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Spectral Analysis
Spectral analysis of a stationary time series involves a change of variables so that the

original autocorrelated (but homoskedastic) process is mapped into an uncorrelated (but
heteroskedastic) process. The same change of variables maps the autocorrelation function
of the original process into the variance function of the new process. Since the change of
variables is in terms of trigonometric functions, spectral analysis is also called frequency
domain analysis or harmonic analysis. The change of variables uses the Fourier transform
of applied mathematics (see section 3.2 below) and hence the subject is also referred to as
the Fourier analysis of time series. Finally, when applied to an actual �nite time-series data
set, the study is sometimes referred to as periodogram analysis. These phrases are used
interchangeably in the literature.

As discussed in section 3.1 below, sine and cosine functions of a real variable x can be
written in terms of the complex exponential function eix; where i =

p
�1. Thus spectral

theory can alternatively be developed using trigonometric expressions or using complex ex-
ponential expressions. Because the latter are somewhat less messy, the complex exponential
version will be emphasized in these notes.

In a sense, there are two distinct theories to be developed. Population spectral theory
(covered in section 1) studies an in�nite time series fytg where t ranges over all integers from
�1 to +1: The Fourier transform maps this in�nite sequence of random variables into an
(uncountably in�nite) continuous state random process. Likewise, the in�nite autocovariance
sequence frg is mapped into an (almost everywhere) continuous function. In this theory
all parameters are assumed known; there is no estimation involved. Various ways of describ-
ing the interesting features of a population process are investigated. Finite sample spectral
theory (covered in section 2) studies an observed sample of �nite length T drawn from this
population. The �nite Fourier transform maps the T-dimensional sample vector into another
vector of the same dimension. The analysis is closely related to the problem of diagonalizing a
covariance matrix to get rid of autocorrelation. The purpose of the �nite sample theory is to
develop useful feasible transformations that simplify data analysis for estimation and testing
of unknown parameters. Of course, as the sample size tends to in�nity, the �nite-sample
theory begins to look very much like the population theory.

1 Population Spectral Theory

1.1 The spectral representation of an autocovariance function

Suppose fytg is a mean-zero stationary process de�ned over the intergers and frg is the
corresponding autocovariance sequence. Then frg must be symmetric and positive semidef-
inite. That is, r = �r and

1P
r=1

1P
s=1

r�s�r�s � 0

for every sequence of real numbers (�1; �2; :::): A key result is:
A necessary and su¢ cient condition for {r} to be a valid autocovariance sequence is that

r can be expressed as a Stieltjes integral of the form

r =
�R
��
eir�dS(�) =

�R
��
cos(r�)dS(�) (1)

where S(�) is a monotonically nondecreasing function de�ned on [-�,�] and dS(�)=dS(-�).
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Sketch of proof: If r=
R �
��e

ir�dS(�); then

1P
r=1

1P
s=1

r�s�r�s =
�R
��

1P
r=1

1P
s=1

�r�se
i(r�s)�dS(�) =

�R
��
j
1P
r=1

�re
ir�j2dS(�)

which is nonnegative if S(�) is a nondecreasing function. Conversely, de�ne

fN (�) =
1

2�N
E

���� NP
t=1
yte

i�t

����2= 1

2�N

NP
t=1

NP
s=1

s�te
�i�(s�t)

=
1

2�

N�1P
k=�N+1

k(1�
jkj
N
)e�i�k� 1

2�

1P
k=�1

bN (k)e
�i�k

where bN (k) is zero when k � N: Clearly fN (�) � 0 and the sequence bN (1); bN (2); :::
is absolutely summable for �xed N: A basic result of Fourier theory states that if
fckg is a doubly in�nite absolutely summable symmetric sequence then the in�nite sum
1
2�

P
k cke

�i�k converges uniformly on [��; �] to a continuous even function f(�) and

that ck=
R �
�� f(�)e

i�kd� . Thus fN (�) is a nonnegative continuous even function and,
for k < N;

bN (k) = k(1�
jkj
N
) =
R �
��e

ik�fN (�)d� =
R �
��e

ik�dFN (�)

where FN (�) =
R �
�� fN (x)dx is a bounded monotonically nondecreasing function. By

Helly�s theorem, there is a subsequence along which FN converges to F: As N tends
to in�nity along this sequence we �nd r=

R �
��e

ir�dF (�) where F (�) is monotonically
nondecreasing.

