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Abstract

This paper studies the asymptotic efficiency and robustness of tests when mod-

els of interest are defined in terms of a weak convergence property. The null

and local alternatives induce different distributions for a limiting random element,

and a test is deemed robust if it controls asymptotic size for all data generating

processes for which the random element has the null limiting distribution. It is

found that under weak regularity conditions, asymptotically robust and efficient

tests in the original problem are then simply given by efficient tests of the lim-

iting problem (that is, with the limiting random element observed), evaluated at

sample analogues. These tests often coincide with suitably robustified versions of

optimal tests for i.i.d. Gaussian disturbances in the original problem. The result

therefore implies that many standard methods cannot be improved upon without

losing robustness, and thus limits the scope for successful adaption.
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1 Introduction

A continued focus of recent econometrics has been the development of asymptotically

optimal inference procedures for nonstandard problems: For instance, Elliott, Rothen-

berg, and Stock (1996) (abbreviated ERS in the following), Elliott (1999) and Elliott

and Müller (2003) derive optimal tests for an autoregressive unit root in a univariate

framework, Elliott and Jansson (2003) derive optimal tests for a unit root with station-

ary covariates, Nyblom (1989), Andrews and Ploberger (1994) and Elliott and Müller

(2006) derive optimal tests of parameter stability, Jansson (2005) derives optimal tests

for the null hypothesis of cointegration, Stock and Watson (1996) and Jansson and Mor-

eira (2006) derive optimal inference in regression models with nearly integrated regressors

and Andrews, Moreira, and Stock (2006) derive optimal tests for regression coefficients in

the presence of potentially weak instruments, just to name a few. By construction, these

tests are optimal for a specific parametric version of the model, usually assuming i.i.d.

Gaussian disturbances, in the sense of maximizing local asymptotic power. Furthermore,

with suitable modifications, these tests are robust in the sense that they yield the same

asymptotic rejection probability under the null hypothesis (and local alternatives) for a

wide range of data generating processes. The assumption of i.i.d. Gaussian disturbances

is thus a natural starting point for the development of asymptotically efficient and robust

tests.

Nevertheless, with a focus on efficiency, it is a natural question to ask whether there

exist tests that are as good in the Gaussian case, but have higher local asymptotic power

for non-Gaussian versions of the models. And indeed, Rothenberg and Stock (1997) and

Jansson (2007) derive such tests for the unit root null hypothesis by drawing on and

extending the theory of semi-parametrically efficient tests. Also, as for the tests derived

under Gaussianity, Rothenberg and Stock (1997) and Jansson (2007) show that suitably

modified versions continue to have correct asymptotic rejection probability under the

null hypothesis for a range of serial correlation structures.

This paper also considers the construction of asymptotically efficient tests for non-

standard problems, but with a stronger focus on robustness. For many models and

hypothesis tests of interest, a wide range of data generating processes imply the weak
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convergence of some random elements to a limiting random element, whose distribution

is different under the null and local alternative. For instance, under the null hypothesis

of a unit root, the data (suitably scaled) converges to a Wiener process, and it converges

to an Ornstein-Uhlenbeck process under the usual local-to-unity alternative. Suppose

one is sufficiently unsure about the nature of the short run dynamics that one would

like the test not to reject whenever the data converges to a Wiener process–or, more

generally, whenever the random element converges to its null limiting distribution. If one

restricts attention to tests that are robust in this sense, then it is shown that (under mild

regularity conditions), the best test statistic is given by the Neyman-Pearson test of the

limiting random element, evaluated at sample analogues. In the unit root testing exam-

ple, the best test to discriminate between a Wiener process and an Ornstein-Uhlenbeck

process, evaluated at sample analogues, is asymptotically equivalent to the best unit

root test under Gaussian i.i.d. disturbances, so that the test derived by ERS is this best

robust test. Any test that has higher asymptotic power than this best robust test for

some non-Gaussian disturbances necessarily lacks robustness: its asymptotic rejection

probability is larger than the nominal level for some model whose data converges to a

Wiener process.

The upshot of this analysis is straightforward: to determine the asymptotically ef-

ficient robust test in the sense described above, one only needs to derive the Neyman-

Pearson test for the limiting random element. The potentially complicated small sample

testing problem it thus replaced by a (typically) much simpler one. This aspect of

the approach makes it somewhat akin to LeCam’s Limits of Experiments–see van der

Vaart (1998) for an introduction. The arguments, however, have distinct starting points:

The Limit of Experiments approach considers a sequence of fully specified parametric

models, and derives implications from the limiting behavior of the (small sample effi-

cient) likelihood ratio statistics; the approach here, in contrast, defines models in terms

of their weak convergence properties, and studies efficiency by considering the implied

asymptotic properties of tests.

