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Abstract. In this paper, we consider identification and estimation of average marginal effects in a correlated
random effects model without imposing strong functional form assumptions on the structural likelihood or
the mixing distribution. Identification is achieved through imposing that the mixing distribution depends
on observed covariates only through an index function and the assumption that at least three time periods
are available for each cross sectional unit. We leave the functional form of the index function unrestricted
subject to smoothness conditions. We present identification results for this model and consider estimation
of the marginal effects of interest. We illustrate the use of the approach through a brief empirical example
which considers the relationship between insider trading activity and trading volume.
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1. Introduction

The use of panel data is extremely common in empirical economics. Panel data is appealing as it

allows researchers to deal flexibly with time-invariant individual specific effects that may not be

independent of covariates of interest. In a linear model where unobserved individual specific het-

erogeneity enters as an additively separable term, the individual specific heterogeneity may flexibly

be accommodated by allowing for individual specific intercepts that are treated as parameters to be

estimated. This approach is widespread in economics and is appealing since one may estimate the

common slope parameters of the model without imposing any structure on the individual specific

effects.

Unfortunately, this approach is not readily generalizable to nonlinear, nonseparable, or dynamic

models. In these more general settings, leaving the individual heterogeneity unrestricted usually
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results in inconsistent estimators of the common parameters due to the incidental parameters

problem. That is, noise in the estimation of the individual specific effects when the time dimension

is short results in inconsistent estimates of the common parameters due to the nonlinearity of the

problem. See, for example, Neyman and Scott (1948) for an early discussion or Arellano and Honoré

(2001).

There is a large literature in econometrics that offers approaches to identification and estimation

in panel data models with individual specific heterogeneity. These approaches may broadly be

classified in two categories. Both approaches assume a model for the outcome of interest that

is common across individuals up to an unobserved, individual specific effect that takes values in

a finite dimensional space. We refer to this as the structural model, and when parametric, to

its parameters as the structural or common parameters. Fixed effect approaches treat individual

specific effects as parameters to be estimated, leaving the distribution of unobserved heterogeneity

relatively unrestricted at the cost of introducing a large number of nuisance parameters. Random

effects approaches, on the other hand, typically assume that the distributions of individual specific

effects belongs to a known parametric family indexed by a finite dimensional parameter.

Both fixed and random effects approaches have drawbacks. Fixed effects approaches will gen-

erally be subject to the incidental parameters problem. For some models, a clever transformation

exists which removes the unobserved heterogeneity and allows consistent estimation of common

parameters; see Wooldridge (2002) for several well-known examples in parametric models. The

drawback of these approaches is that they are very model specific and rely heavily on knowledge

of functional form. Recently, there have also been a number of fixed effects approaches developed

which estimate the individual specific effects and then attempt to improve the performance of the

resulting estimators of common parameters via bias-correction; see, for example, Hahn and Kuer-

steiner (2002), Hahn and Kuersteiner (2004) and Hahn and Newey (2004), and Woutersen (2005).

These approaches seem quite promising, but rely on parametric assumptions for the structural

model and asymptotics where the cross-sectional and time dimension both go to infinity.

Random effects approaches, on the other hand, generally bypass the incidental parameters

problem, either by assuming that unobserved individual specific characteristics are independent
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of observed covariates, or by assuming that unobserved effects are drawn from a known paramet-

ric distribution defined by a finite dimensional parameter. For a parametric structural model,

estimation may then proceed simply using any appropriate parametric estimator. However, the

resulting estimates may be heavily influenced by independence assumptions or by functional form

assumptions about both the structural model and the distribution of unobserved effects.

In this paper, we present an approach to estimation and inference that complements the afore-

mentioned approaches. In many economic applications, the objects of interest are changes in the

conditional expectation of the outcome of interest or other functionals of the structural model with

a change in an observed covariate, holding the distribution of unobserved heterogeneity fixed. We

consider identification and estimation of these marginal effects without parametric assumptions on

the structural model or the distribution of unobserved effects. Without further restrictions, mar-

ginal effects will generally not be identified. This is because, with observational data and a model

in which unobserved effects are correlated with observed covariates, a change in a covariate impacts

the distribution of the outcome of interest through both the structural likelihood and distribution

of heterogeneity.

We focus on identification of the marginal effect of a change in a particular observed covariate

on a conditional expectation of interest holding unobserved heterogeneity fixed averaged against

the conditional distribution of unobserved heterogeneity. Identification is achieved through three

restrictions. First, we impose that the distribution of unobserved effects depends on the particular

observed covariate only through an index function, which may be viewed as a sufficient statistic.

We also assume that, once individual specific heterogeneity is conditioned upon, the structural

model depends only on the contemporaneous value of the covariate. Finally, we assume that at

least three time periods are available for each cross sectional unit. In the appendix, we consider a

dynamic model and show that the second assumption may be relaxed when more than three time

periods are available.

Under the first two assumptions, the three time periods allow us to use variation in conditional

expectations in time periods other than the period of interest to estimate how the distribution of

unobserved effects changes as the covariates change. Using this information, we are then able to

construct an estimate of the effect of interest with the distribution of unobserved heterogeneity held
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fixed. With the exception of smoothness conditions and the two functional restrictions mentioned

above, our identification results are obtained without any functional form assumptions regarding

the index function, the distribution of unobserved effects conditional on the index, or the structural

model. The structural model is assumed common across individuals but not necessarily across time

periods. Thus, our approach identifies an interesting economic effect within a very general model.

Our approach is a random effects type approach in that we achieve identification with a fixed

time dimension by imposing structure on the distribution of unobserved individual level effects.

However, the approach may be regarded as intermediate to conventional random effects approaches

and fixed effects approaches in that the restrictions we impose are nonparametric in nature. We

also illustrate how the approach leads to a set of overidentifying restrictions that can be used to

test the validity of the identifying restrictions.

The next section provides a brief overview of the model we consider and discusses related

research. We develop the identification result in Section 3 and briefly discuss estimation in Section

4. Section 5 contains an empirical example in which we consider the effect of market volume on

trading decisions of corporate insiders, and Section 6 concludes.

2. Model and Parameter of Interest

We consider panel models with time invariant individual specific effects. Let the observed data be

{(yi, xi)}Ni=1 where yi ∈ Y ⊆ RT is a vector of outcomes for individual i and xi = [xi1, ..., xidx ] ∈

X ⊆ RT×dx is a T × dx matrix of explanatory variables with sth column a T × 1 vector xis. Letting

the time invariant individual specific heterogeneity be represented for each i by αi ∈ A, we suppose

that the unknown distribution function of yit given xi and αi can be represented as

yit|xi, αi ∼ Gt(yit|xi, αi) = Gt(yit|xit, αi).(2.1)

We refer to Gt(yit|xit, αi) as the structural model. We note that this definition of the structural

model allows for essentially arbitrary intertemporal heteroskedasticity but imposes that xit and αi

are sufficient to capture the effects of all past and future realizations of x on the outcome y at time

t. We also suppose that individual specific effects are drawn from distribution function Q(α|x) that

may in general depend on the full matrix of explanatory variables and note that without additional

restrictions on Q(·) this imposes essentially no restrictions on the model.
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We suppose that the researcher, if possible, would choose to estimate quantities of the form
∂

∂xist
E[m(yit)|xi, αi]; that is, the researcher would ideally like to know how certain expectations of

the outcome variable, yit, change due to changes in one of the corresponding conditioning variables,

xist, with individual heterogeneity held constant. Of course, with T finite, it is clear that such

objects are generally not consistently estimable as they would require estimation of individual

specific distribution functions. As a result, we suppose that a researcher would be satisfied with

an estimate of the marginal effect of xist on the expected value of m(yit), with individual specific

heterogeneity held constant, averaged over the distribution of individual specific effects:

bts(xi) =
∫
A

(
∂

∂xist
E[m(yit)|xi, αi]

)
dQ(αi|xi).(2.2)

Throughout the remainder of the paper, we define bts(xi) as the marginal effect of interest and

consider a set of assumptions under which bts(xi) is identified and estimable.

Our approach begins by noting that, under fairly general conditions, expectations of the form

E [m(yit)|xi] and their derivatives are nonparametrically identified from the observed data. The

derivative of this expectation with respect to a covariate xist, assuming it exists and under mild

regularity conditions necessary to interchange the order of integration and differentiation, has the

form

∂

∂xist
E [m(yit)|xi] = bts(xi) +

∫
A

E [m(yit)|xi, αi] d
(

∂

∂xist
Q(αi|xi)

)
(2.3)

In other words, when individual specific heterogeneity αi is unobserved, changing the value of xist

affects the left hand side conditional expectation through two channels. The first is the quantity of

interest, bts(xi), which represents the effect of a change in xist under the structural model (2.1) av-

eraged over the distribution of individual-specific heterogeneity for individuals of (observable) type

xi. The second term arises because changing the value of a covariate can change the distribution

from which αi is drawn. In general, additional restrictions on G, Q, and/or m will be necessary

to ensure the two right hand side terms are separately identified. For example, under the simplest

random effects assumption, Q(αi|xi) ≡ Q(αi), marginal effects are trivially identified as the second

right hand side term in (2.3) is zero.

In this paper, we will impose restrictions on the dependence of Q(αi|xi) on xi to achieve identi-

fication of bts(xi). In this sense, our approach is fundamentally a random effects approach, though



6

the conditions we impose are nonparametric in nature and allow correlation between unobservables

and observed covariates. In particular, our key identifying assumption will be that there exists

an unknown sufficient statistic for each s = 1, ..., dx that captures the effect of xis on αi. This

assumption implies that the distribution of unobserved heterogeneity may be written as

Q(αi|xi) = Q(αi|h1(xi1), ..., hdx(xidx))(2.4)

for unknown functions hs(xis) that map RT to R. In the following sections, we will show that this

assumption with the additional smoothness conditions that the hs(·) be differentiable in each of their

entries and the measure over A induced by Q(αi|h1(xi1), ..., hdx(xidx)), dQ(αi|h1(xi1), ..., hdx(xidx)),

be differentiable with respect to the hs(·) will allow us to achieve identification of the marginal effect

bts(xi) given in (2.2). Essentially, identification obtains because the index restriction allows us to

use information from other time periods to obtain an estimate of the second right hand side term

in (2.3). Note that if one is only interested in marginal effects associated with a single covariate

xs, bts(xi), the index and differentiability conditions need only hold with respect to xs.

The index restriction itself is easily seen as defining a restricted set of types for the individual

observations. For example, in the case of a single covariate, we have that any individuals, say i and

j, for which h(xi) = h(xj) will have unobserved heterogeneity drawn from the same distribution.

