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Abstract

This paper examines how relational contracting affects the pattern of trade across the econ-
omy. We suppose a firm (principal) repeatedly chooses among of a set of potential trading
partners (agents) under the threat of holdup. The possibility of ex–post opportunism al-
lows agents to collect rents, which act like a fixed cost that the principal must pay when
initiating a new relationship. The principal responds by dividing agents into “insiders”,
with whom she has previously traded, and “outsiders”, with whom she has never traded. If
the principal is sufficiently patient, the profit–maximising contract then uses insiders effi-
ciently, while being biased against outsiders. This optimal strategy can be implemented by
a “maintenance contract” that is robust to asymmetric information.

1 Introduction

Holdup is one of the most pervasive forces in economics, shaping trading relationships, organisa-
tions and even entire societies. In early trading communities, holdup plagued the relationships
between merchants and their agents. The mechanisms used to overcome the holdup problem
then had enormous effects on these communities’ subsequent development (Greif (1994)). In
developing countries, the problem is just as severe since contracts enjoy little legal protection.
The threat of holdup then restricts the level of investment, the scope of trade, and ultimately
the level of growth (McMillan and Woodruff (1999a, 1999b)). In developed countries, despite
the presence of a functioning legal system, holdup is still a problem: the majority of transac-
tions are covered by no contract, by contradictory contracts or by contracts that are not legally
enforceable (Macaulay (1963)).

In all these circumstances, ongoing relationships are used to mitigate the holdup problem.
However, maintaining relationships can reduce of scope of trade. In the words of McMillan and
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Woodruff (1999b, p. 1315), “exclusion is the corollary of ongoing relationships.” In a survey
of transitional Eastern European countries, Johnson, McMillan, and Woodruff (2002) illustrate
the economic significance of loyalty. When asked whether they would change suppliers for a
10% price discount, over half the firms surveyed said they would pass up on the new deal, in
whole or in part. These switching costs are significantly larger in countries with less effective
court systems and for goods that are custom–built.

The purpose of this paper is to provide a model which explains how relational contracts
lead to loyalty. This model allows us to derive the exact pattern of trade in the economy and
characterise the distortions induced by relational contracts. Our theory is based on a simple
observation: agents’ ability to hold up the principal allows them to garner rents. Agents’ care
about their lifetime utilities, so these rents are the same whether an agent trades once or trades
one hundred times, acting like a fixed cost of initiating a new relationship. In order to minimise
these rents, the principal would like to direct trade towards agents she has used in the past. We
show that such a bias is time inconsistent but can be implemented if the principal is sufficiently
patient. The profit–maximising trade pattern can also be implemented by a “maintenance
contract” that is robust to adverse selection.

1.1 Outline of the Paper

We start with a basic holdup model. Each period a principal contracts with one of N agents.
In order to make a product the principal must first make a specific investment in the chosen
agent. If the principal invests in agent i, then i produces and sells a product worth v. After
the sale, the agent chooses how much money to give back to the principal.

We suppose that the cost of the specific investment differs over time and over agents. This
cost variation may result from agent i having a backlog of orders at time t, or having relatively
little expertise in the product required that period. As a result, the principal’s efficient trading
partner will tend to vary over time. We then examine the profit–maximising contract for the
principal among the class of contracts that are self–enforcing.

In Section 3, we first suppose that the principal commits to a specified investment strategy.
This acts as an initial benchmark and allows us to focus on the agents’ incentives. When
the principal invests in agent i, the agent has the option to hold up the principal. In order
to prevent this opportunism, the principal must give the agent a large enough rent so that
they resist the temptation. This rent can come both in terms of payment today and promised
payments in future periods. Crucially, the principal can use these delayed payments in order
to prevent future incidences of holdup. This means that the principal must only pay the agent
one rent, independent of the number of times they trade. That is, the rent acts like a fixed cost
of initiating a new relationship.

When designing the contract, the principal must tradeoff gains from trade against the cost
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of starting new relationships. The principal’s profit–maximising contract thus divides agents
into two groups: “insiders”, with whom she has previously traded, and “outsiders”, with whom
she has never traded. The principal then uses insiders efficiently, while being biased against
outsiders. The model thus provides a theory of endogenous switching costs, where there is a
cost to use a new agent, but no cost to return to an old agent.

A comparison with efficiency wage models is informative. Shapiro and Stiglitz (1984) showed
that an agent can be persuaded not to hold up a principal if they are awarded rents. Greif
(1993, 1994) subsequently observed that an agent who trades more frequently demands lower
per–period payments. Grief’s result is driven by the effect we identified above: by spreading
payments over time, the rents used to prevent an agent cheating today can be also used to
prevent him cheating tomorrow.1 The current paper uses this observation to explicitly identify
the cost associated with a new relationship. We then allow the principal to optimally choose
their partner each period, rather than forcing them to pick randomly from a pool.

The profit–maximising contract has one large defect: it is not time consistent. From the
principal’s time–0 perspective, each agent must be paid a rent for the first trade, but not for
subsequent trades. This has the consequence that insiders trade efficiently. The problem is
that many of the agents’ rents come from promised future payments, designed to prevent hold–
up during later trades. The principal thus has an incentive avoid trade with insiders in later
periods in order to avoid these promised future payments. Anticipating the principal will renege
in later periods, the agent demands more compensation in earlier periods. This may cause the
principal to renege even more frequently, leading the agent to increase his demands once again.

The time inconsistency has two implications. First, when the principal is impatient, she will
be tempted to default. In Section 4, we examine this problem, supposing that the relationship
is enforced by bilateral punishment: that is, a defection by the principal against agent i is
only observed by agent i. We show that when the principal is sufficiently patient and costs
are IID, the profit–maximising contract is self–enforcing. This is even the case if there are an
infinite number of agents. Intuitively, each agent must be paid a rent, so the principal will only
ever wish to trade with a finite number of partners. As the discount factor approaches 1, the
maximum number of insiders grows to infinity, but it grows sufficiently slowly that the profit
per agent increases without bound.