Beyond the unit root testing problem, the results in this paper can be applied to

yield stronger efficiency implications for a number of standard tests that are asymptot-
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ically efficient by construction for i.i.d. Gaussian disturbances. In particular, Elliott

and Jansson’s (2003) and Jansson’s (2004, 2005) point-optimal tests for unit roots with

stationary covariates, stationarity tests with covariates and tests for the null hypothe-

sis of cointegration, respectively, are more generally asymptotically point-optimal in the

sense described above: if one imposes robustness in the sense of correct asymptotic null

rejection probability for all models that satisfy the usual I(0)/I(1) convergences (that is,

I(1) processes and partial sums of I(0) processes are defined in terms of convergence to

a Wiener process), then these tests are asymptotically point-optimal against all mod-

els that satisfy the usual convergence under the local alternative. In other words, any

test with higher asymptotic local power against any usual local alternative (with non-

Gaussian and correlated disturbances) necessarily lacks robustness. The same holds for

the usual Generalized Method of Moments (GMM) Wald test (where the GMM esti-

mator converges weakly to a multivariate normal under the null and local alternatives)

and Sowell’s (1996) GMM parameter stability tests. Furthermore, the results of this

paper also imply efficiency of nonstandard methods that take a weak convergence as-

sumption as their starting point, such as those suggested in Müller and Watson (2006)

and Ibragimov and Müller (2007).

The remainder of the paper is organized as follows. Section 2 contains the main

result, and provides a discussion of the issue of uniformity over alternative models with

the same weak convergence property and discusses the implications of an invariance

requirement on tests in this context. A running example throughout this Section is the

problem of testing for an autoregressive unit root in a univariate time series. Section 3

provides details on the application of the main result for some standard tests. Section 4

concludes. All proofs are collected in an appendix.
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2 Efficiency and Robustness under a Weak Conver-

gence Assumption

2.1 Set-up and Main Result

This subsection formally introduces the set-up and contains the main result of this paper.

The following notation and conventions are used throughout the paper: All limits are

taken as T →∞. If S is a metric space with metric dS, thenB(S) is its Borel σ-algebra.
If μ is a probability measure on B(S), then its image measure under the B(S)\B(U)
measurable mapping f : S 7→ U , where U is another space with metric dU , is denoted

fμ. If no ambiguity arises, we suppress the dummy variable of integration, that is we

write
R
fdμ for

R
f(x)dμ(x). By default, the product space S × U is equipped with the

metric dU +dS. We write μT Ã μ0 or XT Ã X0 for the weak convergence of the random

elements X0, X1, . . . with probability measures μ0, μ1, . . . on B(S). The R 7→ R function
x 7→ bxc is the integer part of x.
In a sample of size T , suppose we observe the data YT ∈ RnT , which is the T th row

of a double-array of random variables. The distribution of YT depends on the statistical

model m, with parameters θ ∈ {θ0}∪Θ and γ ∈ Γ, where Θ and Γ are metric spaces, so

that the distribution FT (m, γ, θ) of YT is a probability kernel. The set Γ may consist of

a singleton. The hypotheses of interest are

H0 : θ = θ0 against H1 : θ ∈ Θ. (1)

Let φT be a sequence of Borel measurable functions φT : RnT 7→ S, where S is a

metric space. Denote by PT (m, γ, θ) the distribution of XT = φT (YT ) in model m with

parameters γ and θ, that is PT (m, γ, θ) = φTFT (m, γ, θ). Suppose the typical model m

satisfies the following convergences in distribution

PT (m, γ, θ)Ã P (γ, θ) pointwise for all θ ∈ {θ0} ∪Θ1 and γ ∈ Γ

where, for each γ ∈ Γ, the probability measure P (γ, θ) on S is absolutely continuous

with respect to P (γ, θ0), with Radon-Nikodym derivative LR : Γ × Θ × S 7→ R, that
is for each A ∈ B(S),

R
A
dP (γ, θ) =

R
A
LR(γ, θ, x)dP (γ, θ0)(x). In addition, assume
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there exists an estimator γ̂T : RnT 7→ Γ of γ that is consistent for all values of γ ∈ Γ,

irrespective of the value of θ ∈ Θ. Denoting the distribution of (γ̂T ,XT ) = φeT (YT ) by

P e
T (m, γ, θ) = φeTFT (m, γ, θ) (’e’ for extended), we might thus summarize the behavior

of the typical model m under the null and alternative hypothesis as

H0 : P e
T (m, γ, θ0)Ã P e(γ, θ0) pointwise for all γ ∈ Γ (2)

H1 : P e
T (m, γ, θ)Ã P e(γ, θ) pointwise for all γ ∈ Γ, θ ∈ Θ (3)

where P e(γ, θ) is the product measure between the degenerate probability measure on

B(Γ) that puts all mass on the point γ and the measure P (γ, θ) on B(S).

