Problem Set 2

Due: Thursday, September 20, 2007

1. Consider the stationary time series generated by

$$y_t = 0.9y_{t-1} - 0.2y_{t-2} + \varepsilon_t$$

where the ε_t are white noise with mean zero and variance 1.

- (a) Find the best linear predictor of y_{T+3} based on $(y_T, y_{T-1}, ...)$, the infinite past history up to time T.
- (b) Find the best linear predictor of y_0 given observations $(y_{1,y_2,...})$.
- 2. Consider the ARMA(2,2) process

$$y_t = y_{t-1} - .29y_{t-2} + \varepsilon_t + 3\varepsilon_{t-1} - 10\varepsilon_{t-2},$$

where the ε_t are white noise with mean zero and variance 1.

- (a) Show that the autoregresive lag polynomial is invertible but the moving average lag polynomial is not.
- (b) Find an alternative ARMA representation that has both polynomials invertible.
- (c) Define $P_s(y_t)$ to be the best linear predictor of y_t given the infinite past history $y_s, y_{s-1}, y_{s-2}, \dots$ Given $y_T = y_{T-1} = 1$ and $P_{T-1}(y_T) = P_{T-2}(y_{T-1}) = 1$, find $P_T(y_{T+1})$.
- 3. Suppose $\{y_t\}$ is a stationary MA(1) process generated as $y_t = \varepsilon_t + \theta \varepsilon_{t-1}$, where the ε 's are white noise with mean zero and variance one.
 - (a) Find the best linear predictor of y_2 given y_1 .
 - (b) Find the best linear predictor of y_3 given y_1 and y_2 .
 - (c) Find a state space representation of the model.
 - (d) Using the appropriate initial condition, compute the best linear predictor of part (a) from the Kalman filter.
- 4. Consider the MA(1) model $y_t = \varepsilon_t + \theta \varepsilon_{t-1}$ where the ε 's are i.i.d. normal random variables with mean zero and variance σ^2 . Suppose that, in a sample of 100 observations, the approximate maximum likelihood estimator of σ^2 turns out to be 6.25 and the approximate maximum likelihood estimator of θ turns out to be 0.3.
 - (a) Is the estimate of θ significantly different from zero?
 - (b) How would your answer change if the model were $y_t = \varepsilon_t + \theta \varepsilon_{t-2}$?

5. Suppose the observed time series $y_1, y_2, ..., y_T$ was generated as

$$y_t = \eta_t + \theta(\eta_{t-1}^2 - 1)$$

where $\eta_0, \eta_1, ..., \eta_T$ are unobserved i.i.d. N(0,1) innovations and θ is an unknown constant.

- (a) Are the y_t stationary? White noise? Mutually indpendent? Normal? Explain.
- (b) Find the best *linear* predictor of y_t given its past history $(y_{t-1}, y_{t-2}, ...)$.
- (c) Suppose the model were modified slightly by assuming $\eta_0 = 1$. Derive the joint probability density function for $y_1, , , y_T$ under this specification. Explain (in detail) how you could compute the maximum likelihood estimate of θ using the Gauss-Newton algorithm.
- (d) Using the likelihood function of part (c), explain how you would compute the score statistic for testing the hypothesis that $\theta = 0$.