This restriction seems quite mild. Since we will not require that the index function be specified a

priori, we are placing only mild restrictions on the set of x values that will result in individuals

being of the same type. By assuming differentiability of the hs(·) with respect to their arguments,

we are imposing that two populations of individuals with similar observable characteristics will

have time invariant unobserved characteristics that are similarly distributed. Note that we do not

assume individuals with the same x’s have the same unobservable characteristics, simply that these

latter characteristics are drawn from a common distribution.

The approach we take has a number of drawbacks. As developed, the approach does not

allow for estimation or identification of the effects of discrete covariates, though the differences

in marginal effects of continuous variables across categories of a discrete variable may easily be

obtained under our conditions. The approach may also need substantial modification in the case

of unbalanced panels. The index restriction does restrict the distribution of heterogeneity, though
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it leaves the functional form of this distribution largely unspecified and definitely does not restrict

this distribution to fall within a given parametric class of models.

A further drawback is that the object of interest, bt(x) as defined in (2.2), changes as the

number of time periods, T , increases. One way to make this model coherent as T increases is to

imagine the model above as having been defined for a very large, but finite, number of time periods,

T ∗ > T , and think of the density Q in (2.2) as a marginal density with xT+1, . . . , xT ∗ integrated

out. Still, it is apparent that this approach would require modification to remain coherent as a

literal description of a data generating process if one wishes to seriously entertain the notion of T

going to infinity. We note that our model may serve as a useful building block for such approaches

and that extensions in this direction seem like an interesting avenue for future research.

The benefit of our approach is that we achieve essentially nonparametric identification of an

interesting effect. Beyond differentiability in x, we impose few restrictions on the structural model,

allowing, for example, for general intertemporal heteroskedasticity. The index restriction also

provides testable restrictions that we will discuss below.

2.1. Related Methods

Linear index restrictions have been employed in correlated random effects estimation of panel data

models in economics since at least the early work of Mundlak (1978) and Chamberlain (1980).

Linear index restrictions are also commonly employed in hierarchical modeling; see Raudenbush

and Bryk (2002). For example, a common assumption in these models is h(xi) = x̄i. Another

restriction, considered by Wooldridge (2005) is that observable characteristics xi do not affect the

mean of the unobserved efffect but do affect the variance, e.g., αi ∼ N(0, exp{x′iδ}). More recently,

Chen and Khan (2007) and Gayle and Viauroux (2007) use index restrictions to obtain identification

in semiparametric panel data models. These latter two papers are similar in spirit to ours in that

both treat the functional form of the index as unknown. Our approach differs from these by

allowing a fully nonparametric structural model and an unspecified mixing distribution that allows

correlation between unobservables and observed covariates in any time period, in addition to leaving

the functional form of the index unrestricted.
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There are, of course, a variety of other interesting approaches one could pursue to identify and

estimate marginal effects in the present context. When the distribution of yi given xi and αi or

a set of moment conditions relating yi to xi and αi is specified up to a finite dimensional set of

parameters θ, one can use parametric random or fixed effects strategies. For the linear model,

identification and estimation strategies are developed under very general conditions in Hausman

and Taylor (1981). If one is willing to specify a parametric model for the distribution of αi given

xi, one can pursue a conventional random effects approach to identify and estimate θ and the

parameters of the distribution of individual heterogeneity.

Alternatively, one may leave the distribution of αi given xi unrestricted and attempt to estimate

θ and the αi jointly. This approach is appealing in that it leaves the distribution of unobserved

heterogeneity unrestricted but unfortunately is subject to the incidental parameters problem of

Neyman and Scott (1948) in general. Recent approaches to addressing this problem make use

of asymptotics where the number of cross-sectional observations, N , and T go to infinity jointly

and propose bias-reductions based on these asymptotics; see, for example, Hahn and Kuersteiner

(2002), Hahn and Kuersteiner (2004), Hahn and Newey (2004), and Woutersen (2005). While these

approaches are interesting and extremely useful in many situations, they do rely on parametric

structure for the structural model, and it does seem to be useful to consider approaches that do

not rely on T →∞.

In the context of models in which the structural model depends on only αi and a finite dimen-

sional parameter vector θ, it is also possible to perform inference about the set of identified values

for θ rather than require that θ be point identified. This approach is pursued in Honoré and Tamer

(2006) and Chernozhukov, Hahn, and Newey (2004) and does not require that T →∞.

Another set of approaches relies on finding a transformation that removes the unobserved het-

erogeneity from the problem. These transformations are well-known for the linear model, Logit

model, and Poisson model; see Wooldridge (2002). In addition, there are a variety of such ap-

proaches that apply to semiparametric panel data models under the assumption that the structural

model depends on xit and αi only through a linear index but is otherwise unknown. Examples in-

clude Manski (1987) in the static binary choice model, Honoré and Kyriazidou (2000b) in dynamic
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binary choice, Honoré and Kyriazidou (2000a) in censored models, Horowitz and Lee (2004) in du-

ration models, and Kyriazidou (1997) for selection models. One drawback of this approach is that

it relies heavily on the assumption that individual specific heterogeneity enters additively in a linear

index with xit, is very model specific, and only applies in a small number of cases. In addition, with

the exception of the linear model, only the index coefficients on xit is identified; and since the αi

are eliminated from the problem and neither they nor their distributions are estimated, marginal

effects are not identified or estimated. Our approach is similar to the semiparametric approaches

listed above in that we do not place functional form restrictions on either the structural model

or the distribution of unobserved heterogeneity beyond index restrictions. However, we place the

index restriction in the distribution of unobserved heterogeneity rather than the structural model

and allow for an unknown index rather than imposing a linear index.

Another approach is pursued in Honoré and Lewbel (2002) and Lewbel (2005). In these ap-

proaches the existence of a “special” regressor that is known to enter the structural model with

non-zero coefficient and be excluded from the distribution of unobserved heterogeneity is assumed.

Then, assuming that the structural model depends on xit and αi only through a linear index, simple

estimators emerge. Our approach is similar in that we also impose restrictions on the distribution of

unobserved heterogeneity. The index restriction is neither more nor less general than the exclusion

restriction assumed with the special regressor.

Nonparametric random effects estimators are proposed in Lin and Carroll (2000) and Ullah

and Roy (1998), with general properties of these estimators established in Henderson and Ullah

(2005). Note that all of these approaches require that unobservables are independent of observed

covariates, and varying degrees of additive separability, neither or which is assumed in this paper.

Index assumptions have recently been employed in semiparametric panel models. Chen and Khan

(2007) use an index assumption to obtain identification of a censored panel regression model with

time-varying factor loadings. We note that our approach would also accomodate time-varying

loadings on αi as the structural model is allowed to change with t. Gayle and Viauroux (2007)

employ a different index assumption to obtain identification in a semiparametric dynamic panel

sample selection model. Their assumption differs from ours in that it assumes that unobservables in

the selection equation are a deterministic function of time-invariant strictly exogenous observables,
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but leaves unobservables in the outcome equation unrestricted. Both of these papers obtain
√
n-

consistent estimators for a common parametric component. However, as semiparametric estimators,

both rely on functional form assumptions as well as additive separability between observables

and unobservables. Our approach relies only on the index assumption and the assumption that,

conditional on xit and αi, yit is independent of xis for all s 6= t. We show in the appendix that

the latter assumption may be relaxed, with the cost that more than three time periods may be

required to identify the effects of interest.

Perhaps the approach that is most similar to the approach we pursue in this paper is that

of Altonji and Matzkin (2005). They consider identification of average marginal effects as in

(2.2). They also achieve identification in a similar manner by assuming that there is a vector

z that is sufficient for x in the distribution of unobserved heterogeneity; that is, they assume

Q(αi|xi, zi) = Q(αi|zi) for some known vector z. This is quite similar to our approach in that

we also assume that there is a set of sufficient statistics for x in the distribution of unobserved

heterogeneity. Unlike Altonji and Matzkin (2005), we do not assume that this set of statistics is

known. Rather, we assume that the set of statistics takes on the index form in (2.4). Again, this

assumption is neither more nor less general than the assumption in Altonji and Matzkin (2005);

their vector z is known but may include interactions of covariates while our set of sufficient statistics

is unknown but is restricted so that there is one sufficient statistic for each covariate.

3. Identification of Marginal Effects

In this section, we consider identification of marginal effects of continuous covariates in a short T

panel context. For brevity, we consider only identification in static models in the main text and

offer extensions to dynamic models and expectations involving more than one time period in the

appendix. For notational convenience, we also limit the discussion to the case of one explanatory

variable. Given this, we drop the subscript s used above. Under the index restriction (2.4), the

generalization to more than one covariate is straightforward. To conserve on notation, we also drop

the subscript i indexing individuals.
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We suppose that for our single continuous covariate, we are interested in estimating the marginal

effects

bt(x) =
∫
A

∂

∂xt
E[m(yt)|x, α]dQ(α|x)(3.1)

for some t. We note that E[m(yt)|x] and its derivatives with respect to x are identified from the

data. Under the model developed in Section 2, we have

E[m(yt)|x] =
∫
A

∫
Yt
m(yt)dGt(yt|x, α)dQ(α|h(x1, ..., xT )).

Thus, letting Dmt,τ (x) = ∂
∂xτ

E[m(yt)|x] we have

Dmt,t(x) =
∫
A

∫
Yt
m(yt)

∂

∂xt
dGt(yt|x, α)dQ(α|h(x1, ..., xT ))

+
∫
A

∫
Yt
m(yt)dGt(yt|x, α)

∂

∂xt
dQ(α|h(x1, ..., xT ))

= bt(x) +
(
∂

∂xt
h(x1, ..., xT )

)∫
A

∫
Yt
m(yt)dGt(yt|x, α)

∂

∂h
dQ(α|h(x1, ..., xT ))

= bt(x) + ht(x)ct(x)(3.2)

and, for τ 6= t,

Dmt,τ (x) =
(

∂

∂xτ
h(x1, ..., xT )

)∫
A

∫
Yt
m(yt)dGt(yt|x, α)

∂

∂h
dQ(α|h(x1, ..., xT ))

= hτ (x)ct(x)(3.3)

where ht(x) = ∂
∂xt

h(x1, ..., xT ) and ct(x) =
∫
A
∫
Ytm(yt)dGt(yt|x, α) ∂

∂hdQ(α|h(x1, ..., xT )). Like

Dmt,τ , bt and ct are real-valued functionals; their dependence on m is surpressed for notational

convenience.