The function S(�) is called the spectral distribution function for the sequence frg. By
integrating fN (�) and letting N tend to in�nity we can �nd an explicit expression (up to an
arbitrary constant) for S(�): If normalization is accomplished by setting S(0) = 0; we �nd

S(�) =
1

2�
[0�+ 2

1X
r=1

r
sin�r

r
] (2)

as long as we follow the convention that, at points of discontinuity, S(�) is de�ned as [S(�+)+
S(��)]=2: Typically (2) is not especially useful for actually computing S(�): However, we do
easily obtain the results S(��) = �0=2 and S(�) = �0=2:

If
P
r jrj < 1; S(�) is everywhere di¤erentiable with continuous derivative s(�) and

equations (1) and (2) simplify to the usual Fourier transform pair

r =
�R
��
eir�s(�)d� =

�R
��
cos(�r) s(�)d� (1�)

s(�) =
1

2�

1X
r=�1

re
�ir� =

1

2�

1X
r=�1

r cos(r�): (2�)

The derivative function s(�) is called the spectral density function for the sequence frg (or
spectrum for short.) By construction s(�) is continuous, nonnegative, and symmetric about
zero. Note that 2�s(�) = G(e�i�) where G(L) is the autocovariance generating function.
Equation (1�) implies that

R
s(�)d� = 0; that is, the area under the spectral density function

is the variance. Equation (2�) implies that the spectral density at zero is (2�)�1
P
r r:

If the autocovariances are square summable, but not absolutely summable, the results in
the previous paragraph have to be slightly modi�ed. Equation (2�) will no longer necessarily
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be an everywhere convergent series de�ning a continuous function. But there does exist a
function s(�) such that

�R
��
js(�)� 1

2�

P
re

�ir�j2d� = 0 .

That is, we have convergence in the mean. The function s(�) may be unbounded at one or
more isolated points, but it is square integrable and (1�) holds.

Recall that Wold�s representation theorem says that every weakly stationary process can be written
as the sum of two uncorrelated processes: a moving average process with square-summable coe¢ cients
and a perfectly predictable deterministic process. Corresponding to this decomposition, the spectral
distribution function S(�) can be written as the sum of two functions: one that is di¤erentiable and
the other is typically a step function. For the �rst function, (1�) and (2�) are valid, although in the
case where the moving average coe¢ cients are not absolutely summable s(�) may tend to in�nity at
isolated points. (An example is given in section 1.3.) An example of a deterministic process with
step-function for S(�) is the so-called harmonic process

yt=
pP
j=1

[U j sin (�jt) + V j cos (�jt)]

where the U�s and V �s are uncorrelated random variables with zero means and �nite variances. Based
on any 2p observations on yt one can calculate the U�s and the V �s. All future observations are then
perfectly predictable. The spectral distribution function for this process is a step function and dS(�)
behaves like a mass function with spikes at the values ��1; :::;��p; equation (1�) remains valid if the
integrals are replaced by a sum. For most of these notes we shall restrict ourselves to the case where
fytg has no deterministic component and S(�) is continuously di¤erentiable except possibly at zero.

1.2 The spectral representation of a stationary process

Suppose fytg is a weakly stationary mean-zero discrete-time stochastic process whose auto-
covariance sequence has spectral distribution function S(�): Fourier theory may be applied to
this random sequence as well. The basic result (known as the Cramér representation theorem)
is that yt can always be written as a stochastic integral

yt =
�R
��
ei�tdH(�) (3)

where H(�) is a continuous-time complex-valued stochastic process de�ned on [��; �]: The
process H(�) has uncorrelated increments, mean zero, and EjdHj2 = dS. If S(�) is di¤eren-
tiable, (3) can be written as

yt =
�R
��
ei�t

p
s(�)dW (�)

where W (�) is a complex-valued process with uncorrelated increments, mean zero, and
EjW (�)j2 = �: When the data are normal, W (�) is a complex Brownian motion on [��; �]:
The inverse Fourier transform can be written, up to a random additive constant, as