Unit Root Test Example: Consider testing for a unit root in a model with no deter-

ministics against the local-to-unity alternative: We observe data YT = (uT,1, · · · , uT,T )0

from the model uT,t = ρTuT,t−1 + νT,t and uT,0 = 0 for all T , where ρT = 1 − θ/T for

some fixed θ ≥ 0, and the hypotheses are H0 : θ = 0 against H1 : θ > 0. With S = D[0,1]

the space of cadlag functions on the unit interval, equipped with the Billingsley met-

ric, a typical model m for the disturbances νT,t satisfies T−1/2uT,b·T c Ã ωJθ(·) on D[0,1],

where Jθ is an Ornstein-Uhlenbeck process Jθ(s) =
R s
0
e−θ(s−r)dW (r) withW a standard

Wiener process, and γ = ω2 is the positive long-run variance of νT,t. The probability

measure of the Gaussian process ωJθ is absolutely continuous with respect to the mea-

sure of ωJ0 = ωW , and by Girsanov’s Theorem, the Radon-Nikodym derivative equals

LR(ω2, θ, x) = exp[−1
2
ω2θ(x(1)2− 1)− 1

2
ω2θ2

R 1
0
x(s)2ds]. Furthermore, let ω̂2T be a spe-

cific, "reasonable" long-run variance estimator, which is consistent for ω2 in the typical

model m. The standard asymptotic implications of model m are thus summarized by

(T−1/2uT,b·T c, ω̂
2
T )Ã (ωJθ(·), ω2). N

Possibly randomized tests of H0 in (1) are measurable functions ϕT : RnT 7→ [0, 1],

where ϕT (ZT ) indicates the probability of rejection conditional on observing YT =

ZT , so that the overall rejection probability of the test ϕT in model m is given byR
ϕTdFT (m, γ, θ). In many nonstandard problems, no uniformly most powerful test ex-

ists, so consider tests that maximize a weighted average power criterion

WAPT (ϕT ,m, γ) =

Z Z
ϕTdFT (m, γ, θ)dw(θ),
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where w is a probability measure on Θ.1 In general, the weighting function w describes

the importance a researcher attaches to the ability of the test to reject for certain alter-

natives. A point-optimal test is a special case of a weighted average power maximizing

test for a degenerate weighting function w that puts all mass at one point. Also, if a

uniformly most powerful test exists, then it maximizes WAPT for all choices for w.

Furthermore, define asymptotic null rejection probability of test ϕT in model m as

ARP0(ϕT ,m, γ) = lim sup
T→∞

Z
ϕTdFT (m, γ, θ0).

With these definitions, asymptotically efficient level-α tests ϕT maximize

limT→∞WAPT (ϕT ,m, γ) subject to ARP0(ϕT ,m, γ) ≤ α, for all γ. A reasonable

definition of an asymptotically robust test is to impose that ARP0(ϕT ,m, γ) ≤ α for a

large class of models m. LetM0 be the set of models satisfying (2), i.e. M0 collects all

data generating processes for YT such that P e
T (m, γ, θ0) = φeTFT (m, γ, θ0) Ã P e(γ, θ0).

In this paper, we refer to a test as robust if it has asymptotic null rejection probability

no larger than the nominal level for all models m ∈M0, that is formally if

ARP0(ϕT ,m, γ) ≤ α for all m ∈M0 and γ ∈ Γ. (4)

Analogously, defineM1 as the set of models m that satisfy (3).

Unit Root Test Example, ctd: The literature has developed a large number of sufficient

conditions on the disturbances νT,t that imply (T−1/2uT,b·Tc, ω̂
2
T )Ã (ωJθ(·), ω2)–see, for

instance, McLeish (1974) for a martingale difference sequence framework, Wooldridge

and White (1988) for mixing conditions, Phillips and Solo (1992) for linear process

assumptions, Davidson (2002) for near-epoch dependence, and Stock (1994b) for general

discussion. Arguably, when invoking such assumptions, researchers do not typically

have a specific data generating process in mind that is known to satisfy the conditions;

rather there is great uncertainty about the true data generating process, and the hope

is that by deriving tests that are valid for a large class of data generating processes, the

true model is also covered. The primitive conditions are therefore quite possibly not a

reflection of what researchers are sure is true about the data generating process, but
1For maximal generality, one could additionally index the weighting function w by γ, at the cost of

more cumbersome notation.
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rather an attempt to assume little in order to gain robustness. In that perspective, it

seems quite natural to further strengthen the robustness requirement and to impose that

the asymptotic rejection probability is no bigger than the nominal level for all models

that satisfy (T−1/2uT,b·T c, ω̂
2
T ) Ã (ωW (·), ω2). In fact, Stock (1994a), White (2001, p.