As in (2.3), we see that the derivative with respect to xt of the conditional expectation of

m(yt) given x is equal to the marginal effect of interest, the derivative of the structural conditional

expectation with respect to xt with the distribution of unobserved heterogeneity fixed integrated

against the distribution of unobserved heterogeneity, plus an additional term that corresponds to the

change in unobserved heterogeneity when xt changes. Under the assumption that only the current

value of x affects the current value of y in the structural model G, we also have that the derivative

of the conditional expectation of m(yt) with respect to t 6= τ only depends on how individual

heterogeneity changes when xτ changes. Due to the index restriction, the terms corresponding to
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changes in the distribution of individual heterogeneity consist of a common component multiplied

by the change in the index due to changing the particular component of x. We will make use of

these facts below with T ≥ 3 to show identification of bt(x). Before considering T ≥ 3, we briefly

illustrate that with T = 2 we achieve identification if we are willing to assume the index function

is known or satisfies certain functional restrictions.

3.1. T = 2

With T = 2, we may use expressions (3.2) and (3.3) to define a system of four equations:

Dm1,1(x) = b1(x) + h1(x)c1(x)

Dm1,2(x) = h2(x)c1(x)

Dm2,1(x) = h1(x)c2(x)

Dm2,2(x) = b2(x) + h2(x)c2(x).

Inspection of this system of equations shows that there will not be a unique solution for b1(x) and

b2(x) without additional restrictions.

One restriction that has been employed in practice is that the index function is known, possibly

up to a finite dimensional parameter. For example, it may be assumed that h(x) = x1 + x2, or

more generally that that h(x) = x′δ; see Mundlak (1978) and Chamberlain (1980). With a known

h(x), we also know the derivatives h1(x) and h2(x). Given these we may obtain

b1(x) =
∂

∂x1
E[m(y1)|x]−

(
h1(x)
h2(x)

)
∂

∂x2
E[m(y1)|x]

and

b2(x) =
∂

∂x2
E[m(y2)|x]−

(
h2(x)
h1(x)

)
∂

∂x1
E[m(y2)|x].

We assume that both h1(x) and h2(x) are nonzero. If one of h1(x) and h2(x) is zero, then identi-

fication of both b1(x) and b2(x) will generally not be possible. If both h1(x) and h2(x) are known

to be zero, identification of both effects of interest is immediate.

If one is confident in the specification of h(x), then this offers a way to estimate the marginal

effects of interest under quite weak restrictions on the distribution of individual specific heterogene-

ity and the structural function. In many cases this is not the only way to estimate bt. Wooldridge
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(2005) provides examples where average marginal effects are identified and can be obtained without

differentiating E[y|x] with respect to x. However, Wooldridge (2005) also points out that, without

additional assumptions, one cannot distinguish between omitted heterogeneity and misspecification

in the structural model.

Alternatively, one may treat the index as unknown but assume it satisfies functional restric-

tions sufficient to determine the ratio of derivatives, ht/hτ . For example, one could assume h is

symmetric, h(x1, x2) = h(x2, x1), in which case we have ht/hτ ≡ 1. In general, however, the results

will depend sensitively on the chosen model for the index function. In the following, we show that

with T ≥ 3 we may identify the effects of interest while allowing for an unspecified index function.

3.2. T ≥ 3

With T = 2 and the index function h known, the marginal effect bt(x) is identified because the effect

of a change in the distribution of unobserved heterogeneity may be estimated using information

from the other time period, τ 6= t. This is done by the taking the derivative of the conditional

expectation, ∂
∂xτ

E[m(yt)|x], and multiplying by the ratio of derivatives of the index function, ht/hτ ,

which is available because h is assumed known. In this section, we show that when three (or more)

time periods are available, marginal effects may be identified without assuming a known index

function. This occurs because an additional time period s /∈ {t, τ} may be used to form an

estimate of the appropriate ratio of derivatives of h. We also note that, in addition to identifying

marginal effects, our index assumption implies a set of functional restrictions that may be used in

constructing a specification test.

Without loss of generality, suppose we are interested in the first period marginal effect, b1(x).

Equations (3.2) and (3.3) define a system of T 2 equations, four of which are

Dm1,1(x) =
∂

∂x1
E[m(y1)|x] = b1(x) + h1(x)c1(x)

Dm1,2(x) =
∂

∂x2
E[m(y1)|x] = h2(x)c1(x)

Dm3,1(x) =
∂

∂x1
E[m(y3)|x] = h1(x)c3(x)

Dm3,2(x) =
∂

∂x2
E[m(y3)|x] = h2(x)c3(x).
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Note that the left hand sides of all four equations are identified from observed (y, x) outcomes.

Similar to the T = 2 case, the derivative D1,2 is proportional to the unknown function c1. The

difference here is that, with an additional time period available, the ratio of derivatives h1
h2

may

be estimated using information from the third period by taking the ratio of derivatives of the

conditional expectation E[m(y3)|x] with respect to x1 and x2. Provided that Dm3,2(x) 6= 0, the

marginal effect of interest is identified and given by

b1(x) = Dm1,1(x)−

(
Dm3,1(x)
Dm3,2(x)

)
Dm1,2(x).

Note that, if any Dmt,τ (x) for t 6= τ is zero, deciding which quantities are identified will generally

require inspection of the full system of T 2 equations. Inspection of the system will generally suggest

that either only a subset of the T marginal effects of interest are identified or that the model is

misspecified.

The index assumption also provides additional testable implications, even in the T = 3 case.

To see one example, notice that the estimator of b1(x) above is not the only one that can be

constructed using information from the first three time periods; we also have

b1(x) = Dm1,1(x)−

(
Dm2,1(x)
Dm2,3(x)

)
Dm1,3(x)

when Dm2,3(x) 6= 0. The resulting estimator of b1(x) would be distinct from the one constructed

above because it uses information from the second period to estimate the ratio of derivatives, h1/h3,

and information from the third period to estimate the integral term c1(x) =
∫
A E[m(y1)|x] d

(
∂Q
∂h

)
.

A testable implication of our index assumption is that the two estimators should agree at any set

of x values where both are well-defined.

In practice, either or both estimators may be undefined when their denominators Dm2,3 or Dm3,2
are zero. However, inspection of (3.3) reveals that any function ϕ(y) in the domain of the time-

s conditional expectation operator may be used to estimate the ratio of derivatives of the index

function,

Dϕs,t(x)
Dϕs,τ (x)

=
∂
∂xt

E [ϕ(ys)|x]
∂
∂xτ

E [ϕ(ys)|x]
=
ht
∫
A
∫
Y ϕdGs d

(
∂Q
∂h

)
hτ
∫
A
∫
Y ϕdGs d

(
∂Q
∂h

) =
ht
hτ
,
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provided that s /∈ {t, τ} and the mapping x 7→ E[ϕ(ys)|x] is differentiable in xt and xτ . When

the support of y is large (or continuous), considering other functions ϕ(y) may offer considerable

latitude in constructing the ratio of derivatives of the index functions. This also suggests that, for

continuous y, identification will generally fail due to a zero denominator only when hτ (x) = 0.

The general T ≥ 3 identification result for static models is summarized in the following propo-

sition.

Proposition 1. Let (Ω, σ(Ω),P) be a probability space and (ỹ, x̃, α̃) a random variable taking values
in Y × X × A, where Y = ⊗Tt=1Y with Y ⊆ R, X ⊆ RT , and A ⊆ Rdα. Let t ∈ {1, . . . , T},
x∗ = (x∗1, . . . , x

∗
T ) ∈ X , and m ∈ L2(Y) be given. Suppose that there exist

(i) A measurable function Gt(yt|x, α) such that ∀(yt, x, α) ∈ Y × X ×A,
P {ỹt < yt|x̃ = x, α̃ = α} = Gt (yt|xt, α), and this function is differentiable in xt at x∗,

(ii) A measurable function Q(α|x) such that ∀(α, x) ∈ A × X , P {α̃ < α|x̃ = x} = Q(α|x), and
this function is differentiable in x at x∗,

(iii) τ ∈ {1, . . . , T} such that t 6= τ , and the operator-valued mapping x 7→ Et(x) defined by

[Et(x)]m = EP [m(yt)|x̃ = x] ,

is differentiable with respect to xt and xτ at x = x∗, meaning that the function fmt (x) =
EP [m(yt)|x̃ = x] has well-defined partial derivatives

∣∣∣∂fmr∂xr′
(x)
∣∣∣ <∞ for r′ ∈ {t, τ} at x = x∗.

(iv) s ∈ {1, . . . , T} and ϕ ∈ L2(Y), such that t 6= τ 6= s, and that the function fϕs (x) =

EP [ϕ(ys)|x̃ = x] has well-defined partial derivatives
∣∣∣ ∂fϕs∂xr′

(x)
∣∣∣ <∞ for r′ ∈ {t, τ} at x = x∗,

and ∂fϕs
∂xτ

(x∗) 6= 0. Note that ϕ = m is permissible so long as ∂fms
∂xτ

(x∗) 6= 0.

For a given m ∈ L2(Y), denote by Dmr,r′(x∗) the partial derivative of the mapping x 7→ [Er(x)]m
with respect to xr′ at x = x∗. Then the marginal effect bt(x∗) defined in (3.1) is identified and
satisfies

bt(x∗) = Dmt,t(x∗)−
(Dms,t(x∗)
Dms,τ (x∗)

)
Dmt,τ (x∗)(3.4)

Conditions (i)-(iv) are quite mild and assume little beyond the existence of the object of inter-

est. (i) and (ii) assume the existence of conditional distributions which are differentiable in their

conditioning arguments. (iii) and (iv) ensure that the derivatives of the conditional expectations

of interest exist.
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The substantive restriction needed for identification beyond the index assumption is embedded

in (iv) and assumes that a nonzero term can be found for the denominator in the expression

(3.4). This assumption functions like the instrumental variables assumption that the instrument

be correlated to the endogenous variable in the model and is akin to the existence of a first-stage

relationship. The assumption of a nonzero denominator term makes this an essentially pointwise

identification argument. In particular, unless one is willing to assume that the denominator is

bounded away from zero almost everywhere or another substantive functional restriction, it seems

that this condition should be checked at each point of interest.

3.3. Overidentifying Restrictions

In addition to providing sufficient structure for identification of average marginal effects, the index

structure in the distribution of unobserved effects also provides a set of overidentifying restrictions

that can be used for specification testing. In this section, we briefly illustrate these overidentifying

restrictions. Since the index assumption is a substantial functional restriction, we believe that

having a simple set of testable implications should be useful in many situations. We also note

that, while the index assumption will typically generate overidentification in static models, just

identification is possible in the dynamic case, as shown in the appendix.