H(�) =
1

2�
[y0�+ 2

X
t6=0

yt
e�i�t

�it ]

where again, at points of discontinuity, H(�) is de�ned as [H(�+) + H(��)]=2: Athough
the inverse expression has no simple interpretation, the Cramér representation (3) can be
rewritten is a way that sheds considerable light on the meaning of the spectrum.
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Using the fact that yt is real and that ei�t = cos(�t) + i sin(�t); we can rewrite equation
(3) as

yt =
�R
0

[cos(�t)dA(�) + sin(�t)dB(�)] (3�)

where A(�) and B(�) are uncorrelated continuous-time real-valued stochastic processes de-
�ned on [0; �]. The random functions have mean zero and uncorrelated increments. If we
normalize so A(0) = B(0) = 0; then EjA(�)j2 = EjB(�)j2 = 2S(�): We interpret equation
(3�) as saying that every discrete-time stationary process can be viewed as an (uncount-
able) linear combination of sine and cosine functions with uncorrelated random weights. For
0 � a < b � �; 2[S(b) � S(a)] is the fraction of the total variance of yt attributable to the
sine and cosine functions with frequencies between a and b.

When S(�) is di¤erentiable so the spectral density s(�) exists, the stochastic integral (3�)
can be rewritten as

yt =
�R
0

[cos(�t)
p
2s(�)dW1(�) + sin(�t)

p
2s(�)dW2(�)]

where W1(�) and W2(�) are uncorrelated continuous-time zero-mean stochastic processes
de�ned on [0; �] with EjW1(�)j2 = EjW2(�)j2 = �: Then 2s(�)d� is the fraction of the total
variance of yt attributable to the sine and cosine functions with frequencies in the interval
(�; �+ d�): If the data are normal, W1(�) and W2(�) are independent Brownian motions.

1.3 Some reasons for studying the population spectrum

The autocovariance function and the spectrum are Fourier transform pairs; all the informa-
tion in one is summarized in (and can be recovered from) the other. The spectrum is often
more convenient to work with because of the following property: Suppose yt = C(L)xt + ut;
where fxtg and futg are independent mean-zero stationary processes with spectral densities
sx(�) and su(�): The autocovariance function for fytg is a complicated function of the auto-
covariance functions of fxtg and futg: But, if the lag coe¢ cients are square summable, sy(�)
exists and is given by

sy(�) = sx(�)C(e
�i�)C(ei�) + su(�) = sx(�)jC(e�i�)j2 + su(�) (4)

where C(e�i!) =
P1
�1 cre

�i!r is the Fourier transform of the sequence fcrg: Thus, the
spectrum is a natural tool for studying the e¤ect of a �lter on a time series. (A derivation of
(3) appears in Section 3.4 below. Note that C(e�i!) will generally be complex unless C(L)
is a two-sided �lter with cr = c�r for all r.)

Since the spectrum of white noise is �2=2�; it follows from equation (4) that the spectrum
of the invertible ARMA process A(L)yt = B(L)"t is

sy(�) =
�2"
2�

jB(e�i�)j2
jA(e�i�)j2 .

For example, the spectrum of the AR(1) process yt = �yt�1 + "t when j�j < 1 is

sy(�) =
1

2�

�2"
(1� �e�i�)(1� �ei�) =

1

2�

�2"
1 + �2 � 2� cos�:

The spectrum of the fractionally di¤erenced process (1� L)dyt = "t is

sy(�) =
1

2�
�2"j1� ei�j�2d =

1

2�
�2"[4 sin

2(�=2)]�d

which (since sinx � x when x is near zero) is approximately proportional to ��2d near the
origin.

Some additional advantages of the spectral approach are:
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1. Not every sequence frg can be a valid autocovariance sequence; the constraint that
the sequence be positive semi-de�nite is hard to verify. But we have the simple result:
the absolutely summable sequence frg is a valid autocovariance sequence if and only
if
P
r re

�i�r is non-negative on [��; �]:

2. Cyclical behavior is more naturally studied using the spectrum rather than the autocor-
relation function. A process whose spectrum is fairly �at except for a pronounced peak
at frequency �0 behaves a lot like a random sine wave with frequency �0: In particular,
seasonal patterns and business cycles are conveniently investigated using the spectrum.
For example, one can try to design optimal �lters to remove seasonality from a time
series.