The second implication of time inconsistency is that the principal has an incentive to ex-
aggerate the cost of investing in insiders in order to avoid trading with them as frequently.
In Section 5, we suppose that the principal’s costs are private information and show that the
principal can overcome this problem by using a maintenance contract, where insiders are paid
a fixed amount per period, independent of whether trade occurs or not. The advantage of the
maintenance contract is that, since the payments to insiders are sunk, the principal has no

1The principal is female, while the agents are male.
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incentive to misstate her true costs. The disadvantage is that the principal has more incentive
to renege on this contract than the on profit–maximising contract from Section 3. Nevertheless,
under IID costs, the maintenance contract is self–enforcing when the principal is sufficiently
patient.

Our results rely heavily on the fact that agents’ can guarantee themselves rents by threat-
ening to hold up the principal. However, if the principle can use contractible transfers then she
can extract all rents from the agents. In Section 6 we discuss the feasibility of such contractible
transfers. In particular, we argue that these transfers are not robust to free entry into the
market for principals, providing a foundation for our theory.

This paper builds on a number of relational contracting papers. MacLeod and Malcomson
(1989) examine a repeated moral hazard problem with one worker and deterministic output.
Levin (2003) extends the model to allow for either moral hazard over the worker’s effort or
adverse selection over the worker’s type. Levin (2002) allows the principal to employ multiple
workers, comparing multilateral and bilateral contracts. These papers differ from ours in that
they all assume that contractible transfers are feasible. As a result, the profit–maximising
contract maximises joint surplus and is stationary. Reputation is used to prevent holdup in a
number of related areas. For example, Klein and Leffler (1981) and Shapiro (1983) examine a
firm’s choice of product quality when selling an experience good.

The current paper argues that loyalty results from minimising agents’ rents. A companion
paper, Board (2006), examines a complimentary explanation for loyalty in relational contracts.
In this paper I show that, if agents are relatively impatient, then loyalty results from the
inability of the principal to commit to the relational contract. Under the profit–maximising
contract, the principal is then more loyal to agents with whom she has traded more recently.
This property is qualitatively different from the loyalty exhibited in the current paper, whereby
all insiders are treated symmetrically. The two theories thus generate testable differences in
trade patterns.2

The paper is organised as follows. Section 3 derives the principal’s profit–maximising con-
tract when she can commit to a contingent investment plan. Section 4 examines whether this
contract is self–enforcing when the principal cannot commit. Section 5 extends the model
to allow the principal to privately observe her cost structure. Section 6 discusses the role of
contractible transfers, while Section 7 concludes.

2 The Environment

The economy consists of a principal and N agents, while time t ∈ {0, 1, . . . ,∞} is discrete.
At time 0 the principal designs a contract to maximise her expected profits. Each period

2Disclaimer: at the time of writing, Board (2006) has not yet been completed.
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-
Time t Time t + 1

{ci,t} revealed Principal chooses {Qi,t} Agent keeps pt

Figure 1: Timeline

t ∈ {1, . . . ,∞} then consists of three stages. First, the cost of investing in agent i, ci,t ∈ [c, c], is
publicly revealed. Second, the principal chooses to invest in one (or none) of the agents. This
investment allows the agent to produce and sell a product worth v. Denote the probability that
the principal invests in i by Qi,t ∈ {0, 1}, where

∑
i Qi,t ≤ 1. Third, the winning agent chooses

to keep pt and pay the principal v − pt, where the price pt is noncontractible. The timeline is
shown in Figure 1.

The stage game of this model exhibits the holdup problem. The agent has all the ex–post
bargaining power, so they will expropriate all the quasi–rents, v. Anticipating being held up,
the principal will then abstain from investing.

This paper considers the infinitely repeated version of the holdup game, where all parties
have discount rate δ ∈ (0, 1). We aim to model a decentralised market, so make the natural
assumption that contracts are maintained by bilateral reputations: that is, a deviation in the
relationship between the principal and agent i cannot be observed by agents j 6= i.3 For-
mally, at time t, agent i observes hi,t := {{ci,t}i, Qi,t, ptQi,t}. His history at time t is thus
ht

i := (hi,1, . . . , hi,t). Similarly, the principal’s history is ht := (ht
1, . . . , h

t
N ). The principal’s in-

vestment strategy is a mapping Qi,t : ht−1 × [c, c]N → {0, 1}, while the winning agent’s pricing
strategy is a mapping pt : ht−1

i × [c, c]N → [0, v].
A relational contract 〈Qi,t, pt〉 is defined to be a history–contingent plan of investments and

prices. In Section 3 we assume the principal commits to her strategy, allowing us to focus on the
agents’ incentives. A contract is said to be agent–self–enforcing if the agents’ strategies form a
subgame perfect equilibrium, taking the principal’s strategy as given. In Section 4 we analyse
the full problem, where the principal cannot commit to a strategy. A contract is then said
to be self–enforcing if both the agents’ and the principal’s strategies form a subgame perfect
equilibrium. Among the class of self–enforcing contracts, we then look for the contract that
maximises the principal’s profit.

Welfare from the principal’s relationship with agent i is

Wi,t := Et

[ ∞∑
s=t

δt−s(v − ci,t)Qi,t

]

3See Section 4 for discussion.
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where “Et” is the expectation in period t, after {ci,t} have been revealed. Total welfare is
Wt :=

∑
i Wi,t. Agent i’s utility at time t is

Ui,t := Et

[ ∞∑
s=t

δt−sptQi,t

]

The principal’s profit at time t from agent i is

Πi,t := Et

[ ∞∑
s=t

δt−s(v − ci,t − pt)Qi,t

]
(2.1)

The principal’s total profit is Πt :=
∑

i Πi,t.

3 One–Sided Commitment

In this Section we suppose that the principal can commit to her investment strategy, Qi,t. This
acts as a useful initial benchmark and allows use to focus on the agents’ incentives.