179), Breitung (2002), Davidson (2002, 2007) and Müller (2004) define the unit root null

hypothesis in terms of the convergence T−1/2uT,b·T c Ã ωW (·), making the requirement
(4) entirely natural for a unit root test. N
The main result of this paper is that imposing (4) renders the question about asymp-

totically efficient tests straightforward to answer:

Theorem 1 For all γ ∈ Γ, let LR(γ, ·) =
R
LR(γ, θ, ·)dw(θ), and suppose that (i)

LR(γ, ·) is P (γ, θ0)-almost everywhere continuous; (ii) for some functions cv : Γ 7→ R
and p : Γ 7→ [0, 1], the Γ× S 7→ [0, 1] function

ϕ∗(γ1, x) =

⎧⎪⎪⎨⎪⎪⎩
1 if LR(γ1, x) > cv(γ1)

p(γ1) if LR(γ1, x) = cv(γ1)

0 if LR(γ1, x) < cv(γ1)

is P e(γ, θ0)-almost everywhere continuous and satisfies
R
ϕ∗(γ, x)dP (γ, θ0)(x) = α > 0.

Then

(i) ARP0(ϕ̂
∗
T ,m) = α for all m ∈ M0 and γ ∈ Γ, and limT→∞WAPT (ϕ̂

∗
T ,m, γ) =R

ϕ∗dP (θ, γ)dw(θ) = β(γ) for all m ∈ M1, where ϕ̂∗T : RnT 7→ [0, 1] is defined as

ϕ̂∗T (y) = ϕ∗(γ̂(y), φT (y)).

(ii) For any test ϕT that satisfies (4), lim supT→∞WAPT (ϕT ,m, γ) ≤ β(γ) for all

m ∈M1 and γ ∈ Γ.

Unit Root Test Example, ctd: Consider the construction of a point-optimal unit

root test, so that w puts all mass at θ1. Then LR(ω2, x) = exp[1
2
ω2θ1(x(1)

2 − 1) −
1
2
ω2θ21

R 1
0
x(s)2ds], which is continuous for all x ∈ D[0,1], and ϕ∗(ω2, x) = 1[LR(ω2, x) >

eω
2c], where c is chosen to satisfy

R
ϕ∗(γ, x)dP (γ, θ0)(x) = P (LR(1,W ) > ec) = α.

Then ϕ∗ : (0,∞) ×D[0,1] 7→ [0, 1] is seen to be continuous at almost all realizations of

(ω2,W ), and part (i) of Theorem 1 shows that the test ϕ̂∗T (YT ) = ϕ∗(ω̂2T , T
−1/2uT,b·T c) =
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1[exp[−1
2
ω̂2Tθ1(T

−1u2T,T − 1)− 1
2
ω̂2Tθ

2
1T
−1 R 1

0
u2T,bsTcds] > eω̂

2
T c] has asymptotic null rejec-

tion probability equal to the nominal level and asymptotic weighted average power equal

to β = P (LR(1, Jθ1) > ec) for all models in M0 and M1, respectively, that is models

that satisfy (T−1/2uT,b·Tc, ω̂
2
T )Ã (ωW (·), ω2) and (T−1/2uT,b·T c, ω̂2T )Ã (ωJθ(·), ω2). Note

that ϕ̂∗T (YT ) is asymptotically equivalent to the efficient unit root test statistic derived

by ERS, so the contribution of part (i) of Theorem 1 for the unit root testing example

is only to point out that ϕ̂∗T has the same asymptotic properties under the null and

alternative hypothesis for all models inM0 andM1, respectively. The more interesting

finding is part (ii) of Theorem 1: For any unit root test that has higher asymptotic

power than ϕ̂∗T for any model satisfying (T
−1/2uT,b·T c, ω̂

2
T )Ã (ωJθ1(·), ω2), there exists a

model m satisfying (T−1/2uT,b·T c, ω̂
2
T ) Ã (ωW (·), ω2) for which the test has asymptotic

null rejection probability larger than the nominal level. Any adaption to a non-Gaussian

error distribution that leads to higher asymptotic power than the statistic by ERS nec-

essarily implies violation of the robustness condition (4). In other words, ERS’s test

is point-optimal in the class of all robust tests, i.e. test with asymptotic null rejection

probability of at most α for all modelsM0. N
The proof of part (i) of Theorem 1 follows from the definition of weak convergence, the

continuous mapping theorem and dominated convergence. To gain some intuition for the

proof of part (ii), consider the case where w is degenerate with all weight on θ1, Γ is a sin-

gleton Γ = {γ}, and LRi
(x) = 1/LR(γ, x) = 1/LR(γ, θ1, x) is continuous and bounded

on S. The idea is to take the model m ∈M1, and to reweigh the probabilities according

to the Radon-Nikodym derivative of the limiting random elements, i.e. according to

LR
i ◦φ, to construct a corresponding model inM0. This reweighed probability distribu-

tion needs to integrate to one, so let κT =
R
(LR

i◦φ)dFT (m, γ, θ1) =
R
LR

i
dPT (m, γ, θ1),

and define the measure GT on RnT via
R
A
dGT = κ−1T

R
A
(LR

i ◦ φ)dFT (m, γ, θ1) for all

A ∈ B(RnT ). By construction, GT induces the measure QT on S, where QT sat-

isfies
R
ϑdQT = κ−1T

R
ϑLR

i
dPT (m, γ, θ1) for any continuous function ϑ : S 7→ R.