3. When studying vector processes, leads and lags among variables have simple represen-
tations in the frequency domain.

4. Since spectral analysis can be interpreted as a change in coordinate system such that
a stationary autocorrelated series is transformed into a heteroskedastic series, results
previously derived for uncorrelated but heteroskedastic models can be used in the study
of stationary time series models. This point is explored in section 2.4 below where we
examine how the Gaussian likelihood function can be approximated using the sample
spectrum.

5. Inference on the spectrum is somewhat easier than inference on the autocorrelation
function. Two autocovariance estimates, say bj and bk; are typically highly correlated;
and their covariance matrix depends in general on the entire autocovariance function.
Two spectral estimates, say bs(�1) and bs(�2); are approximately uncorrelated; the vari-
ance of bs(�) depends approximately only on s(�): Again, this point is elaborated in
sections 2.1 and 2.2 below.

2 Finite-sample Spectral Theory

2.1 The �nite Fourier transform

Now our attention will be on the Fourier transform associated with a �nite time series. To
motivate its use consider the following algebraic fact: If y is a T -dimensional random column
vector with mean zero and covariance matrix V; then there exists an orthogonal matrix Q
such that

D = Q0VQ (5)

is diagonal with nonnegative elements. (Since V is positive semide�nite, such a D and Q can
always be constructed from the characteristic roots and vectors of V.) Then it follows that

1. The transformed variable ey = Q0y has uncorrelated elements and the quadratic form
y0V�1y that appears in the normal likelihood function simpli�es to a sum of squaresey0D�1ey:

2. The vector y can be written as y = QD1=2" where " is white noise with unit variance.
If qj is the jth column of Q and dj is the jth diagonal element of D, then we can write

y = q1
p
d1"1 + � � �+ qT

p
dT "T : (6)

That is, y can be viewed as a linear combination of T deterministic series with uncor-
related random weights; dj is the variance of the weight given to series j:
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Unfortunately, these facts are generally not very useful. The matrix Q typically depends
on the unknown elements of V so ey is not observable; and computing Q is just as hard
as computing V�1: Furthermore, the characteristic vectors qj are typically uninterpretable
so the decomposition (6) is uninformative. The special case where y is the realization of a
stationary time series is an exception. In that case, when T is large, V is approximately
diagonalized by a known matrix and the decomposition is interpretable in terms of latent
cycles. These results follow from the �nite version of the population Fourier theory discussed
in Section 1.

Suppose T is an odd number so T = 2m + 1 for some integer m > 0. We de�ne the
Fourier frequencies

�k = 2�
k

T
for k = 0;�1;�2; � � � ;�m

These numbers divide the interval [��; �] into T + 1 subintervals, all but the outer two of
equal length. (For even T; k = 0;�1;�2; � � � ;�(T � 2)=2; T=2; the following analysis is only
slightly changed.) Let F be the T � T Fourier matrix whose tk element is given by

ftk =
1p
T
expfit�kg =

1p
T
[cos(t�k) + i sin(t�k)]: (7)

The key result is: F is a (complex) orthogonal matrix and it almost diagonalizes the covariance
matrix of any stationary process with continuous spectrum. That is F�F = I and F�VF is
almost diagonal if T is large and V has the Toeplitz form with ij element given by ji�jj
and

P
r jrj < 1. (By � we mean �transpose and take complex conjugate.�) Note that

the diagonal elements of F*VF are linear functions of the autocovariances (0; 1; :::; T�1).
Indeed , the kth diagonal element is approximately

1X
r=�1

re
�i�kr = 2�s(�k): (8)

Sketch of proof. Write the pq element of F �F as

1

T

TX
t=1

e�i�ptei�qt =
1

T

TX
t=1

e2�i(q�p)t=T

which is one if p = q and zero otherwise. (See Section 3.4 below for a proof.) Write the
pq element of F �V F as

apq =
1

T

TX
t=1

TX
s=1

e�i�ptei�qsvts

=
1

T

"
0RT (0) +

T�1X
r=1

re
�i�prRT (r) +

�T+1X
r=�1

re
�i�qrRT (r)