Lemma 1. A contract 〈Qi,t, pt〉 is agent–self–enforcing if and only if

(Ui,t − v)Qi,t ≥ 0 (∀i)(∀t) (DEA)

Proof. First suppose that (DEA) holds. We use the following trigger punishment strategy: if i

deviates at time t, then Qi,s = 0 for s > t. If Qi,t = 1, (DEA) implies that

Et[δUi,t+1] ≥ v − pt

so i will refrain from deviating. If Qi,t = 0, the agent has no action and cannot deviate. Hence
the contract is agent–self–enforcing.

Next suppose that a contract 〈Qi,t, pt〉 is agent–self–enforcing. The trigger punishment
obtains the min–max of the stage game for agent i, so is an optimal penal code (Abreu (1988)).
Subgame perfection then implies that there can be no one–shot deviation; that is, (DEA) must
hold.

The principal’s problem is to choose the contract 〈Qi,t, pt〉 to maximise time–0 profit (2.1)
subject to the agents’ dynamic enforcement constraint (DEA). This problem can be simplified
by noting that the principal’s profit equals the welfare minus the sum of agents’ utilities. The
principal’s problem is then to maximise

Π0 := E0

[ ∞∑

s=1

∑

i

δt−s(v − ci,t)Qi,t

]
−

∑

i

Ui,0 (3.1)
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subject to (DEA).
Let τi(t) := min{s ≥ t : Qi,s = 1} be the first time agent i trades after time t. Lemma 2

then provides a lower bound on agents’ utilities at each time period.

Lemma 2. A contract 〈Qi,t, pt〉 is agent–self–enforcing if and only if

Ui,t ≥ Et[vδτi(t)−t] (DEA′)

Proof. This follows from (DEA) and Ui,t = Et[Ui,τi(t)δ
τi(t)−t].

The principal’s problem is thus to maximise profit (3.1) subject to (DEA′). The agents’
utilities only enter profit via the time–0 term, so profit is maximised by ensuring that (DEA′)
binds at time–0,

Ui,0 = E0[vδτi(0)] (3.2)

The principal’s problem thus reduces to choosing 〈Qi,t, pt〉 to maximise profit

Π0 := E0

[ ∞∑

s=1

∑

i

δt−s(v − ci,t)Qi,t

]
− E0

[∑

i

vδτi(0)

]
(3.3)

Notably, prices are absent from equation (3.3). This approach has allows us to solve the
principal’s problem in two steps. First, we choose the investment strategy Qi,t to maximise
profits (3.3). Second, we use the agents’ dynamic enforcement constraints (DEA) to derive
prices. Since we have relaxed the principal’s dynamic enforcement constraint, we call the
solution to this problem the optimal relaxed contract.

3.1 The General Solution

The principal’s problem (3.3) is an optimal–stopping problem and is hard to fully characterise.
Fortunately, a number of economically relevant results immediately fall out.

Denote the set of insiders at time t by It := {i : τi(0) < t}.

Proposition 1. Pick i ∈ It. Suppose ci,t < v, and

ci,t < cj,t for all j ∈ It (3.4a)

< cj,t + (1− δ)v for all j 6∈ It (3.4b)

then Qi,t = 1 in the optimal relaxed contract.4

4Proposition 1 provides sufficient conditions for the principal to trade with agent i. One can also derive
necessary conditions. Pick i ∈ It. If either ci,t > v or ci,t > cj,t for j ∈ It, then Qi,t = 0. Pick i 6∈ It. If either
ci,t > δv or ci,t > cj,t + (1− δ)v for j ∈ It, then Qi,t = 0.
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Proof. See Appendix A.1

The optimal relaxed contract has two key properties.
First, trade with insiders is efficient. Conditional on trading with an insider, the principal

will trade with i ∈ It if and only if ci,t ≤ min{cj,t, v} for all j ∈ It. Intuitively, each agent
obtains rents of v the first time they trade, by threatening to hold up the principal. Agents
care about the lifetime value of their utility so, by delaying payments to the agent, the principal
can use the same sum of money to avoid hold up during later trades with the same agent. This
means that the agent only earns one rent, no matter how many times he trades. This rent acts
like a fixed cost of initiating a new relationship; once the fixed cost has been paid, the principal
uses the agent efficiently.

Second, trade is biased against outsiders. If i 6∈ It and ci,t ≤ min{cj,t, v} (∀j), then the
principal may not trade with i, even though it is efficient. Instead the principal may abstain from
trading, go to an insider or even go to another outsider. Intuitively, the principal discriminates
against outsiders because of the fixed cost of the relationship. If (v − ci,t) < (1 − δ)v then
the profit from agent i is less than the rental value of the rents the principal must pay him.
Therefore, the principal prefers to abstain from trade rather than trade with agent i. Similarly,
if (cj,t − ci,t) < (1 − δ)v for some j ∈ It, then the principal will trade with insider, j, over
the outsider because the cost differential is less than the rental value of i’s rents. Conditional
on trading with an outsider, the principal may also prefer to trade with a relatively inefficient
agent. Intuitively, the principal cares both about the cost in the current period and future
trading opportunities, so she is biased towards agents who are more likely to trade sooner.
Under IID costs, the future trading opportunity is the same for all agents, so the principal will
prefer to use the most efficient outsider.

Proposition 1 provides a theory of endogenous switching costs. In typical models of switching
costs (e.g. Klemperer (1995)), the principal must pay a fixed sum every time they change their
current trading partner. In contrast, Proposition 1 says that the principal must pay a the sum
when adopting a new partner, but not when reverting to an old partner.

It is also worth emphasising that the optimal contract is not stationary. In contrast, station-
arity is optimal in relational contracting models with contractible transfers (e.g. MacLeod and
Malcomson (1989)), and simply assumed in efficiency wage models (e.g. Shapiro and Stiglitz
(1984), Greif (1993, 1994)).