Further, the S 7→ R functions ϑLR
i
and LR

i
are bounded and continuous, so that

PT (m, γ, θ1) Ã P (γ, θ1) implies κT →
R
LR

i
dP (γ, θ1) =

R
LR

i · LR(γ, x)dP (γ, θ0)(x) =R
dP (γ, θ0) = 1 and

R
ϑLR

i
dPT (m, γ, θ1) →

R
ϑLR

i
dP (γ, θ1) =

R
ϑdP (γ, θ0), so that
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φGT Ã P (γ, θ0), and GT is inM0. Thus, by (4), lim supT→∞
R
ϕTdGT ≤ α. Further-

more, by construction, the Radon-Nikodym derivative between GT and FT (m, γ, θ1) is

given by κTLR(γ, φT (YT )). Therefore, by the Neyman-Pearson Lemma, the best test of

H̃0 : YT ∼ GT against H̃1 : YT ∼ FT (m, γ, θ1) rejects for large values of LR(γ, φT (YT )),

and no test can have a better asymptotic level and power trade-off than this sequence

of optimal tests. But ϕ̂∗T also rejects for large values of LR(γ, φT (YT )) and has the same

asymptotic rejection probability, and the result follows.

Discussion of Theorem 1

1. Applications of the Central Limit Theorem and the Functional Central Limit

Theorem lead, of course, to Gaussian limiting distributions. So typically, the limiting

measures P (γ, θ0) and P (γ, θ) of XT are Gaussian, and the Radon-Nikodym derivative

LR is the limit of the small sample likelihood ratio statistics in the Gaussian version of

the model, i.e. when XT is normally distributed for each T . This arises, for instance,

when φT is linear and YT is normally distributed, as in the unit root example with νT,t

i.i.d. mean zero normal. In this case, ϕ̂∗T is asymptotically equivalent to the optimal test

that is derived under a Gaussianity assumption, and part (ii) of Theorem 1 becomes a

statement about the limits of adaption: Any attempt to adapt to the potentially non-

Gaussian nature of the underlying disturbances, if successful, necessarily means that

there is a model m ∈M0 for which the test has asymptotic rejection probability larger

than the nominal level. In this sense, adaption is always costly in terms of the robustness

properties of the resulting test.

2. No matter how one views the desirability of the robustness constraint (4), one

appeal of the framework here is that it suggests a general method for constructing rea-

sonable tests. In nonlinear and/or dynamic models, it might be difficult to derive the

small sample likelihood ratio statistic, even under strong parametric assumptions, while

high level weak convergence properties might be easier to think about. The problem of

testing for parameter instability in a general GMM framework, as considered by Sowell

(1996), or the weak instrument problem in a general GMM framework, as considered

by Stock and Wright (2000), arguably fall into this class. The Radon-Nikodym deriva-

tive between the limiting measures under the local alternative and the null hypothesis,
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evaluated at the sample analogues, then is a natural starting point for a reasonable test

statistic.

3. The test ϕ∗(γ, ·) is the Neyman-Pearson test of H0 : X ∼ P (γ, θ0) against H1 :

X ∼
R
P (γ, θ)dw(θ), and Theorem 1 shows a tight link between this limiting problem and

the achievable asymptotic weighted average power in the hypothesis testing problem (1)

concerning YT . These results assume P (γ, θ) to be absolutely continuous with respect to

P (γ, θ0). If instead P (γ, θ) is singular with respect to P (γ, θ0), then the liming problem

becomes trivial, and one might imagine that this must imply the existence of a consistent

test ϕT . But this is not always the case: Consider the problem of discriminating between

an I(0) series and an I(1) series with a scale invariant procedure, that is in the same set-

up as in the unit root example, assume thatM0 andM1 contain all models satisfyingPb·T c
t=1 uT,t/

PT
t=1 uT,t ÃW (·)/W (1) and

Pb·Tc
t=1 uT,t/

PT
t=1 uT,t Ã

R ·
0
W (s)ds/

R 1
0
W (s)ds,

respectively. The implied limiting measures are singular (W (·)/W (1) is not differentiable
with probability one, while

R ·
0
W (s)ds/

R 1
0
W (s)ds is), yet Müller (2004) shows that there

does not exist a consistent test satisfying the robustness requirement (4). At the same

time, there does exist a consistent test with the null and alternative hypothesis reversed,

so one cannot draw any general conclusions about the existence of a consistent test from

the observation that the limiting problem is trivial.

