Problem Set 4

Due: Tuesday, October 16, 2007

1. Consider the model

$$
x_{t}=\varepsilon_{t}+a \eta_{t-1} \quad \text { and } \quad y_{t}=\eta_{t}+b \varepsilon_{t-1} .
$$

where $\left\{\varepsilon_{t}\right\}$ and $\left\{\eta_{t}\right\}$ are independent white noise processes with zero mean and unit variance.
(a) Show that, individually, $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ are white noise series.
(b) Find the best linear predictor of y_{t} given all past, present, and future values of x_{t}
(c) For what parameter values will there be one-way Granger causality from x to y ?
2. Consider the bivariate time-series model

$$
\begin{aligned}
& y_{t}=\beta x_{t-1}+u_{t} \\
& x_{t}=\gamma x_{t-1}+v_{t}
\end{aligned}
$$

where $|\beta|$ is less than one and $0<\gamma<1$. The processes $\left\{u_{t}\right\}$ and $\left\{v_{t}\right\}$ are independent normal white noise, each with known variance one. We observe $2 T$ successive observations $y_{1}, y_{2}, \ldots, y_{2 T-1}, y_{2 T}$ but only the T even dated values $x_{2}, x_{4}, \ldots, x_{2 T}$. Solving out the unobserved x 's, we obtain, for $t \geq 3$,

$$
\begin{aligned}
& y_{t}=\beta x_{t-1}+u_{t} \quad(t \text { odd }) \\
& y_{t}=\beta \gamma x_{t-2}+u_{t}+\beta v_{t-1} \quad(t \text { even }) \\
& x_{t}=\gamma^{2} x_{t-2}+v_{t}+\gamma v_{t-1} \quad(t \text { even })
\end{aligned}
$$

It seems reasonable to estimate the parameters (β, γ) by generalized method of moments; that is, one might minimize $g_{T}(\beta, \gamma)^{\prime} W_{T} g_{T}(\beta, \gamma)$ for some appropriate vector g_{T} and matrix W_{T}.
(a) Find an appropriate 3-dimensional "moment" vector g_{T} based on the orthogonality condition that, in each of the above three equations, the observed right-hand variable is uncorrelated with the unobserved error component.
(b) Find an expression for V, the approximate variance matrix for your vector g_{T}.
(c) Efficiency considerations suggest using some preliminary consistent estimate of (β, γ) to obtain an estimate of V and set $W_{T}=\widehat{V}^{-1}$. Suggest a preliminary estimate based on two OLS regressions.
(d) Find a general expression for the asymptotic variance of the efficient GMM estimator of (β, γ) using your vector g_{T}. Evaluate this expression when β happens to be zero.