#
where

RT (r) =

T�jrjX
t=1

ei(�q��p)t:

When p = q, RT (r) = T � jrj and app is given by
T�1X

r=�T+1
re

�i�pr(1� jrj
T
): (9)

When p 6= q , it follows from Section 3.4 that jRT (r)j < jrj: As long as jrrj ! 0
as r ! 1, it follows that japqj ! 0 as T ! 1: Using a more tedious argument, the
condition jrrj ! 0 can be relaxed.
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This result can be interpreted as saying that, for large T; the sine and cosine functions
making up the columns of F are approximate characteristic vectors of V and the spec-
trum evaluated at the Fourier frequencies are (except for a factor of 2�) the approximate
characteristic roots of V:

2.2 Estimating the spectrum

For a given sample y; the elements of the transformed time series ey = F�y are approximately
uncorrelated. From the algebra above, the variance of eyk is approximately 2�s(�k): Indeed,

pk � jeykj2
2�

=
1

2�T

�����
TX
t=1

yte
�i�kt

�����
2

=
1

2�T

TX
t=1

TX
s=1

ytyse
�i�ktei�ks

=
1

2�T

T�1X
r=�T+1

e�i�kr
T�jrjX
t=1

ytyt+r =
1

2�

T�1X
r=�T+1

bre�i�kr
as long as Eyt = 0: (If Eyt 6= 0; yt � �y should be used in place of yt:) Hence, pk is the
natural estimate of the spectrum at frequency �k: Although approximately unbiased, it is
not a consistent estimate since its variance does not go to zero as T !1: Indeed, since

~yk =
1p
T

TX
t=1

yte
�i�kt =

p
T [
1

T

TX
t=1

yt cos(�kt) +
i

T

TX
t=1

yt sin(�kt)] �
p
T [UT + iVT ]

where both UT and VT are weighted sample averages of zero-mean weakly dependent random
variables, we would expect

p
TUT and

p
TVT to be asymptotically normal. When k 6=

0; they turn out to be asymptotically uncorrelated with variance �s(�k) so 2pk=s(�k) is
approximately distributed as �2(2) ; when k = 0; VT = 0 and 2p0=s(�0) is approximately
distributed as �2(1): The limiting distribution of pk is a random variable not a constant so
it is not a consistent estimator.

As long as the true spectrum is a smooth function of �, a consistent estimate of the
spectrum can be obtained by �tting nonparametrically a smooth curve through the points
(pk; �k). The graph of pk against �k is often called the periodogram and the pk are called
periodogram values. (Note that pk = p�k; so we need only look at the nonnegative frequencies
where k = 0; :::;m:)

A smoothed periodogram estimate of the spectrum at frequency � typically looks like

bs(�) = mX
k=�m

KT (�k � �)pk

where KT (!) is a continuous weighting function (called a kernel) that decreases in mag-
nitude as j!j moves away from zero. By averaging over the (approximately) uncorrelated
periodogram values, variance is reduced but at the cost of introducing bias. The kernel will
be chosen so that, for any ! 6= 0; KT (!)! 0 as T !1: If the rate of convergence is cleverly
chosen, it can be shown that bs(�) is a consistent estimate of s(�); that is, both the bias and
the variance go to zero as T !1: Using the de�nition of pk, the smoothed spectral estimate
can always be rewritten as

bs(�) = T�1X
r=�T+1

dr;Tbre�i�r
where the d�s are the Fourier coe¢ cients of the function KT (!). For reasonable kernels, the
poorly estimated high-order autocovariances are downweighted.
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2.3 Some more asymptotics

As T tends to in�nity, the �k �ll up the entire interval [��; �] so we can think of � taking on
any value in that interval. Thus equation (8) is, in the limit, just equation (2�). Note that
the analog of equation (6) is the equation y = Fey which can be written in scalar notation as

yt =
1p
T

X
k
ei�kt

p
2�s(�k)"k

where the elements "k = ~yk=
p
2�s(�k) are approximately uncorrelated complex random

variables with zero mean and variance one. For 0 � � � 1; we de�ne [(2� � 1)m] to be
(2��1)m rounded down to the nearest integer. Then the standardized empirical distribution
function for f"kg