4. The importance of the efficiency property of ϕ̂∗T depends crucially on the appro-

priateness and desirability of the robustness constraint (4). One might think about the

relative gain in robustness of tests satisfying (4) rather than the more standard "correct

asymptotic null rejection probability for a wide range of primitive assumptions about

disturbances that all imply (2)" in two ways.

On the one hand, one might genuinely worry that the true data generating process

happens to be in the set of models that satisfy (2), but the disturbances do not satisfy the

primitive conditions. Whenever tests with higher power exist under the more standard

assumption, this set cannot be empty. This line of argument then faces the question

whether such non-standard data generating processes are plausible. Especially in a time

series context, primitive conditions are often quite opaque (could it be that interest rate

are not mixing?), so it is not clear how and with what arguments one would discuss
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such a possibility. It is probably fair to say, however, that very general forms of suffi-

cient primitive conditions for Central Limit Theorems and alike were derived precisely

because researchers felt uncomfortable assuming more restricted (but still quite general)

conditions, so one might say that imposing (4) constitutes only one more natural step

in this progression of generality.

On the other hand, one might argue that the only purpose of an asymptotic analysis

is to generate approximations for the small sample under study. In that perspective, it

is irrelevant whether interest rates are indeed mixing or not, and the only interesting

question becomes whether asymptotic properties derived under an assumption of mixing

are useful approximations for the small sample under study. So even in an i.i.d. setting,

one might be reluctant to rely on an adaptive test–not because it wouldn’t be true that

with a billion data points, the adaptive test would be excellent, but because asymptotics

might be a poor guide to the behavior of the test in the sample under study. The

robustness constraint (4) is then motivated by a concern that additional asymptotic

implications of the primitive conditions beyond (2) are potentially poor approximations

for the sample under study, and attempts to exploit them may lead to non-trivial size

distortions.

5. Weak convergence statements of the form (2) and (3) can be viewed as a way of

expressing regularity one is willing to impose on some inference problem. Implicitly, this

is standard practice: invoking standard normal asymptotics for the OLS estimator of the

largest autoregressive root ρ is formally justified for any value of |ρ| < 1, but effectively
amounts to the assumption that the true parameter in the sample under study is not

close to the local-to-unity region. Similarly, a choice of weak vs strong instrument as-

ymptotics or local vs non-local time varying parameter asymptotics expresses knowledge

of regularity in terms of weak convergences.

In some instances, it might be natural to express all regularity that one is willing

to impose in this form, and Theorem 1 then shows that ϕ̂∗T efficiently exploits this

information. Of course, interesting high level weak convergence assumptions are not

entirely arbitrary, but derive their plausibility from the knowledge that there exists a

range of underlying primitive conditions that would imply them. In general, weaker
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regularity conditions (that is fewer weak convergence assumptions) lead to less powerful

inference, and Theorem 1 shows that it is impossible to use data-dependent methods to

improve inference for more regular data while still remaining robust in the sense of (4).

Low Frequency Unit Root Test Example: Müller and Watson (2006) argue that in

a macroeconomic context, it makes sense to take asymptotic implications of standard

models of low frequency variability seriously only over frequencies below the business

cycle. So in particular, when uT,t is modelled as local-to-unity, then the usual asymptotic

implication is the functional convergence T−1/2uT,b·T c Ã ωJθ(·), but Müller and Watson
(2006) derive a scale invariant point-optimal unit root test that only assumes a finite

subset of this convergence, that is(
T−3/2

TX
t=1

ψl(t/T )uT,t

)q

l=1

Ã
½
ω

Z 1

0

ψl(s)Jθ(s)ds

¾q

l=1

, (5)

where ψl(s) =
√
2 cos(πls) and q is chosen so that the frequency of the weight functions

ψl, l = 1, · · · , q are below business cycle frequency for the span of the sample under
study. The rationale is that picking q larger would implicitly imply a flat spectrum for

uT,t − uT,t−1 in the I(1) model over business cycle frequencies, which is not an attrac-

tive assumption for macroeconomic data. But (5) is strictly weaker than the standard

assumptionT−1/2uT,b·T c Ã ωJθ(·), and accordingly, Müller and Watson’s (2006) unit root
test is less powerful than a standard ERS test. It is nevertheless point-optimal in the

sense of efficiently extracting all regularity contained in the weaker statement (5): The-

orem 1 implies that it is impossible to let the data decide whether (5) holds for q larger

than assumed (that is, whether the local-to-unity model provides good approximations

also over business cycle frequencies), and to conduct more powerful inference if it is,

without inducing size distortions for some I(1) model satisfying (5). N

2.2 Uniformity

The discussion so far concerned the pointwise asymptotic properties of tests ϕT , i.e. the

rejection probability as T → ∞ for a fixed model m and parameter value. While this

is standard practice in much of econometric theory, it does not ensure that there for

large enough T , the null rejection probability
R
ϕTdFT (m, γ, θ0) is close to α for all data