3.2 Prices

The profit–maximising investment function Qi,t is chosen to maximise profits (3.3). Prices
can then be chosen in a number of ways such that (a) utilities satisfy the agents’ dynamic
enforcement constraints (DEA) and, (b) the principal gives no rents away (3.2). Given agents’

8



utilities, prices are then determined by backwards induction:

pi,t = Ui,t − Et[δτi(t+1)Ui,τi(t+1)] (3.5)

Adopting the terminology of Hart and Moore (1994), the fastest prices have the property
that the dynamic enforcement constraints (DEA) bind in all periods. These prices are so called
because the principal makes payments to the agent as early as possible. Using (3.5) the fastest
prices are given by

pi,t = v Et[1− δτi(t+1)] (3.6)

A few features are worth noting. First, the time of the next trade is a sufficient statistic for the
price. Second, prices increase as the time between trades grows. Third, the agent bears much
of the risk in the contract since the price depends on the expected time until the next trade,
yet is only paid if that trade occurs.

Proposition 2. Fix an investment rule Qi,t. Denote the profit under the fastest prices by Πi,t

and the profit under any other price system by Π′i,t. Then Πi,t ≥ Π′i,t (∀i)(∀t).

Proof. Profit at time t is given by

Πi,t = Et

[ ∞∑
s=t

δs−t(v − ci,s)Qi,t

]
− Ui,t

Utilities must obey (DEA′), so Πi,t is maximised by setting Ui,t = Et[vδτi(t)−t].

Proposition 2 shows that the fastest prices maximise the principal’s profit in each period.
Consequently, when the principal cannot commit to the contract (see Section 4), an investment
rule is implementable only if it can be implemented by the fastest prices.

3.3 IID Costs

In this Section we suppose costs are identically and independently distributed both over time
and across agents. The IID model is appealing because the identity of most efficient agent
constantly changes, emphasising the tradeoff between maximising the gains from trade and
maintaining a long run relationship. The IID case is also very tractable.

At any time t, we can summarise the state of the world by the number of insiders, nt := |It|.
The evolution of nt is then described by a time–invariant markov chain. The transition depends
upon the lowest costs from insiders and from outsiders, denoted cI and cO respectively. For
notational simplicity, assume that c ≤ v.

First, we can characterise the maximum number of insiders, n∗. Suppose there are n∗ − 1
insiders, and costs are most favourable for using an outside agent, cI = c and cO = c. Then it
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must be the case that the principal prefers to use one last outsider (and paying rent v) rather
than sticking to the current set of insiders. That is,

−c +
δ

1− δ
E[v − c1:n∗ ] ≥ (v − c) +

δ

1− δ
E[v − c1:n∗−1] (3.7)

Similarly, it must be the case that the principal does not want to increase the number of
principals from n∗ to n∗ + 1, yielding another equality analogous to (3.7). Together these
inequalities imply that n∗ is the unique integer satisfying

δ

1− δ
E[c1:n∗−1 − c1:n∗ ] + (c− c) ≥ v ≥ δ

1− δ
E[c1:n∗ − c1:n∗+1] + (c− c) (3.8)

Since the number of insiders can only increase over time, we have nt → n∗ almost surely. Two
comparative statics are of interest. First, as agents become more patient, the benefit from
future cost reductions increases and n∗ rises. Second, as the value of trade v increases, so
agents’ rents increase and n∗ declines.

The transition process can be characterised by backwards induction, using n∗ as an initial
condition. Denote the value function of the principals profit–maximisation problem in state n

by Φ(n). This evolves as follows:

Φ(n) = E[v − cI] + δΦ(n) if i ∈ It

= E[−cO] + δΦ(n + 1) if i 6∈ It

Denote the insider cost differential by x := cI − cO. The optimal policy then takes the form:
choose the inside agent if the cost differential is less than some cutoff, x < c∗n. The value
function then becomes

Φ(n) = E[−cO] + E[(v − x + δΦ(n))1x≤c∗n ] + E[δΦ(n + 1)1x>c∗n ]

=
E[−cO] + E[(v − x)1x≤c∗n ] + E[δΦ(n + 1)1x>c∗n ]

1− δE[1x≤c∗n ]
(3.9)

The cutoff c∗n is chosen to maximise Φ(n) and thus satisfies

(v − c∗n) =
δ

1− δ

[
(1− δ)Φ(n + 1)− E[max{v − c∗n, v − x} − cO]

]
(3.10)

The left hand side of equation (3.10) equals today’s lost profits from investing in an extra agent.
The right hand side equals the future discounted gains from using an extra agent, taking into
account the fact a principal who uses an insider this period retains the right to use an outsider
in the future, if x > c∗n.
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We can now derive the optimal policy for any distribution of costs and any number of agents.
First, solve for the maximal number of agents, n∗, and calculate the associated value function.
Second, use equation (3.10) to solve for the optimal state–(n∗ − 1) cutoff and equation (3.9) to
calculate the value function Φ(n∗ − 1). Then iterate.

Table 1 provides an illustration of this technique. In this example there are an infinite
number of agents willing to trade with the principal. Despite all this choice, the principal only
ever uses six agents. The principal’s adoption of new agents rapidly diminishes over time: it
takes an average of 4 periods for her to use 3 different agents, and 35 periods to use 5 different
agents. This distorted trading pattern lowers the principals profits to $83.6, relative to $100
under the first–best.

Insiders, nt Cutoff, c∗n Prob(nt+1 = nt) Value function, Φ(n)
0 0 0 83.6
1 0.358 0.358 85.3
2 0.398 0.637 87.0
3 0.454 0.837 88.6
4 0.549 0.959 90.2
5 0.834 0.999 91.7
6 1 1 92.9

Table 1: The Evolution of Trade, where v = 2, ci,t ∼ [0, 1], N = ∞ and δ = 0.98.

Throughout this Section we have assumed that the principal can commit to her strategy.
This assumption is not ludicrous: in the example in Table 1, one can check that the principal
has no incentive to renege on her investment plan. In Section 4 we investigate this issue in
more detail.