For a value of x and a t of interest, there will generally be (T−1)(T−2) ways to construct bt(x).

To see this, note that bt(x) = Dmt,t(x)−
(Dms,t(x)
Dms,τ (x)

)
Dmt,τ (x) for any {s, τ} with s 6= τ , s 6= t, and τ 6= t.

If one fixes s, there are obviously (T−2) values of τ that satisfy τ 6= s and τ 6= t; and for any t, there

are (T −1) other potential values for s. For any bt(x), we then have (T −1)(T −2)−1 = T 2−3T +1

overidentifying restrictions since these (T − 1)(T − 2) ways to construct bt(x) should all agree.

It is important to note that the total number of overidentifying restrictions provided by any

particular x variable is always T 2−3T +1 despite the fact that we have, in principle, (T −1)(T −2)

available estimators for each component of the vector b(x) = (b1(x), ..., bT (x))′. This results because

once we have considered all possible estimators for a particular t, all other restrictions for other t are

functionally dependent on the set of restrictions used when considering time t. This dependence is

easiest to see in the T = 3 case. With T = 3, there are two ways to identify each possible bt(x) which

should produce the same answer. In particular, we may define b11(x) = D1,1(x)−
(
D2,1(x)
D2,3(x)

)
D1,3(x),
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b12(x) = D1,1(x) −
(
D3,1(x)
D3,2(x)

)
D1,2(x), b21(x) = D2,2(x) −

(
D1,2(x)
D1,3(x)

)
D2,3(x), b22(x) = D2,2(x) −(

D3,2(x)
D3,1(x)

)
D2,1(x), b31(x) = D3,3(x) −

(
D1,3(x)
D1,2(x)

)
D3,2(x), and b32(x) = D3,3(x) −

(
D2,3(x)
D2,1(x)

)
D3,1(x).

The model then implies that b11(x) = b12(x), b21(x) = b22(x), and b31(x) = b32(x). To see

that these statements are functionally dependent, notice that, for example, b11(x) = b12(x) ⇔(
D2,1(x)
D2,3(x)

)
D1,3(x) =

(
D3,1(x)
D3,2(x)

)
D1,2(x) ⇔ D1,3(x)D2,1(x)D3,2(x) = D1,2(x)D2,3(x)D3,1(x). Simi-

larly, we also have that b21(x) = b22(x) ⇔ D1,3(x)D2,1(x)D3,2(x) = D1,2(x)D2,3(x)D3,1(x) and

b31(x) = b32(x) ⇔ D1,3(x)D2,1(x)D3,2(x) = D1,2(x)D2,3(x)D3,1(x); that is, the coefficient restric-

tion for each possible t value implies the same restriction on the model.

In practice, one may work out which restrictions are redundant for any given T . However,

it will generally be simpler to simply test the set of restrictions implied for a particular value of

t. We note that the discussion above implicitly assumes that sufficient denominator terms are

nonzero at the value of x of interest for bt(x) to be identified. Clearly any test based on these

overidentifying restrictions will lack power when the model is not identified. We will discuss testing

of the overidentifying restrictions in the following section where we outline a simple estimator for

the marginal effects averaged over the distribution of unobserved heterogeneity.

4. Estimation

The identification result in the previous section is also constructive as it suggests a simple approach

to pointwise estimation of the marginal effects of interest, bt(x). In particular, the identification

result shows that bt(x) may be constructed as a combination of derivatives of conditional expec-

tations that are readily estimated using any number of nonparametric derivative estimators. It is

again worth pointing out that the identification result developed above requires that the term that

shows up in the denominator of the expression for bt(x) be nonzero. Without strong beliefs that

the population derivatives that appear in the denominator are bounded away from zero almost

everywhere, this suggests that identification and estimation may best viewed pointwise as, just as

in instrumental variables models when examining the first stage relationship, one will likely want

to consider the validity of the identification assumption on a point by point basis. For this reason,

we present the following results for pointwise estimation of bt(x).
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Let D̂mt,τ (x) be an estimate of the derivative Dmt,τ (x). We define an estimator of bt(x) as b̂t(x) =

D̂mt,t(x) − g(D̂ms,τ (x), bn)D̂ms,t(x)D̂mt,τ (x) where g(t, b) is a trimming function and bn is a bandwidth.

For simplicity, we assume that the functional used to estimate the ratio of derivatives of the index

function is the same as the functional of interest, and suppress the the superscript m as well as the

argument x in the notation below.

Before continuing, we note that the ratio of derivatives of the index function may also be esti-

mated by g(D̂ϕs,τ (x), bn)D̂ϕs,t(x), where the functionals Dϕ·,· are obtained by replacing the function m

in equation (3.3) with another function ϕ in the domain of the appropriate conditional expectation

operator. When the support of y is rich, this offers considerable flexibility in estimating the ratio

ht/hτ . Assuming that there are multiple functions that provide non-zero denominators, it may

also be possible to improve the efficiency of the estimator by considering averages over a range of

such functions. Modifying the estimation results presented below in this direction seems like an

interesting technical extension, but is beyond the scope of the present paper.

To establish the pointwise properties of the estimator, we impose the following conditions:

A1. |Ds,τ | > 0.

A2. For D = (D′1, ...,D′T )′ where Dt = (Dt,1, ...,Dt,T )′, an(D̂ − D −Bn) d−→ N(0, Vx).

A3. g(u, b) = (1/u)1(|u| ≥ 2b) + m(u, b)1(b ≤ |u| < 2b) is two times continuously differentiable

and bn → 0 as n→∞.

Condition A1 is necessary for identification of the model at x using Ds,τ in the denominator.

All that is required for identification is that A1 is satisfied for at least one {s, τ} pair at the point

x. We note that A1 is similar to the usual rank condition for identification in a linear instrumental

variables model. The identification in our model comes from variation induced in the conditional

expectation of m(yτ ) for τ 6= t where t is the period of the effect we are trying to identify through

varying X’s that are not included in the structural equation. If at the point of interest, changing

X does not induce variation in the conditional expectation at other time periods, which may be

viewed analogously to the first stage in the conventional linear IV model, the model will not be

identified at that x.
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Condition A2 simply requires pointwise asymptotic normality of the derivatives of the con-

ditional expectation. Sufficient conditions for this condition to be satisfied are well-known for a

variety of nonparametric estimators. See, for example, Pagan and Ullah (2006) and Li and Racine

(2006). The last condition defines a trimming function and assumes that asymptotically the trim-

ming vanishes and is not restrictive. We introduce trimming because it is easy to do so and may

induce additional regularity in the estimator. We show in the appendix that if the trimming is

aggressive enough, the estimator remains well-behaved, though is not consistent for the quantity

of interest, even when the model is not identified.

Under these conditions, we can verify the pointwise asymptotic normality of our estimator of

the marginal effect of x integrated against the conditional distribution of unobserved heterogeneity.

We provide the proof in the appendix.

Proposition 2. Suppose the data {Y,X} were generated according to model (2.1) and (2.4), that
conditions A1-A3 are satisfied, and define w = ett − Ds,t

Ds,τ eτt −
Dτ,t
Ds,τ est + Ds,tDτ,t

D2
s,τ

esτ where eij is
a vector defined as D above with a one in the location corresponding to Di,j and zeros elsewhere.

Then b̂t − bt
p−→ 0 and an(̂bt − bt − w′Bn) d−→ N(0, w′Vxw).

We note that Proposition 2 may easily be extended to provide the joint distribution between

multiple estimates of bt(x) when they exist or to estimates of b(x) = (b1(x), ..., bT (x))′ by changing

the definition of the vector w to an appropriate matrix where each column of the matrix is defined

analogously to w above but picks off and correctly weights the appropriate elements from the

vector of derivative estimators D̂. We present this result in the following notationally burdensome

corollary and note that the proof is the same as that of Proposition 1 with appropriate changes of

notation.

Corollary 1. Suppose the data {Y,X} were generated according to model (2.1) and (2.4). Let
β(x) be a vector of estimates bt,τ,s(x) = Dt,t(x)−

(
Ds,t(x)
Ds,τ (x)

)
Dt,τ (x) where we have explicitly indexed

by the time period of the effect of interest and the other two time periods used to estimate the index
function. Suppose β(x) = (bt1,τ1,s1(x), ..., btJ ,τJ ,sJ (x))′ where t, s, and τ are J × 1 vectors with jth

elements tj, sj, and τj respectively. Suppose that conditions A1-A3 are satisfied for each element
of β(x), and define a matrix w with lth column wl = etltl −

Dsl,tl
Dsl,τl

eτltl −
Dτl,tl
Dsl,τl

esltl + Dsl,tlDτl,tl
D2
sl,τl

eslτl

where eij is a vector defined as D above with a one in the location corresponding to Di,j and zeros

elsewhere. Then β̂ − β p−→ 0 and an(β̂ − β − w′Bn) d−→ N(0, w′Vxw).
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Corollary 1 gives the limiting distribution of a vector of estimators β(x) composed of elements

of the form bt,τ,s(x) = Dt,t(x) −
(
Ds,t(x)
Ds,τ (x)

)
Dt,τ (x). The results can be used to test joint hypothe-

ses involving derivatives across multiple time periods or to test overidentifying restrictions. As

discussed in Section 3.3, one would typically fix t when forming β(x) and consider all admissible

{s, τ} combinations for estimating bt(x) when considering testing overidentifying restrictions. One

could then use (an)2(R(β̂− ŵ′Bn))′(Rŵ′VxwR′)−1(R(β̂− ŵ′Bn)) d−→ χ2
T 2−3T+1 for testing the null

hypothesis Rβ = 0 implied by the overidentifying restrictions where R is an appropriately defined

restriction matrix.

When considering testing overidentifying restrictions, it is worth noting that the tests may be

formulated in terms involving only products, not ratios, of the raw derivatives. Note that the

overidentifying restrictions may always be represented as a set of equality restrictions of the form(Dms,t(x)
Dms,τ (x)

)
Dmt,τ (x)−

(
Dmr,t(x)
Dmr,r′(x)

)
Dmt,r′(x) = 0

for various {s, τ} and {r, r′}. We can then always multiply through by the product of the de-

nominator terms to produce a test which does not involve ratios of derivative estimators. For

example, we may test either
(
D2,1(x)
D2,3(x)

)
D1,3(x) =

(
D3,1(x)
D3,2(x)

)
D1,2(x) or D1,3(x)D2,1(x)D3,2(x) =

D1,2(x)D2,3(x)D3,1(x) in the T = 3 case. The behavior of the test using the products is imme-

diate given Assumption A2 and requires neither Assumption A1 nor A3. Of course, regardless of

which formulation is used, the test will have no power when the model is not identified.