12



generating processes under consideration. In fact, it is not hard to see that with M0

the set of all models satisfying (2), such a uniformity cannot hold for non-trivial tests:

for any T , the distribution FT (m, γ, θ0) of YT is entirely unrestricted, as the convergence

P e
T (m, γ, θ0) = φeTFT (m, γ, θ0)Ã P e(γ, θ0) can occur ’later’.

To generate uniform results, we thus reduce the set of modelsM0 and impose a lower

limit on the speed of convergence. Let ∆ be a metric that metrizes weak convergence of

probability measures on B(Γ × S), and let δ : Γ × N 7→ R be such that for all γ ∈ Γ,

limT→∞ δ(γ, T ) = 0. Now defineMu
0(δ) (’u’ for uniform) as the set of modelsm satisfying

∆(φeFT (m, γ, θ0), P
e(γ, θ0)) ≤ δ(γ, T ),

that is Mu
0(δ) is the collection of models m for which the distribution P e

T (m, γ, θ0) of

φeT (YT ) = (γ̂T ,XT ) differs by at most δ(γ, T ) from its limit P e(γ, θ0) as measured by ∆.

It then makes sense to ask whether the rejection probability of a test ϕT converges to

the nominal level uniformly overMu
0(δ), that is if

2

lim
T→∞

sup
m∈Mu

0 (δ)

Z
ϕTdFT (m, γ, θ0) ≤ α for all γ ∈ Γ. (6)

By the definition of weak convergence and the continuity of ϕ∗, (6) holds for the test

ϕT = ϕ̂∗T under the conditions of Theorem 1, i.e. for large enough T , the rejection

probability of ϕ̂∗T is close to α for all models inMu
0(δ).

It is not clear whether all tests that satisfy the point-wise robustness (4) also satisfy

(6), or vice versa. Theorem 1 therefore does not imply that ϕ̂∗T also maximizes asymptotic

weighted average power in the class of all tests that satisfy (6). To make further progress,

we restrict attention to the specific metric ∆ = ∆BL: For a separable metric space

U with metric dU and two probability measures μ1 and μ2 on B(U), ∆BL is defined

as ∆BL(μ1, μ2) = sup||f ||BL≤1 |
R
fdμ1 −

R
fdμ2|, where f : U 7→ R are B(U)\B(R)

measurable and ||f ||BL = supx∈U |f(x)| + supx,y∈U |f(x)−f(y)|
dU (x,y)

. It is known that ∆BL

2The uniformity here is over the models m ∈Mu
0 (δ), but it is still a pointwise statement in Γ, since

limn→∞ δ(γ, n) = 0 for all γ ∈ Γ does, of course, not imply that limn→∞ supγ∈Γ δ(γ, n) = 0. Uniformity

over parameters is a well-studied problem, and in order to isolate the less standard issue of uniformity

over models defined in terms of a weak convergence property, we do not impose an additional unformity

over Γ.

13



metrizes weak convergence on separable metric spaces (Dudley (2002, p. 395)). A

partial answer to the question of efficiency of ϕ̂∗T in the class of tests satisfying (6) is

provided by the following Theorem.

Theorem 2 Suppose that S and Γ are separable. Under the assumptions of Theorem

1, pick γ ∈ Γ, and suppose that for all ε > 0 there exists an open set D ∈ B(S) with
P (γ, θ0)(D) > 1− ε so that the D 7→ R function x 7→ LR(γ, x) is Lipschitz, and assume

that the models m0 and m1 are such that ∆BL(φ
e
TFT (m0, γ, θ0), P

e(γ, θ0))/δ(γ, T ) →
0 and ∆BL(

R
φeTFT (m1, γ, θ)dw(θ),

R
P e(γ, θ)dw(θ))/δ(γ, T ) → 0. Then for any

test ϕT that satisfies (6) with ∆ = ∆BL, lim supT→∞WAPT (ϕT ,m1, γ) ≤
limT→∞WAPT (ϕ̂

∗
T ,m1, γ) = β(γ).