W �
T (�) =

1p
T

[(2��1)m]X
k=�m

"k

is a step function on the unit interval with jumps equal to "k=
p
T : Under normality, W �

T (�)
converges to Brownian motion on (0,1) and WT (�) � W �

T (
�+�
2� )=

p
2� converges to Brownian

motion on the interval (��; �). Thus yt is an approximation (based on the partition of
(��; �) induced by the �k) to the Stieltjes integralZ �

��
ei�t

p
s(�)dWT (�):

As T tends to in�nity, we obtain the spectral representation found in section 1.2

yt =

Z �

��
ei�t

p
s(�)dW (�):

2.4 Parametric estimation in the frequency domain

If the data are normal, the approximate log likelihood function for y is, except for an additive
constant,

�1
2
log jV j � 1

2
y0V �1y � �1

2

mX
k=�m

log s(�k)�
1

2

mX
k=�m

pk
s(�k)

:

This is often called the Whittle log likelihood. If one has a parametric model for the spectrum
(e.g., one knows the fytg are an ARMA(p,q) process), the unknown parameters could be
estimated by maximizing this function.

An interesting example is linear regression with nonstochastic regressors and autocorre-
lated errors. Suppose y = X�+u where the T elements of the error vector u are a stationary
series with mean zero and covariance matrix V . Multiplying on the left by the transposed
Fourier matrix F �; we obtain ~y = ~X�+ ~u; where the elements of ~u are approximately uncor-
related. Approximate GLS estimates of � are obtained by minimizingX

j~yk � �0~xkj2=su(�k)

where su is the spectrum of the futg process. Feasible GLS replaces su by some estimate,
say by smoothing the periodogram values computed from the OLS residuals or by �tting a
parametric ARMA model to those residuals.
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2.5 Avoiding complex numbers

The theory developed in sections 2.1-2.3 is based on the complex Fourier matrix F: There
exists an equivalent real matrix Q that does the same job. Since the real version is more
tedious to express and it is harder to verify its orthogonality properties, I have used the
complex version. In actual computations (particularly in the regression example discussed
above) it is often more convenient to use the real version.

Let 1 be a T-dimensional column vector of ones. Again assume T = 2m + 1: For k =
1; :::;m, let ck be the T-dimensional vector whose t�th element is

p
2=T cos(�kt) and let dk

be the T-dimensional vector whose t�th element is
p
2=T sin(�kt): Then ~y0 = 10y=

p
T and

~yk = (ck � idk)0y for k = 1; :::;m. Hence, j~y0j2 = (10y)2=T and j~ykj2 = (y0ck)
2 + (y0dk)

2

when k 6= 0:
De�ne the T � T matrix Q = [T�1=21; c1;d1; :::; cm;dm]: It can be shown that Q is a

real orthogonal matrix and Q0VQ is approximately diagonal. Let ŷ = Q0y and write the
components of ŷ0 as (a0; a1; b1; a2; b2; :::; am; bm)0: Then a0 = ~y0 and

ak = y0ck and bk = y
0dk for k = 1; :::;m:

The periodogram value at frequency �k is pk = (a2k + b
2
k)=2� for j = 1; :::;m and p0 = a20=2�:

If one �ts the equation

yt =
a0p
T
+

r
2

T

mX
k=1

[ak cos(�kt) + bksin(�kt)] t = 1; :::; T

by least squares one obtains the regression coe¢ cient vector (Q0Q)�1Q0y = Q0y = ŷ: Thus
the periodogram values are easily obtained from a least squares regression on sinusoidal
variables. Such regressions were popular in the early 1900�s under the name periodogram
analysis. Now such regressions are interpreted as a way to compute spectral estimates.