4 No Commitment

In this Section we examine the infinitely repeated holdup game, where both the principal’s and
the agents’ strategies form a subgame perfect equilibrium. We suppose that the principal’s
relationship with agent i is enforced by bilateral punishments. We use bilateral punishments
because we wish to model a decentralised market where agent i’s information about agent j’s
relationship is likely to be quite poor. This assumption has empirical relevance: McMillan
and Woodruff’s survey revealed that only 19% of Vietnamese firms thought that a cheating
customer would be punished by other firms in the industry.

Lemma 3. A contract 〈Qi,t, pt〉 is self–enforcing if and only if

(Ui,t − v)Qi,t ≥ 0 (∀i)(∀t) (DEA)
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and
Πi,tQi,t ≥ 0 (∀i)(∀t) (DEP)

Proof. Same as Lemma 1.

The principal’s problem is to maximise time–0 profit (2.1) subject to the dynamic enforce-
ment constraints, (DEA) and (DEP). Appealing to Proposition 2, profits are maximised in
each period if (DEA) binds (∀t). The principal’s problem thus reduces to choosing 〈Qi,t, pt〉 to
maximise profit

Π0 := E0

[ ∞∑

s=1

∑

i

δt−s(v − ci,t)Qi,t

]
− E0

[∑

i

vδτi(0)

]
(4.1)

subject to
(Wi,t − v)Qi,t ≥ 0 (∀i)(∀t) (DEP′)

Notably, prices are absent from both (4.1) and (DEP′). We call the solution to this problem
the optimal contract.

4.1 Time Inconsistency

Example 1 shows that the principal’s dynamic enforcement constraint may strongly restrict the
set of possible trading opportunities.

Example 1 (Unravelling Trade). Suppose N = 1 and costs c1,t ∈ (0, v) are deterministic
and increasing such that limt→∞ c1,t = v and

∑∞
t=1 δt(v − c1,t) > v. In this case, the optimal

relaxed contract is Qi,t = 1 (∀t). However, since the gains from trade disappear over time, the
only solution to satisfy (DEP) is Q1,t = 0 (∀t). This unravelling result holds for all δ ∈ (0, 1).

4
The problem is that the principal’s optimal relaxed contract is not time consistent. From

the principal’s time–0 perspective, she has to pay rents v to an agent in order to stop him
defecting. After these rents have been paid, the principal uses the agent efficiently, as shown in
Proposition 1. The problem is that many of these rents will come in terms of promised future
utility which are needed to stop future defections. These postponed payments mean that the
principal may later regret promising to use the agent efficiently. If the principal defects in these
later periods, she then raises the required price in earlier periods, exerting a negative externality
on her former self.
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4.2 IID Costs with Patient Agents

To further examine the principal’s optimal contract let us return to the IID benchmark. Propo-
sition 3 shows that, when the principal is sufficiently patient, the optimal contract is self–
enforcing.

Proposition 3. Suppose that costs are IID. In addition, assume that either c > 0 or v > c.
Then there exists a δ̂ < 1, independent of N , such that the optimal relaxed contract satisfies
(DEP) when δ > δ̂.

Proof. See Appendix A.2.

Example 2 (Uniform Costs). Suppose, N = ∞, ci,t ∼ U [0, 1] and v > 1. As shown is
Appendix A.3, (DEP) is satisfied if δ ≥ δ̂ := 1/(1 + (v − 1)3). For example, if v = 2, then
δ̂ = 1/2. As v → 1, so δ̂ → 1. 4

The dynamic enforcement constraint requires that, when the principal trades with agent
i, the future profits associated with i are positive. For fixed N , this result is trivial: as the
discount rate approaches one, so the average profit per agent tends to infinity. Hence there
exists a δ̂N such that the optimal contract satisfies (DEP) when δ ≥ δ̂N .

Proposition 3 makes a stronger statement: there exists a critical discount factor, δ̂, indepen-
dent of the number of agents, such that the optimal contract satisfies (DEP) when δ ≥ δ̂. When
there are an infinite number of agents, the problem is that the number of trading partners will
increase without bound as δ → 1. Despite this, the average profit per agent tends to infinity
as the parties become more patient. Intuitively, the principal’s investment in new partners is
limited by having to pay rent v for every new relationship. This means that the maximum
number of insiders is determined by the marginal benefit of an extra agent, E[c1:n−1 − c1:n], as
in equation (3.7). This marginal benefit is of order o(n) and therefore decreases more rapidly
than the average benefit of each relationship, E[v − c1:n]/n. The average profit per agent thus
increases in δ, and the principal will refrain from defecting when sufficiently patient.

4.3 IID Costs with Impatient Agents

Proposition 3 shows that, when agents are patient, the principal can implement the optimal
relaxed contract. However, when agents are impatient, efficient trade may not satisfy the
principal’s dynamic enforcement constraint. The principal can respond by introducing trad-
ing inefficiencies in a number of ways. Proposition 4 illustrates how inefficiency can ease the
dynamic enforcement constraint in the case when N = 1.5

5With additional agents, the problem is much harder. This is the subject of the companion paper, Board
(2006).
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First, recall that the optimal relaxed contract is as follows:6

Qt = 1ct≤c∗ if i 6∈ It

Qt = 1ct≤v if i ∈ It

where c∗ ≥ δv.

Proposition 4. Suppose costs are IID and N = 1. Then the optimal contract obeys

Qt = 1ct≤κ∗ if i 6∈ It

Qt = 1ct≤κ∗∗ if i ∈ It

where κ∗ ≤ κ∗∗. In addition, κ∗ ≤ c∗ and κ∗∗ ≤ v.

Proof. See Appendix A.4.

When the principal cannot commit, the time inconsistency problem implies that the prin-
cipal will wish to renege on a trade if the future value of the relationship is less than the cost,
ct. Credibility can thus be enhanced through a contract where trade does not occur when
ct exceeds some cutoff, κ∗∗. Since efficient trading opportunities are sometimes forgone, the
ex–ante value of trade falls, reducing the willingness of the principal to invest in a new agent,
and hence reducing κ∗.