We also note that when there are multiple ways to estimate a bt(x), we may wish to combine

these estimates to reduce variance. It is well known that for a set of J estimates of bt(x) stacked

as a J × 1 vector, bt(x), the variance minimizing linear combination of bt(x) is given by c′bt(x)

where c = V −1
b ι/(ι′V −1

b ι) where ι is a J ×1 vector of ones and Vb is the variance-covariance matrix

of bt(x). This quantity may readily be estimated, and it’s asymptotic distribution follows from

Corollary 1. We explore the use of this estimator in the empirical example presented below.

5. Insider Trading Example

To illustrate the approach developed in the previous sections, we present a brief application that

considers the association between insider trading and trading volume of an asset as measured by
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turnover in a given quarter. We illustrate the index assumption by discussing it in the context of

this particular economic application. We also demonstrate the use of the estimator discussed in

Section 4 and the related overidentification test.

5.1. Empirical Model and Assumptions

Let yit denote a measure of trading activity over a quarter t by firm i insiders. Denote by turnit

the turnover of firm i’s stock during a quarter: the total trading volume of firm i’s stock during

quarter t divided by shares outstanding. Let αi be a firm-specific cost of insider trading which may

be related to the observed turnover. In some of our specifications, we also consider excess returns

to holding a firm’s stock for six months following the quarterly earnings announcement in quarter

t, ri,t. These returns are included in the structural model in order to proxy for insiders’ portfolio

rebalancing and allow informed traders to make decisions based on future returns. We consider

specifications where returns enter both the structural model and the distribution over unobserved

heterogeneity in a fairly flexible, dynamic way. Specifically, in our panel with T = 3, we allow all

returns from time -1 to time 4, ri,−1 to ri,4, to enter both the structural model and the distribution

of unobserved heterogeneity in an unrestricted fashion. This means that the average marginal effect

of returns on expected trading activity are unidentified. Since we are chiefly interested in turnover

and believe that informed insiders may potentially make trading decisions based on both past and

future asset returns, we believe the added flexibility outweighs the cost of nonidentification of the

effects of returns.

Much of the existing empirical literature on insider trading, e.g. Meulbroek (1992) and Rozeff

and Zaman (1998), has focused on the cross-sectional variation of future returns as a function of

past insider activity. This analysis is complicated by endogeneity and the need for a large set of

controls. In our analysis, we choose to focus on the turnover variable for simplicity. A simple

prediction of models of informed trade, e.g. Kyle (1985), is that insider activity should respond

to market volume. In particular, insiders trading on nonpublic information should be more likely

to engage in buying or selling of own company stock when overall trading volume is high, as

high market volume may conceal trading by insiders and help to mitigate the price impact of

their trades. However, we expect that unobservable, firm-specific characteristics may be correlated

with observed turnover, for example because boards of directors recognize that turnover affects



22

incentives associated with insider trading and adjust firm policy accordingly due to concerns about

regulatory scrutiny. Differences in insiders’ trading activity across firms with different levels of

turnover may therefore be due to systematic differences in firm policy as well as the direct effect

on incentives. The approach we have developed in this paper provides a flexible framework within

which to examine the relationship between insider trading and turnover while controlling flexibly

for correlated firm-specific heterogeneity and without imposing strong functional form assumptions.

We consider a simple empirical model of the form

yit = gt (turnit, αi, uit)

αi = q (h(turni1, turni2, turni3), vi)

where uit and vi are unobserved error terms that are independent of each other and of all observables.

We note that the model allows flexibly for intertemporal heteroskedasticity by allowing the form

of the function gt and uit to change with t. In some specifications, past and future returns, ri,−1,

ri0, ri1, ri2, and ri3, are also included in the structural model, gt. Including additional controls

would almost certainly entail explicitly adopting a semiparametric model due to dimensionality

considerations, an extension beyond the scope of the present paper. Two important restrictions are

evident in the reduced form: first, that the variable of interest turnit enter the distribution of firm-

specific effects through an index h : R3 → R, and second, that conditional on αi and possibly the

return path, only the current quarter realization of turnover affects the current quarter outcome,

yit.

In this case, we can think of the index restriction as an assumption that there are types of

firms in the economy and that these firm types are related to turnover in a flexible but restricted

fashion. A simple index restriction that has been used elsewhere in the economics literature is that

h(turni1, turni2, turni3) =
∑3

t=1 turnit, which defines types of firms based on the total amount

of turnover over a three quarter period. That is, all firms that have high total turnover over the

period (firms for which h(turni1, turni2, turni3) is large) have unobservables that are drawn from

similar distributions, while firms which have low total turnover over the period (firms for which

h(turni1, turni2, turni3) is small) also have unobservables drawn from similar distributions, though

these distributions may differ substantially across high and low turnover firms. In particular, it

seems plausible that boards of directors of firms with high overall turnover might be more likely to
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institute restrictions on insider trading due to concerns about regulatory scrutiny and the awareness

that high turnover potentially makes trading on nonpublic information more profitable.

We note that the index assumption is, of course, much more general than this, allowing for

much more exotic index functions. For example, insider trading may also tend to be more tightly

regulated at firms where turnover is more volatile. The substantive restriction is that we must

believe that there are types of firms in the economy that are well-defined by a single function of

the path of turnover over the year. It is also worth noting that the index assumption may be more

plausible as we add additional controls to the model. In our analyses with returns included, firms

will be of similar type only if they have similar values of h(turni1, turni2, turni3) over the period

and similar return paths over the six period window considered.

The other substantive restriction in the model is that conditional on firm-specific heterogeneity

and possibly the return path, insiders only base trading decisions during a quarter on turnover

during that quarter. This should be a plausible restriction in circumstances in which insiders

would always like to trade on nonpublic information but are constrained by the desire to hide the

activity. In this case, they should be willing to trade any time turnover is high, with the sign of the

activity depending on their current period inside information, and would not necessarily consider

whether turnover will be high or low in the future when making their current trading decisions.

5.2. Empirical Results

To obtain our empirical results, we use a subset of the data considered in Roulstone (2006). The

data were collected from several sources, including earnings and accounting variables from Com-

pustat; returns, market value, and trading volume from CRSP; and insider purchases and sales

from Thompson Financial Insider Trading Data Feed and the National Archives of Insider Trading

Summaries. Our data consist of a quarterly panel of U.S. firms from 1999Q2-1999Q4. We use firms

that have one earnings announcement in each quarter of 1999 and exclude firms with missing values

for any variable. We also exclude firms with turnover greater than 1.5 (150%) in a quarter and

firms for which insider trading accounts for more than 10% of quarterly trading volume, in part to

exclude extreme events such as acquisitions or bankruptcy. For our outcomes, we consider a binary

variable for whether there was any insider selling activity within a firm during a given quarter

and a binary variable for whether there was any insider buying activity within a firm during a
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given quarter. As noted above, a simple model of informed trade suggests that turnover should be

positively related to both the probability of insider buys and the probability of insider sales. Our

final sample is a balanced panel with N = 3804 firms over T = 3 quarters. Descriptive statistics

are provided in Table 1.

To obtain our estimation results, we used a local linear estimator to nonparametrically estimate

the set of derivatives used in constructing our point estimates of the marginal effect of changing

turnover on the probability of insider buys or sales. For all of our estimates, we used a Gaussian ker-

nel with bandwidth matrix equal to hCov(X) where h is a bandwidth parameter and Cov(X) is the

sample covariance matrix of the explanatory variables in the model. For all specifications, we chose

h by using cross-validation for estimates of the conditional expectation of E[yt|turn1, turn2, turn3]

or E[yt|turn1, turn2, turn3, r−1, r0, r1, r2, r3] depending on which covariates appear in the model.

While we recognize that this may not be the optimal choice of bandwidth for our problem, it seemed

a priori reasonable and provides sensible results. We have also calculated results using .50 and

1.25 times the cross-validated bandwidth (available upon request) and obtain qualitatively similar

results. Finally, for all of our results we estimate asymptotic standard errors and report boot-

strapped critical values for t-statistics and for the test of the overidentifying restriction. As with

the point estimates, we obtained bootstrapped critical values for our test statistics for a variety of

bandwidths ranging between .50 and 1.25 times the cross-validated bandwidth. We note that the

majority of these bandwidths should be undersmoothing relative to the rate optimal bandwidth

and so should alleviate bias concerns in obtaining bootstrapped critical values for tests using non-

parametric estimators. In all cases, the results remain qualitatively similar to what is reported,

and the bootstrapped critical values are numerically similar across all bandwidths considered. All

bootstrap results are based on 1000 replications.

We report estimated effects for insider buying in Table 2 and for insider selling in Table 3. All

estimates are for the average marginal effect evaluated at the median of each x. We also calculated

effects with all x’s evaluated at their marginal first and third quartiles. While slightly different,

these effects were certainly not statistically distinguishable from the effects at the median, and are

therefore not reported. The top panel in each table reports the results from the baseline model

with just the turnover variables included, and the bottom panel reports results from the model with

both turnover and return variables. To conserve space we report only the derivatives and marginal
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effects associated with turnover. In each table, the columns labeled bt1 and bt2 correspond to the

two possible estimators of bt that can be constructed for each t. The columns labeled b̄t give

variance weighted averages of bt1 and bt2 as discussed at the end of Section 4. Finally, the column b̄

gives the simple average of b̄t which may be taken as an overall measure of the annual relationship

between insider trading and trading volume, and the column labeled “Over” reports results from

testing the model’s overidentifying restriction. In the columns b11, b12, etc. corresponding to the raw

estimates of the marginal effect at time t, we also report the results for the “first-stage” coefficients,

the derivative term involved that appears in the denominator of the estimator of marginal effect

indicated by the column label. Rows labeled “estimate” and “s.e.” give respectively the estimated

values and standard errors. Rows labeled c80, c90, and c95 respectively give bootstrapped 80th,

90th, and 95th percentiles for t-statistics. For the “Over” column, these rows correspond to the

appropriate critical values from the overidentification test.