3 Some Algebra

3.1 The complex exponential function

The real exponential function ex has the key properties e0 = 1 and deax=dx = aeax: It is
natural to require the complex exponential function eix to satisfy ei0 = 1 and deix=dx = ieix:
Let f(x) = eix = a(x) + ib(x): The second condition means that a00(x) = �a(x) and b00(x) =
�b(x): These di¤erential equations have solutions of the form

a(x) = A cos(x) +B sin(x)

b(x) = C cos(x) +D sin(x)

The conditions f(0) = 1 and f 0(0) = i require A = D = 1 and B = C = 0: Thus, we must
de�ne

eix = cos(x) + i sin(x):

As a bonus, we can verify that the above de�nition implies eixeiy = ei(x+y), a condition we
might also want to require. Finally, using the de�nition, we �nd the useful representations

cos(x) =
eix + e�ix

2
and sin(x) =

eix � e�ix
2i
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3.2 Elements of Fourier analysis

Fourier analysis studies the approximation of functions by trigonometric series. A basic
theorem of Fourier analysis states: Let f(x) be a continuous, even, nonnegative function
de�ned on [��; �]: Then f(x) can be written as an absoultely convergent in�nite sum

f(x) =
1

2�

1X
r=�1

cre
�irx =

1

2�

1X
r=�1

cr cos(rx) (10)

where the sequence fckg is determined by

cr =

Z �

��
eirxf(x)dx =

Z �

��
cos(rx)f(x)dx: (11)

Conversly, if fckg is an absolutely summable sequence with ck = c�k, then there exists a
continuous, even, nonnegative function f(x) satisfying (10) and (11). The function f(x) is
said to be the Fourier transform of the sequence fckg; the c�s are called the Fourier coe¢ cients
of f . (This terminology is used even if the c�s are not absolutely summable and f is not
everywhere continuous. Indeed, much of Fourier analysis in concerned with extending the
theory to those cases.)

It is easy to verify equation (11). If we multiply both sides of (10) by eikx and integrate,
we getZ �

��
f(x)eikxdx =

Z �

��

"
1

2�

1X
r=�1

cre
�irx

#
eikxdx =

1

2�

1X
k=�1

ck

�Z �

��
ei(r�k)xdx

�
= cr: (12)

The last equality follows from the fact that, for integer s,Z �

��
eisxdx =

Z �

��
[cos(sx) + i sin(sx)]dx =

�
0 s 6= 0
2� s = 0

.

[Note: interchanging the order of summation and integration in (12) is allowed because of
the absolute summability.]

3.3 Derivation of equation (4)

Let y(r) and u(r) be the autocovariance functions for the independent time series fytg and
futg: Then, if yt = C(L)xt + ut;

y(r) = E(ytyt+r) =
1P

j=�1

1P
k=�1

cjckx(r + j � k) + u(r):

Hence, the spectrum for fytg is

sy(�) =
P
r

P
j

P
k cjckx(r + j � k)e

�i�r +
P
r u(r)e

�i�r

=
P
r

P
j

P
k cje

i�jcke
�i�kx(r + j � k)e�i�(r+j�k) + su(�)

=
P
s x(s)e

�i�sP
j cje

i�jP
k cke

�i�k + su(�)

= sx(�)C(e
i�)C(e�i�) + su(�):
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3.4 Proof that the matrix F is orthogonal

For complex variable z; de�ne S = z + z2 + ::: + zT : Then, since zS = z2 + z3 + ::: + zT+1;
we obtain by subtraction

S = z
1� zT
1� z :

If zT = 1 and z 6= 1; then S = 0: In particular, let z = e2�ik=T where k is an integer with
0 < jkj < T: Then

zT = e2�ik = cos(2�k) + i sin(2�k) = 1

z = e2�ik=T = cos(2�k=T ) + i sin(2�k=T ) 6= 1

since sin(2�k) = 0 and cos(2�k) = 1 for integer k and sin(2��) 6= 0 for 0 < j�j < 1 except for
� = :5 when cos(2��) = �1: Thus, for integer T > 1;

S =
TX
t=1

e2�ikt=T = 0 k = �1;�2; :::� (T � 1)

as stated in Section 2.1.
This algebra has an interesting geometric interpretation. The statement that zT = 1

means z is a T th root of one. One itself is always a solution, but there are T � 1 additional
solutions. It is easily veri�ed that e2�it=T ; t = 1; 2; :::T are T distinct solutions. If graphed
in the complex plane, these T points are equidistantly located on the unit circle. Simple
geometry indicates that they sum to zero. As long as k is an integer with 0 < jkj < T; the
same argument works for the equivalent set of solutions e2�ikt=T ; t = 1; 2; :::T:
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