5 Private Cost Information

In this Section we suppose that costs ci,t ∈ [c, c] are privately observed by the principal. Section
5.1 discusses the basic problem, while section 5.2 suggests a possible solution.

5.1 Failure of Incentive Compatibility

In Section 4 we showed that, if agents are sufficiently patient, the optimal relaxed contract is
self–enforcing. It will not, however, tend to be incentive compatible.7

To see the problem suppose that the principal promises to implement the optimal relaxed
contract using some prices {pt}. The principal may have two reasons to distort her cost reports:

6Since there is only one agent, we drop i subscripts.
7In the text, our presentation is heuristic. To be more formal, consider the following game. First, the principal

privately observes her costs. Second, she makes a public cost report which determines the contract 〈Qi,t, pt〉.
Third, she chooses whether or not to invest according to the plan. Fourth, the winning agent chooses whether
or not to hold the principal up. A contract is incentive compatible if the principal cannot improve her payoffs
by misreporting at stage 2.
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1. Suppose pt > v − ci,t > 0 for i ∈ It, and Qi,t = 1. The principal may then prefer to
exaggerate ci,t to avoid trade with agent i.

2. Suppose ci,t > cj,t for i ∈ It and j 6∈ It, and Qi,t = 1. The principal may then prefer to
exaggerate ci,t or under–report cj,t in order to trade with j rather than i.

These problems result from the time–inconsistency of the optimal relaxed contract, under which
the principal treats insiders efficiently. Since many of an agent’s rents take the form of delayed
payments, the principal has an incentive to avoid trade in these future periods by pretending
that her cost is artificially high.

The principal can try to alter her investment strategy, Qi,t, in order to obtain incentive
compatibility. For example, the contract could make trade compulsory, or restrict the agents
with whom the principal could trade. In Section 5.2 we show there is a better solution: if
the principal can expand the space of payments, then she can implement the optimal relaxed
contract.

5.2 Maintenance Payments

So far we have assumed that transfers between the principal and agent i can only be made when
Qi,t = 1. Instead suppose that transfers can take place in any period after the relationship has
been initiated, i.e. after τi(0).8 Denote the transfer paid in period t to agent i by pi,t.

Consider the following maintenance contract. Payments are given by

pi,t = (1− δ)v if i ∈ It (5.1)

pi,t = 0 if i 6∈ It

The investment strategy Qi,t is then chosen to maximise time–0 profits (3.3).

Proposition 5. Suppose that costs are privately known by the principal. The maintenance
contract (5.1) is an optimal relaxed contract and is incentive compatible. Moreover, it is self–
enforcing if

Wi,t ≥ v for all i ∈ It. (DEPMC)

Proof. First, we show the contract is agent–self–enforcing. Under the maintenance contract, if
Qi,t = 1, agent i anticipates future rents v. Hence (DEA) holds, and the agent has no incentive
to defect.

8In Section 6 we argue that transfers prior to τi(0) are unlikely to occur. These criticisms do not apply to
transfers after τi(0).
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Second, we show incentive compatibility. At time t, the principal’s profit is

Πt = Et

[ ∞∑
s=t

δs−t(v − cIt,t)

]
−Et


∑

i6∈It

δτi(t)−tv


−

∑

i∈It

v (5.2)

Observe that the last term in (5.2) is sunk and can be ignored. The investment plan, Qi,t,
chosen to maximise time–0 profits (3.3) thus maximises time–t profits (5.2) by the principle of
optimality. The principal therefore cannot gain by lying about her costs, altering the investment
plan.

Third, the contract is self–enforcing if the principal has no incentive to deviate. When
Qi,t = 1 the principal must be willing to invest in i. That is,

Πi,t = Wi,t − v = Et[δWi,t+1]− ci,t ≥ 0 (5.3)

When Qi,t = 0 and i ∈ It, the principal must be willing to pay the agent pi,t = (1− δ)v. That
is,

Πi,t = Wi,t − v = Et[δWi,t+1]− v ≥ 0 (5.4)

When Qi,t = 0 and i 6∈ It, the principal cannot defect. Putting (5.3) and (5.4) together, yields
(DEPMC)

The maintenance contract pays each insider (1 − δ)v per period, independent of whether
trade occurs or not. Since these maintenance payments are sunk, the principal’s problem is
time consistent. As a consequence, the principal has no incentive to lie about her costs.

Proposition 5 is very general. We assumed nothing about the stochastic structure of costs.
The mechanism is also detail–free in that agents do not have to know the distribution of costs,
so long as they trust the principal to stick to the contract.

The cost of maintenance payments is that the principal’s dynamic enforcement constraint
(DEPMC) is stricter than under the fastest price contract (DEP). The reason for the difference
is straightforward: under the maintenance payment contract, insiders receive utility Ui,t = v

whether or not they trade; under the fastest price contract, insiders receive Ui,t = v when they
trade and receive strictly less in other periods. Nevertheless, when costs are IID, Proposition 6
shows that the difference between (DEP) and (DEPMC) is relatively minor.

Proposition 6. Suppose that costs are IID. In addition, assume that either c > 0 or v > c.
Then there exists a δ̂ < 1, independent of N , such that the optimal relaxed contract satisfies
(DEPMC) when δ > δ̂.

Proof. Same as proof of Proposition 3.
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When costs are IID, the future benefit from the relationship with agent i does not depend
whether they are trading or not this period. Hence the additional dynamic enforcement con-
straints, needed to guarantee to principal pays each insider each period, are not particularly
constraining. This may not be the case for other cost structures: for example, if costs follow a
markov chain then the optimal relaxed contract may satisfy (DEP) but not (DEPMC).

6 On Transfers

This paper has argued that the principal will allocate investment in order to minimise the rents
obtained by agents. However, the reader has probably observed that, by defining the space of
payments more broadly, the principal can extract all rents from the agents. There are two ways
this can be achieved:

1. Allow the agents to make contractible payments to the principal. By setting this con-
tractible payment equal to v, the principal can then extract all rents from the agents, as
shown by MacLeod and Malcomson (1989).