We focus first on Table 2, which reports estimated marginal effects of turnover on the probability

of insider purchases of own company stock with turnover in each period evaluated at the median

of the marginal distribution. Intuitively, insider purchases of own-company stock may be more

sensitive to turnover as many corporate insiders likely have large holding of own-company stock

through their compensation schemes. This suggests that purchases of own-company stock are more

likely to be motivated by nonpublic information than sells of own-company stock, which should

occur frequently for portfolio rebalancing purposes, and that there is more of an incentive to try

to “hide” these purchases in relatively higher volume periods.

Panel A of Table 2 contains results when only turnover is included as a conditioning variable.

Looking first at the bottom half (II) of Panel A which contains the “first-stage” results, we see that

all of the denominator terms appear to be statistically significantly different from 0 at the 5% level,

suggesting that the marginal effects of interest are identified. The overidentification test statistic is

also small, and we fail to reject the hypothesis that the overidentifying restriction is satisfied. This

failure to reject suggests that the index restriction may be consistent with the data. The results for

the estimated marginal effects in the top half (I) of Panel A are also consistent with the hypotheses

of a simple model of informed trading. All of the individual marginal effects are positive though

imprecisely estimated. When we consider the average estimates b̄1-b̄3 and b̄, we see fairly strong

evidence of positive effects across the three time periods and averaged over the whole time period.
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In particular, all of the average estimates are sizable positive numbers, ranging from 0.227 to 0.410,

and statistically significant at the 5% level. The point estimates are also large enough to seem

economically relevant. Taking the average effect over the three quarters b̄, we see that the point

estimate implies an approximate one standard deviation increase in trading volume (an increase in

turnover of around .2) is associated with around a 6% increase in the probability of insider buying.

The results reported in Panel B of Table 2, which includes firm-level stock return variables as

additional controls, are roughly consistent with the results that exclude the return variables. In

this case, the denominator terms corresponding to b12 and b32 are small relative to the estimated

standard errors, and we see that the resulting estimates of the marginal effects are quite variable and

that bootstrapped critical values for the t-statistic are also quite large. The other four denominators

and estimated effects seems to reasonably well-estimated though, and all estimated effects are

positive as we would expect. Looking at the average effects b̄1-b̄3 and b̄, we again see fairly strong

evidence of positive effects across the three time periods and averaged over the whole time period.

The affects are somewhat attenuated relative to those estimated without the returns variables but

remain statistically significant at the 5% level. In this case, the point estimate for the average effect

over the three quarters, b̄, implies an approximate one standard deviation increase in trading volume

(an increase in turnover of around .2) is associated with around a 4% increase in the probability of

insider buying.

Results for insider sells are presented in Table 3. These results are considerably less precise

than those for insider purchases, but still suggest a positive effect of turnover on the probability

of insider sales. All but two of the individual estimates of marginal effects are positive, with the

two negative estimates being quite small and imprecisely estimated. Unfortunately, there are more

problems with the “first-stage” on the sell side, with half of the denominators being statistically

insignificant once returns are added to the model. Once again this translates into large estimated

standard errors and an apparently very heavy-tailed distribution for the associated t-statistic. In

the model without returns, the average effect in period 2 is statistically different from zero while

none of the other average effects are statistically different. For the model with returns included,

none of the averages are statistically significant. We note that this is not terribly surprising as

insiders have strong incentives, mainly for portfolio rebalancing reasons, to sell stock regularly

regardless of the level of turnover in the market.
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Overall, the results are consistent with a simple model of insiders making informed trades; e.g.

Kyle (1985). We find statistical evidence for the hypothesis that high turnover should be associ-

ated with increased insider purchases and sells of own-company stock despite the high-dimensional

nonparametric regressions involved. These results are obtained while controlling flexibly for unob-

served firm-level heterogeneity and without imposing strong functional form assumptions, though

there is obviously no free lunch as one must live with running and believing a high-dimensional

nonparametric regression in a moderately sized sample. The results suggest that the proposed

estimation procedure is feasible and may usefully complement other more parametric procedures.

6. Conclusion

In this paper, we offer a simple approach to identification in a correlated random effects model.

The identification results allows for a nonparametric structural likelihood and an essentially non-

parametric conditional distribution of unobserved individual level heterogeneity. The identifica-

tion result also imposes no stationarity restrictions in the time dimension and thus allows for

extremely general types of intertemporal heteroskedasticity. We show that in this general set-

ting identification may be achieved under an index assumption in the conditional distribution of

unobserved heterogeneity. In particular, we show that identification may be obtained if there

is a sufficient statistic for x in the conditional distribution of unobserved heterogeneity; that is,

q(α|x1, ..., xT , h(x1, ..., xT )) = q(α|h(x1, ..., xT )) for some function h(x1, ..., xT ). Our identification

results allow the function h(x1, ..., xT ) to be an unknown nonparametric function subject to some

smoothness conditions. Because we are imposing restrictions on the distribution of unobserved

effects, our approach is best thought of as a random effects approach though it is very flexible,

allowing nonparametric specification of the structural likelihood, the distribution of unobserved

heterogeneity conditional on the sufficient statistic h(x1, ..., xT ), and the function h. The sufficient

statistic h may also be viewed a general index function that defines a set of types.

We also present a simple estimator, discuss testing of overidentifying assumptions, and present

an empirical application. The empirical application looks at the effect of turnover in a company’s

stock on buying and selling activity of corporate insiders. We find fairly consistent evidence that,

controlling for unobserved firm level heterogeneity, corporate insiders are more likely to purchase

own company stock in quarters where turnover in the stock is high as would be predicted by a
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simple of informed insider trading, e.g. Kyle (1985). The evidence on the sell side is weaker though

consistent with insiders being more likely to sell own-company stock when turnover is high. These

results should complement available results which are based on parametric models of insider trading

decisions.

The chief difficulty in implementing the present approach is that it requires nonparametric

derivative estimation over a high-dimensional space. This suggests that the approach will essentially

be unfeasible in smaller panels. A useful direction for further research related to the present paper

would be in providing models under sensible semiparametric restrictions. A useful approach which

has been pursued in other contexts and seems particularly well-suited to the present application

would be to assume that the statistic h takes the form of a linear index. To keep treatment of

the structural function and the distribution of unobserved effects parallel, one may also wish to

impose that the structural function is also a nonparametric function of a linear index. We leave

this extension to future research.

7. Appendix

7.1. Extensions of Identification Result

7.1.1. Dynamic Case

The identification argument in Section 3 assumes that, conditional on the unobserved effect α,

only the contemporaneous value of the covariate, xt, affects the period-t outcome, yt. In this

section, we show how our approach may be extended to the case where the x and y values from the

previous period also enter the structural model. We introduce an initial condition (y0, x0) which,

for simplicity, is treated as exogenous but may enter the distribution of individual-specific effects.

Note that the entire vector of covariates x (which now includes the initial condition) is treated as

known at all dates t. Denoting by yt−1 = (yt−1, . . . , y0) the vector of observations for y up to time

t− 1, the model is then

yt|x,yt−1, α ∼ Gt(yt|xt, yt−1, xt−1, α) α|x, y0 ∼ Q(α|x, y0).

Similar to the static case, we wish to identify the marginal effects of a change in xt, and now also

xt−1 and yt−1 on the current period outcome with the distribution of unobserved heterogeneity
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held fixed, given by

bt(x,yt−1) =
∫
A

(
∂

∂xt
E[m(yt)|x,yt−1, α]

)
dQ(α|h(x), y0)

bx−t (x,yt−1) =
∫
A

(
∂

∂xt−1
E[m(yt)|x,yt−1, α]

)
dQ(α|h(x), y0)

by−t (x,yt−1) =
∫
A

(
∂

∂yt−1
E[m(yt)|x,yt−1, α]

)
dQ(α|h(x), y0)

We first note that identification of the marginal effect of the lagged dependent variable by−t is

immediate for t ≥ 2 because the previous period outcome yt−1 is observable and does not affect the

distribution of unobserved heterogeneity. To see how our identification result changes in dynamic

models, we define Dmt,τ (x; yt−1, y0) = ∂
∂τE [m(yt)|x, yt−1, y0] and note that, as in (3.2),

Dmt,t(x; yt−1, y0) =
∫
A

∫
Yt
m(yt) d

[
∂

∂xt
Gt(yt|xt, yt−1, xt−1, α)

]
dQ(α|h(x1, ..., xT ), y0)

+
(
∂h(x)
∂xt

)∫
A

∫
Yt
m(yt)dGt(yt|xt, yt−1, xt−1, α) d

[
∂

∂h
Q(α|h(x1, ..., xT ), y0)

]
= bt(x; yt−1, y0) + ht(x)ct(x; yt−1, y0).

In the static case, when τ 6= t, all derivativesDmt,τ were proportional to the integral term, Dmt,τ = hτ ct.

This is still the case except when τ = t− 1, where

Dmt,t−1(x; yt−1, y0) =
∫
A

∫
Yt
m(yt) d

[
∂

∂xt−1
Gt(yt|xt, yt−1, xt−1, α)

]
dQ(α|h(x1, ..., xT ), y0)

+
(
∂h(x)
∂xt−1

)∫
A

∫
Yt
m(yt)dGt(yt|xt, yt−1, xt−1, α) d

[
∂

∂h
Q(α|h(x1, ..., xT ), y0)

]
= bx−t (x; yt−1, y0) + ht−1(x)ct(x; yt−1, y0).

Intuitively, in static models with the index h unknown, we require information from two addi-

tional time periods to identify average marginal effects of the covariate xt: one, τ 6= t, to identify

how a change in the index h affects the average and another, s /∈ {t, τ} to identify the ratio of deriva-

tives of the index, ht/hτ . We can use the same approach here. Provided that {t, τ, s} ⊆ {1, . . . , T}

may be chosen with τ /∈ {t, t− 1} and {t, τ} ∩ {s− 1, s} = ∅, we have

bt(x; yt−1, y0) = Dmt,t(x; yt−1, y0)−

(
Dϕs,t(x; ys−1, y0)
Dϕs,τ (x; ys−1, y0)

)
Dmt,τ (x; yt−1, y0),(7.1)
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and if, in addition, s 6= t− 1, we have

bx−t (x; yt−1, y0) = Dmt,t−1(x; yt−1, y0)−

(
Dϕs,t−1(x; ys−1, y0)
Dϕs,τ (x; ys−1, y0)

)
Dmt,τ (x; yt−1, y0).(7.2)

We assume 0 /∈ {t, τ, s} as the initial condition is treated as exogenous. One may identify the first

period marginal effects b1 and bx−1 , but not by−1 . The latter is not identified because we allowed

the initial outcome y0 to enter separately from the index, Q(α|h(x), y0). We could also allow x0 to

enter Q separately from x1, . . . , xT , in which case bx−1 would also fail to be identified.

