the parameters by minimizing
u0
̂�1u: Again, if the number of parameters in the ARMA model for futg are allowed to increase
slowly to in�nity as the sample size increases and some regularity conditions are satis�ed, this
procedure is asymptotically equivalent to the estimator using the true 
:
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