2. Allow the agent to make a voluntary payment to the principal before time τi(0). By
setting this voluntary payment equal to the expected value of the agents future rents, the
principal can again fully extract from the agents.

There are two basic problems with contracts involving full–extraction transfers of this sort.
The first problem is practical. In many developing countries, such as Vietnam, contractible
payments cannot be implemented since a there is no fully functioning legal system. While
some firms make up–front payments, they are far from universal. In their survey of Eastern
European firms, Johnson, McMillan, and Woodruff (2002) find that only 35% ask for any
advance payment. When looking at custom built products, only 42% ask for any advance
payment.

A second problem is more theoretical: these full–extraction transfers are not robust to
free entry into the market for principals. Suppose a contract 〈Qi,t, φi,t, φ

0
i,t〉 consists of three

components: the principal’s investment decision, Qi,t; a voluntary payment from agent i to the
principal, φi,t; and a contractible payment from agent i to the principle, φ0

i,t. We say a contract
is cowboy–proof if a new principal, with costs ci,t = ∞, cannot make a strictly positive profit.9.

Proposition 7. Profits under the optimal self–enforcing cowboy–proof contract 〈Qi,t, φi,t, φ
0
i,t〉

equal profits under the optimal contract 〈Qi,t, pt〉.
9This argument is quite intuitive. After moving across the country to accept a new job, buying a house and

enrolling their children in the local schools, a professor can be held up by their university. While the professor
could ask for a large up–front payment to compensate for the low wages, a university will be very hesitant about
making such a payment. In particular, they will fear that the professor will accept the up–front payment and
leave the following year. This argument is analogous to the free entry model of Shapiro (1983)
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Proof. Recall that the optimal contract 〈Qi,t, pt〉 maximises profit (4.1) subject to (DEP′).
Since all payments are voluntary, the optimal contract is thus cowboy–proof.

Let us turn to the optimal self–enforcing cowboy–proof contract 〈Qi,t, φi,t, φ
0
i,t〉. Cowboy–

proofness says that a cowboy’s profits from agent i,

ΠC
i,0 := E0


 ∑

t<τi(0)

δt(φi,t + φ0
i,t) + δτi(0)φ0

i,t




must be negative. By holding–up a principal who invests at time τi(0), an agent can then obtain
rents

Ui,0 ≥ E0[vδτi(0)]−ΠC
i,0 ≥ E0[vδτi(0)]

Summing over i, profits are thus weakly larger than those in (4.1).
Let us now examine the dynamic enforcement constraints. Pick any time t and and agent i

such that Qi,t = 1. The agent will not defect if

Ui,t ≥ v − φ0
i,t (6.1)

Similarly, the principal will not defect if

Πi,t ≥ φ0
i,t (6.2)

Summing (6.1) and (6.2) yields (DEP′). Putting this together, the optimal contract 〈Qi,t, pt〉
attains the maximum profit from any self–enforcing cowboy–proof contract.

Proposition 7 says that if we want the contract to be robust to free entry into the market
for principals, then we can limit ourselves to contracts where (a) payments are voluntary, and
(b) payments are only made when trade takes place. Thus expanding the space of possible
payments does not benefit the principal.10

7 Conclusion

In countries with poor contract law, relational contracts are essential to encourage investment
and facilitate trade. While relational contracts perform far better than spot markets, this paper
has sought to examine how these ongoing relationships can create endogenous switching costs
and distort the pattern of trade in the economy.

The theory we have put forward is, in essence, very simple. Agents’ ability to holdup the
10This, of course, ignores issues of incentive compatibility. It is worth noting that the maintenance contract is

also cowboy–proof.
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principal enables the agents to extract rents. Since an agent cares about their utility from the
entire trading relationship, the same rent can also be used to prevent multiple incidences of
holdup. That is, the rent acts like a fixed cost of initiating a new relationship. In response to
this fixed cost, the principal starts fewer new relationships than is first–best.

We also showed that the optimal contract is time inconsistent, giving rise to two related
problems. First, the principal may wish to renege on the optimal contract. However, this
problem can be overcome if the principal is sufficiently patient, no matter how many agents
there are in the industry. Second, the principal may wish to lie about her gains from trade in
order to undo the optimal contract. However, this problem can be overcome if the principal
can use a maintenance contract.

Our theory has testable implications. First, firms should be more willing to revert to an
old supplier than use a new supplier. Second, a firm may refuse to exploit new trading oppor-
tunities if they must source from a new partner. Third, switching costs should decrease with
agents’ patience, but should never disappear. Our theory also helps compare the performance
of relational contracting and and efficient legal system. It suggests, for example, that formal
contracts are most important where the efficient trading partner changes frequently, and where
there are many potential partners.
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A Omitted Proofs

A.1 Proof of Proposition 1

Fix t and suppose that i ∈ It obeys (3.4a)–(3.4b). By the principal of optimality, the principal
wishes to maximise

Πt = Et

[ ∞∑
s=t

∑

i

δs−t(v − ci,s)Qi,s

]
−E0


∑

k 6∈It

δτk(t)v


 (A.1)

Since ci,t < v, the principal prefers trading to abstaining. By (3.4a) the principal also prefers
trading with i to trading with a different j ∈ It. To show the principal prefers to trade with i

than j 6∈ It, denote the profit from trading with i by Πt(i). We then have,

Πt(i) = (v − ci,t) + δEt

[ ∞∑

s=t+1

∑

i

δs−t(v − ci,s)Qi,s

]
−E0


∑

k 6∈It

δτk(t+1)v


 (A.2)

≥ (v − ci,t) + δEt

[ ∞∑

s=t+1

∑

i

δs−t(v − ci,s)Qi,s

]
− δv − E0


 ∑

k 6∈It\{j}
δτk(t+1)v




≥ (v − cj,t) + δEt

[ ∞∑

s=t+1

∑

i

δs−t(v − ci,s)Qi,s

]
− v − E0


 ∑

k 6∈It\{j}
δτk(t+1)v


 = Πt(j)

where the third line follows from (3.4b).