As before, we assume ϕ can be chosen so the denominator Dϕs,τ is nonzero, with ϕ = m

permitted. Estimation of bt and bx−t may therefore proceed exactly in static models, but with the

lagged dependent variable yt−1 and the initial condition y0 included in the conditioning set when

estimating conditional expectations E[m(yt)|·] and their derivatives Dmt,·. The additional restrictions

on the set of (τ, s) from which bt and bx−t may be estimated ensure that each of the three Dmr,r′ that

appear in the last right hand side term of (7.1) and (7.2) have the form Dmr,r′ = hr′cr. For example,

if τ = t − 1, we would have Dmt,τ = bx−t + hτ ct, and (7.1) would not hold for values in X where

bx−t 6= 0.

One major difference between the dynamic and static cases is that it is possible for marginal

effects of covariates in some time periods to be identified while others are not. For example, in

a dynamic model when T = 3, the marginal effect of a contemporaneous change in x2, b2(·), is

identified (set τ = 3 and s = 1), while the third period marginal effect, b3(·), and all marginal

effects associated with lagged covariates, bx−t , are not. With T = 4, all contemporaneous marginal

effects are identified, but bx−2 is not. Another difference is that the number of overidentifying

restrictions implied by the index assumption is smaller than in the static case, and in some cases

certain marginal effects will be just identified. For example, in a static model with T = 3, we can

form two distinct estimators of b2(·) based on (3.4), one by putting τ = 3 and s = 1 and the other

with τ = 1 and s = 3. In the dynamic case, the latter estimator would, in general, be inconsistent

unless bx−3 = bx−2 = 0, so the marginal effect b2(·) is just identified.

Our approach may easily be extended to models where multiple lagged values of x or y, or both,

enter the structural model. Each additional lagged x will further restrict the set of admissible (τ, s)
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for identification of contemporaneous and lagged effects for each given t, and in general will require

a larger panel length T to ensure identification of all marginal effects of interest.

7.1.2. Marginal Effects Involving Outcomes in Multiple Periods

We briefly consider estimation of marginal effects of a change in the covariate xt on a function, M ,

that involves outcomes in multiple periods. For example, we may wish to determine how a change

in household income this year affects the probability a household buys a car this year or next year.

To fix ideas, we suppose that we are in the dynamic setting described in the previous section,

where the structural model for yt contains the contemporaneous value of x and the values of x and

y from the previous period, and that we are interested in estimating marginal effects of the form

B{t,...,t+k}(x; yt−1, y0) =
∫
A

∂

∂xt
E[M(yt, yt+1, . . . , yt+k) |x, α]dQ(α|x),

where M : Rk+1 → R is a function that depends on outcomes in current and future periods. It

is not necessary to assume that the outcomes that enter M occur in the future or that they are

consecutive; we make this assumption here to simplify notation and because such quantities are of

interest in many economic settings. The expectation of M conditional on the observed covariates

x and the lagged value yt−1 can be written

E[M(yt, . . . , yt+k)|x, yt−1, y0] =
∫
A

{∫
Y×...×Y

M(yt, . . . , yt+k) dGt+k(yt+k|xt+k, yt+k−1, xt+k−1, α)

. . . dGt(yt|xt, yt−1, xt−1, α)
}
dQ(α|h(x), y0).

As before, we differentiate this expectation with respect to the covariate xt and have

DM{t,...,t+k},t(x; yt−1, y0) =
∫
A

∫
Y×...×Y

M d

(∂Gt
∂xt

Gt+1 +Gt
∂Gt+1

∂xt

) k∏
j=t+2

Gt+j

 dQ
+
(
∂h(x)
∂xt

)∫
A

∫
Y×...×Y

Md

 k∏
j=0

Gt+j

 d[∂Q
∂h

]
= B{t,...,t+k}(x; yt−1, y0) + ht(x)C{t,...,tk}(x, yt−1, y0),

whereDM{t,...,t+k},τ (x; yt−1, y0) = ∂
∂xτ

E[M(yt, . . . , yt+k)|x, yt−1, y0] and arguments in the first equality

are omitted to ease notation.
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Our strategy here is similar to that in section 7.1.1. Conditional on α, the distribution of

(yt, . . . , yt+k) depends only on (xt−1, xt, . . . , xt+k). Other values of x, from time periods before t−1

or after t + k, affect the conditional expectation E[M |x, yt−1, y0] only through the distribution of

unobserved effects via the index, h. Therefore, for time periods τ < t−1 or τ > t+k, its derivatives

with respect to xτ will have the form DM{t,...,t+k},τ = hτC{t,...,tk}. It follows that if we can find a pair

(τ, s) with 1 ≤ τ ≤ T and 2 ≤ s ≤ T −k such that τ /∈ {t−1, t, . . . , t+k} and {t, τ}∩{s−1, s} = ∅,

we can form an estimate of the marginal effect of interest using the identity

B{t,...,t+k}(x; yt−1, y0) = DM{t,...,t+k},t(x; yt−1, y0)

−

(
Dϕs,t(x; ys−1, y0)
Dϕs,τ (x; ys−1, y0)

)
DM{t,...,t+k},τ (x; yt−1, y0).

For simplicity, we consider only functions of a single period outcome to determine the ratio of

derivatives of the index, and assume that ϕ can be chosen to make the denominator nonzero. As with

the inclusion of lagged dependent variables in the structural model, identification of marginal effects

that involve outcomes in multiple periods places further restrictions on the two additional time

periods (τ, s) that can be used to estimate the effect of a change in the distribution of unobserved

effects, C{·}, and the ratio of derivatives of the index function, ht/hτ . In practice, the panel length

T necessary to identify multiperiod marginal effects can quickly become large as the number of

outcomes that enter M , or the number of lags of x that enter in the structural model, increases.

7.2. Proof of Proposition 2

The proof proceeds by linearizing the estimator b̂t and verifying the remainder after linearization

is of small order.

b̂t − bt = D̂t,t − g(D̂s,τ , bn)D̂s,tD̂τ,t −Dt,t +
Ds,t
Ds,τ
Dτ,t

= (D̂t,t −Dt,t)− (g(D̂s,τ , bn)D̂s,tD̂τ,t − g(Ds,τ , bn)Ds,tDτ,t)(7.3)

− (g(Ds,τ , bn)Ds,tDτ,t −
Ds,t
Ds,τ
Dτ,t)
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From A3, we have that an|g(Ds,τ , bn) − 1/Ds,τ | = an|m(Ds,τ , bn) − 1/Ds,τ |1(bn ≤ |Ds,τ | <

2bn) + an|1/Ds,τ |1(|Ds,τ | < bn). Then, from bn → 0 and |Ds,τ | > 0, there exists an n0 such that for

all n > n0 bn ≤ |Ds,τ |/2 which implies an|g(Ds,τ , bn)− 1/Ds,τ | → 0. Thus

an|g(Ds,τ , bn)Ds,tDτ,t −
Ds,t
Ds,τ
Dτ,t| ≤ (an|g(Ds,τ , bn)− 1/Ds,τ |)|Ds,tDτ,t| → 0.(7.4)

Next, we have

g(D̂s,τ , bn)D̂s,tD̂τ,t − g(Ds,τ , bn)Ds,tDτ,t = (g(D̂s,τ , bn)− g(Ds,τ , bn))D̂s,tD̂τ,t

+ g(Ds,τ , bn)(D̂s,tD̂τ,t −Ds,tDτ,t),(7.5)

and, looking first at the second term in (7.5), we have

g(Ds,τ , bn)(D̂s,tD̂τ,t −Ds,tDτ,t) = g(Ds,τ , bn)((D̂s,t −Ds,t)(D̂τ,t −Dτ,t)

+Ds,t(D̂τ,t −Dτ,t) +Dτ,t(D̂s,t −Ds,t))

= (1/Ds,τ )(Ds,t(D̂τ,t −Dτ,t) +Dτ,t(D̂s,t −Ds,t))

+ (1/Ds,τ )(D̂s,t −Ds,t)(D̂τ,t −Dτ,t)

+ (g(Ds,τ , bn)− (1/Ds,τ ))((D̂s,t −Ds,t)(D̂τ,t −Dτ,t)

+Ds,t(D̂τ,t −Dτ,t) +Dτ,t(D̂s,t −Ds,t))

= (1/Ds,τ )(Ds,t(D̂τ,t −Dτ,t) +Dτ,t(D̂s,t −Ds,t)) +Op(1/a2
n)(7.6)

where the last equality follows from A2, A3, and (7.4).

Now let gt(t, b) = ∂g(t,b)
∂t . From bn → 0 and D̂s,τ

p−→ Ds,τ , it follows that there is a 0 < b < |Ds,τ |

and an n0 such that for all n > n0 2bn ≤ |Ds,τ | − b and Pr(|D̄s,τ | < |Ds,τ | − b) < ε/2 where D̄s,τ
satisfies |D̄s,τ −Ds,τ | < |D̂s,τ −Ds,τ |. Also, A2 implies that D̂2

s,τ −D2
s,τ = Op(1/an) which implies

Pr(|D̄2
s,τ − D2

s,τ | ≥ ηD2
s,τ (|Ds,τ | − b)2) < (ε/2)(1 − ε/2) for some η > 0 and b defined above, ε > 0

and all n > n1 for some n1. Combining these results, we have that

Pr(|gt(D̄s,τ , bn) + 1/D2
s,τ | ≥ η) = Pr(| − 1/D̄2

s,τ + 1/D2
s,τ | ≥ η||D̄s,τ | ≥ |Ds,τ | − b)×

Pr(|D̄s,τ | ≥ |Ds,τ | − b)

+ Pr(|gt(D̄s,τ , bn) + 1/D2
s,τ | ≥ η||D̄s,τ | < |Ds,τ | − b)×
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Pr(|D̄s,τ | < |Ds,τ | − b)

≤ Pr(| − 1/D̄2
s,τ + 1/D2

s,τ | ≥ η||D̄s,τ | ≥ |Ds,τ | − b) + ε/2

≤ Pr(|D̄2
s,τ −D2

s,τ | ≥ ηD2
s,τ (|Ds,τ | − b)2||D̄s,τ | ≥ |Ds,τ | − b) + ε/2

≤ Pr(|D̄2
s,τ −D2

s,τ | ≥ ηD2
s,τ (|Ds,τ | − b)2)/(1− ε/2) + ε/2

≤ ε

for all n > maxn0, n1 which implies

gt(D̄s,τ , bn) + 1/D2
s,τ = op(1).(7.7)

Now turning to the first term in (7.5), we have that

(g(D̂s,τ , bn)− g(Ds,τ , bn))D̂s,tD̂τ,t = −(1/D2
s,τ )Ds,tDτ,t(D̂s,τ −Ds,τ )

− (1/D2
s,τ )(D̂s,τ −Ds,τ )(D̂s,tD̂τ,t −Ds,tDτ,t)

+ (gt(D̄s,τ , bn) + 1/D2
s,τ )(D̂s,τ −Ds,τ )(D̂s,tD̂τ,t −Ds,tDτ,t)

+ (gt(D̄s,τ , bn) + 1/D2
s,τ )(D̂s,τ −Ds,τ )Ds,tDτ,t

= −(1/D2
s,τ )Ds,tDτ,t(D̂s,τ −Ds,τ ) + op(1/an)(7.8)

where the last equality follows from (7.7) and A2.