A.2 Proof of Proposition 3

We seek to show that, for δ sufficiently high, (DEP) is slack under the optimal contract. If
Qi,t = 1, the profit from relationship i is

Πi,t = −ci,t + δEt[Wi,t+1]

≥ −v +
1
n∗

δ

1− δ
ω(n∗) (A.3)

where n∗ is the maximum number of agents, and ω(n) := E[max{v − c1:n, 0}] is welfare when
using n agents. Let us define ω(0) := 0. Two facts are worth noting. First, ω(n) is increasing
in n and converges to E[v − c]. Second, the marginal welfare of an extra agent, ∆ω(n) :=
ω(n)− ω(n− 1) decreases in n and converges to zero.

The proof rests on two lemmas.
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Lemma 4. For any sequence of integers {ni},
∑

i≥1

ni − ni−1

ni
= ∞

Proof. Pick an infinite subsequence of the integers {mj} as follows. Let m1 := n1 and mj =
min{ni : ni ≥ 2mj−1}. Then

∑

i≥1

ni − ni−1

ni
=

∑

j

∑

{i : mj≥ni>mj−1}

ni − ni−1

ni

≥
∑

j

∑

{i : mj≥ni>mj−1}

ni − ni−1

mj

=
∑

j

mj −mj−1

mj

By construction, mj−mj−1

mj
≥ 1

2 . Hence the sum is infinite.

Lemma 5. n∆ω(n) → 0 as n →∞

Proof. Since ∆ω(n) > 0 (∀n), lim inf n∆ω(n) ≥ 0. By contradiction, suppose that lim supn∆ω(n) =
k > 0. Then there exists a subsequence of integers {ni} such that

ni∆ω(ni) ≥ k − ε > 0 (∀i) (A.4)

Abusing notation, let ni(n) = min{ni : ni ≥ n} be the next integer in the subsequence after an
arbitrary integer n. We now obtain the following contradiction,

v − c =
∑

n≥1

∆ω(n)

≥
∑

n≥1

∆ω(ni(n))

=
∑

i≥1

(ni − ni−1)∆ω(ni)

≥ (k − ε)
∑

i≥1

ni − ni−1

ni

= ∞

The first line follows from ω(1) = E[v − c] and limω(n) = v − c. The second uses the fact that
∆ω(n) is decreasing. The fourth line uses (A.4), while the fifth line follows from Lemma 4.

Using the same approach as behind equation (3.7), we can characterise the maximum number

21



of agents, n∗.11

δ

1− δ
∆ω(n∗) ≥ max{v − c, 0}+ c (A.5)

Substituting (A.5) into (A.3),

Πi,t ≥ −v +
ω(n∗)

n∗∆ω(n∗)
[max{v − c, 0}+ c] (A.6)

If c > 0 or v > c, then max{v−c, 0}+c > 0. As δ → 1, so n∗(δ) increases monotonically without
bound. Consequently, ω(n∗) → v − c and, by Lemma 5, n∗[∆ω(n∗)] → 0. Hence Πi,t →∞, as
required. Observe that this argument applies for any value of N , including N = ∞.

A.3 Derivation of Example 2

Suppose ci,t ∼ U [0, 1] and v > 1. As in equation (A.3), profits at time t are

Πi,t = −ci,t + δEt[Wi,t+1]

≥ −1 +
1
n∗

δ

1− δ
ω(n∗)

≥ −1 +
[

1
n∗(n∗ + 1)

]1/2 δ

1− δ
(v − 1) (A.7)

since ω(n) = v − 1
1+n . Using equation (A.5),

δ

1− δ

1
n∗(n∗ + 1)

≥ (v − 1)

Rearranging and substituting into (A.7) yields,

Πi,t ≥ −1 +
[

δ

1− δ

]1/2

(v − 1)3/2

Hence Πi,t ≥ 0 if (v − 1)3 ≥ (1− δ)/δ. That is,

δ ≥ 1
1 + (v − 1)3

A.4 Proof of Proposition 4

The problem is to maximise (4.1) subject to (DEP′). First, suppose that the agent is an insider
(i.e. that they have bought previously). By the principal of optimality, the principal wishes to

11Of course, this bound will not be reached if n∗ > N .
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maximise
Wt = (v − ct)Qt + δEt[Wt+1]

subject to (
δEt[Wt+1]− ct

)
Qt ≥ 0 (DEP′)

Since this is a stationary problem, the solution will be stationary. Moreover, the solution will
be monotone since trading when the cost is low raises the objective and weakens the constraint.
We can thus define W (κ) by

E[W (κ)] :=
1

1− δ
E[(v − c)1c≤κ]

Then κ∗∗ is characterised by the largest cost that satisfies (DEP),

κ∗∗ = max{κ ≤ v : δE[W (κ)]− κ ≥ 0} (A.8)

Initial profit Π(κ∗) is defined by

Π(κ∗) =
∫ κ∗

c
(δE[W (κ∗∗)]− c) dF (c) +

∫ c

κ∗
δΠ(κ∗)dF (c)

=

∫ κ∗
c (δE[W (κ∗∗)]− c) dF (c)

1− δ(1− F (κ∗))
(A.9)

The initial cutoff κ∗ is chosen to maximise Π(κ∗) subject to (DEP′). Since (DEP′) must hold,
κ∗ ≤ κ∗∗. Finally, we wish to show that κ∗ ≤ c∗ and κ∗∗ ≤ v. The latter follows from (A.8).
To show the former note that Π(κ∗) is log–supermodular in (κ∗, E[W ]), so that κ∗ is increasing
in E[W ]. Since expected welfare E[W ] is higher under the optimal relaxed contract, the first
period cutoff is higher, as required.
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