Combining (7.1)-(7.6) then yields that b̂t − bt = w′(D̂ − D) + op(1/an) for w defined in the

statement of the proposition and the conclusion follows under A2. �

7.3. Behavior of the Estimator under Nonidentification

In this section, we provide the properties of our estimator when the model is not identified, that is

when Ds,τ = 0. In this case, we strengthen the trimming condition, A3, to

A4. g(t, b) = (1/t)1(|t| ≥ 2b) + m(t, b)1(b ≤ |t| < 2b) is two times continuously differentiable

and anbn →∞ as n→∞.

Using A3’ in place of A3, we may state the following result.
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Proposition 3. Suppose the data {Y,X} were generated according to model (2.1) and (2.4) in
the text, that conditions A2 and A4 are satisfied, and that Ds,τ = 0. Then b̂t − Dt,t

p−→ 0 and

an(̂bt − Dt,t − ettBn) d−→ N(0, e′ttVxett) where ett is a vector defined as D above with a one in the
location corresponding to Dt,t and zeros elsewhere.

Proof. We first note that under A2 and A4, we have that for any ε > 0 there exists an nε large

enough Pr(|D̂s,τ | < bn) = Pr(|anD̂s,τ | < anbn) ≥ 1− ε for all n > nε. We also have that for η > 0

and ε > 0, Pr(|g(D̂s,τ )/an| > η) = Pr(|g(D̂s,τ )/an| > η||D̂s,τ | ≥ bn)Pr(|D̂s,τ | ≥ bn) + Pr(0 >

η||D̂s,τ | < bn)Pr(|D̂s,τ | < bn) ≤ ε for n > nε. That is, g(D̂s,τ )/an
p−→ 0.

The model also implies that whenever Ds,τ = 0 at least one of Ds,t or Dτ,t is also zero. Thus,

we may right

b̂t −Dt,t = D̂t,t −Dt,t − g(D̂s,τ , bn)(D̂s,tD̂τ,t −Ds,tDτ,t)

= D̂t,t −Dt,t + op(1/an)Op(1/an)

where the last equality follows easily under A2 and the preceding paragraph. The conclusion is

then immediate under A2. �
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Table 1. Descriptive Statistics for Insider Trading Data.

Variable Definition Mean SD

BUY 1 Indicator for insider buying in 1999Q2 .329 .470

BUY 2 Indicator for insider buying in 1999Q3 .277 .448

BUY 3 Indicator for insider buying in 1999Q4 .288 .453

SELL1 Indicator for insider selling in 1999Q2 .267 .443

SELL2 Indicator for insider selling in 1999Q3 .305 .460

SELL3 Indicator for insider selling in 1999Q4 .279 .448

TURNOV ER1 Total volume during 1999Q2 / shares outstanding 0.191 0.207

TURNOV ER2 Total volume during 1999Q3 / shares outstanding 0.167 0.184

TURNOV ER3 Total volume during 1999Q4 / shares outstanding 0.178 0.201

r−1
Return 6 months prior to quarterly earnings announcement

1998Q4, market adjusted
-0.124 0.429

r0
Return 6 months prior to quarterly earnings announcement

1999Q1, market adjusted
-0.107 0.558

r1
Return 6 months prior to quarterly earnings announcement

1999Q2, market adjusted
0.012 0.414

r2
Return 6 months prior to quarterly earnings announcement

1999Q3, market adjusted
0.031 0.449

r3
Return 6 months prior to quarterly earnings announcement

1999Q4, market adjusted
0.079 0.944

r4
Return 6 months prior to quarterly earnings announcement

2000Q1, market adjusted
0.126 0.913

Summary statistics and brief definitions for variables considered in our insider trading application. Our sample

consists of N = 3804 firms over 1999Q2-1999Q4. Our dependent variables are indicators for any insider buying

during a quarter or any insider selling during a quarter.
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Table 2. Estimated Marginal Effects of Turnover on Insider Buying of Own Company Stock

b11 b12 b21 b22 b31 b32 b̄1 b̄2 b̄3 b̄ Over

A. Turnover Only

I. Marginal Effects

estimate 0.421 0.387 0.221 0.241 0.383 0.334 0.410 0.227 0.348 0.328

s.e. 0.170 0.218 0.119 0.146 0.294 0.191 0.151 0.111 0.161 0.061

c80 1.145 1.075 1.214 1.104 1.097 1.115 1.036 1.198 0.884 0.936

c90 1.550 1.471 1.562 1.404 1.734 1.760 1.431 1.503 1.403 1.285

c95 2.036 1.871 1.953 1.794 2.315 2.309 1.875 1.820 1.802 1.706

II. First-Stage

estimate -0.223 -0.144 -0.387 -0.148 -0.179 -0.126 0.021

s.e. 0.069 0.076 0.101 0.058 0.120 0.067

c80 1.265 1.236 1.220 1.306 1.314 1.292 1.438

c90 1.609 1.617 1.576 1.697 1.639 1.605 2.000

c95 1.925 1.921 1.903 2.001 2.013 1.929 2.627

B. Turnover and Returns

I. Marginal Effects

estimate 0.211 0.674 0.233 0.137 0.234 0.586 0.211 0.146 0.286 0.215

s.e. 0.082 1.001 0.111 0.077 0.144 0.344 0.082 0.077 0.133 0.057

c80 1.138 2.405 1.120 1.185 0.936 1.348 1.090 1.208 0.842 0.913

c90 1.488 3.579 1.551 1.515 1.232 2.131 1.461 1.520 1.124 1.213

c95 1.850 4.643 1.965 1.815 1.469 2.873 1.784 1.793 1.356 1.513

II. First-Stage

estimate -0.184 -0.040 -0.196 -0.180 -0.121 -0.080 1.334

s.e. 0.059 0.069 0.060 0.055 0.069 0.057

c80 1.288 1.283 1.342 1.224 1.313 1.310 1.449

c90 1.633 1.692 1.699 1.650 1.679 1.637 2.417

c95 1.953 2.009 2.027 2.006 2.013 2.033 3.379

Estimates of marginal effect of turnover on insider purchases of own-company stock. The dependent variable is an
indicator which is one if there were any insider purchases of own company stock in a quarter. Panel A reports
results from estimation of the marginal effect of turnover on the probability of insider buys; Panel B reports results
from estimation of the marginal effect of turnover on the probability of insider buys controlling for returns on own
company stock. bt1 and bt2 for t ∈ {1, 2, 3} are two estimates of the marginal effect at time t. b̄t is a variance
weighted average of bt1 and bt2, and b̄ is a simple average of the b̄t. Standard error estimates are given below point
estimates in the row labeled s.e. c80, c90, and c95 are bootstrap critical values for t-statistics based off 1000
bootstrap replication.
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Table 3. Estimated Marginal Effects of Turnover on Insider Selling of Own Company Stock

b11 b12 b21 b22 b31 b32 b̄1 b̄2 b̄3 b̄ Over

A. Turnover Only

I. Marginal Effects

estimate 0.006 0.261 0.222 0.343 -0.046 3.612 0.170 0.311 -0.041 0.147

s.e. 0.183 0.141 0.126 0.104 0.512 13.931 0.119 0.100 0.511 0.194

c80 1.155 1.062 1.332 1.159 1.170 6.820 1.059 1.167 1.060 0.822

c90 1.505 1.415 1.652 1.467 1.761 10.330 1.393 1.528 1.696 1.125

c95 1.859 1.724 1.922 1.720 2.384 13.806 1.683 1.834 2.227 1.517

II. First-Stage

estimate 0.273 0.223 0.569 -0.226 0.210 0.020 1.549

s.e. 0.092 0.113 0.120 0.090 0.140 0.087

c80 1.354 1.259 1.344 1.247 1.335 1.293 1.348

c90 1.810 1.674 1.734 1.631 1.694 1.612 2.287

c95 2.101 1.994 2.175 1.876 2.051 1.956 3.358

B. Turnover and Returns

I. Marginal Effects

estimate -0.008 0.342 0.086 0.155 0.297 1.153 0.007 0.135 0.336 0.159

s.e. 0.119 0.669 0.106 0.092 0.340 1.885 0.116 0.089 0.328 0.124

c80 1.154 1.827 1.240 1.040 0.746 3.329 1.014 1.071 0.667 0.618

c90 1.468 2.442 1.567 1.323 0.943 4.932 1.360 1.401 0.882 0.861

c95 1.781 2.986 1.795 1.632 1.205 6.275 1.624 1.731 1.035 1.038

II. First-Stage

estimate 0.200 0.036 0.301 -0.121 0.089 0.033 0.646

s.e. 0.078 0.088 0.090 0.068 0.102 0.072

c80 1.279 1.307 1.342 1.283 1.319 1.333 1.316

c90 1.637 1.685 1.740 1.638 1.727 1.678 1.971

c95 1.949 1.982 2.037 2.003 2.048 2.072 2.622

Estimates of marginal effect of turnover on insider sells of own-company stock. The dependent variable is an
indicator which is one if there were any insider sells of own company stock in a quarter. Panel A reports results
from estimation of the marginal effect of turnover on the probability of insider sells; Panel B reports results from
estimation of the marginal effect of turnover on the probability of insider sells controlling for returns on own
company stock. bt1 and bt2 for t ∈ {1, 2, 3} are two estimates of the marginal effect at time t. b̄t is a variance
weighted average of bt1 and bt2, and b̄ is a simple average of the b̄t. Standard error estimates are given below point
estimates in the row labeled s.e. c80, c90, and c95 are bootstrap critical values for t-statistics based off 1000
bootstrap replication.
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