Under a stronger continuity assumption for LR, Theorem 2 shows that no test can

satisfy (6) and have higher asymptotic weighted average power than ϕ̂∗T for alternative

models whose weak convergence is faster than the lower bound δ(γ, T ), as measured by

∆BL. In other words, ϕ̂
∗
T is the efficient test in the class of test satisfying (6) against any

set of alternative models for which the mixture
R
φeTFT (m1, γ, θ)dw(θ)Ã

R
P e(γ, θ)dw(θ)

becomes a good approximation faster than the slowest convergence φeTFT (m1, γ, θ0) Ã
P e(γ, θ0) for which the test controls asymptotic size uniformly. The proof of Theorem

2 is similar to the proof of Theorem 1 and exploits the linearity in both the definition

of ∆BL and the construction of the reweighed alternative model GT . Dudley (2002,

p. 411) shows that the Prohorov metric ∆P (which also metrizes weak convergence)

satisfies ∆P ≤ 2∆
1/2
BL and ∆BL ≤ 2∆P , so that Theorem 2 also holds for ∆P when

the models m0 and m1 are such that ∆P (φ
e
TFT (m0, γ, θ0), P

e(γ, θ0))/δ(γ, T )
2 → 0 and

∆P (
R
φeTFT (m1, γ, θ)dw(θ),

R
P e(γ, θ)dw(θ))/δ(γ, T )2 → 0 for all θ ∈ Θ.

2.3 Invariance

In many models, it is natural to assume a weak convergence property on some model

component that is not directly observed because it depends on additional parameters

ξ ∈ Ξ. But in the set-up of Section 2.1, XT = φT (YT ) is a function of observables, so

that natural choices for XT are estimates of the unobserved component. The efficiency

14



statement of Theorem 1 is then relative to all tests that are robust over all models whose

estimated unobserved component satisfies the weak convergence property.

Unit Root Test Example, ctd: Consider the problem of testing for a unit root in

a model with an unknown constant ξ, so that we observe YT = (yT,1, · · · , yT,T )0 with
yT,t = uT,t + ξ. Assume for simplicity that ω = 1 is known. As in the case without

deterministics, it would be natural to assume T−1/2uT,b·Tc Ã Jθ(·). With ξ unknown,

however, T−1/2uT,b·T c is unobserved. Replacing ξ with the estimator ξ̂T = T−1
PT

t=1 yT,t,

we obtain φμT (YT ) = T−1/2(yT,b·T c − ξ̂T ) Ã Jμ
θ (·), where Jμ

θ (s) = Jθ(s) −
R 1
0
Jθ(r)dr.

DefiningM0 to be the set of models m satisfying T−1/2(yT,b·T c − ξ̂T )Ã Jμ
0 (·), Theorem

1 shows that rejecting for large values of LRμ(θ1, φ
μ
T (YT )) is asymptotically efficient

among all tests whose asymptotic null rejection probability is at most α for all models

m ∈M0, where LRμ(θ1, ·) is the Radon-Nikodym derivative of the probability measure

of Jμ
θ1
with respect to the measure of Jμ

0 .
3 N

While this approach is quite general and leads to a well-defined efficiency statement,

it is interesting to explore whether an efficiency statement can be made when the weak

convergence property is assumed for the unobservable component directly. This section

shows that this is sometimes possible by drawing on the theory of invariance in hypothesis

testing.

Specifically, with the additional nuisance parameter ξ ∈ Ξ, the distribution of YT is

now given by FT (m, γ, θ, ξ). Assume that for the typical model m, for any γ ∈ Γ there

exists a sequence ξT ∈ Ξ such that φTFT (m, γ, θ0, ξT )Ã P i(γ, θ0) (’i’ for ideal). Denote

byMi
0 the set of all such models, and consider tests that satisfy

lim sup
T→∞

Z
ϕTdFT (m, γ, θ0, ξT ) ≤ α for all m ∈Mi

0 and γ ∈ Γ, (7)

and define the set of alternative models Mi
1 analogously. Note that in general, the

limiting distributions P i(γ, θ0) and P i(γ, θ) cannot directly serve as the basis for the
3Under the assumption of uT,0 = 0 for the initial condition, LR

μ(θ1, φ
μ
T (YT )) = LR(θ1, ς(φ

μ
T (YT ))),

where ς : D[0,1] 7→ D[0,1] is defined as ς(x) = x(·)−x(0) and LR(θ1, ·) is the Randon-Nikodym derivative
of the probability measure of Jθ1 with respect to the measure of J0, so that rejecting for large values

of LRμ(θ1, φ
μ
T (YT )) leads to the same asymptotic power than in the model with ξ = 0 known. This

equivalence ceases to hold, however, when the initial condition uT,0 is of the same order of magnitude

than uT,[sT ] for s > 0. See Müller and Elliott (2003) for discussion.
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construction of tests, since the distribution of φT (YT ) depends on the unknown parameter

ξ.

For each T , suppose there is a group of functions GT indexed by r ∈ R, such that for

each r ∈ R, gr ∈ GT maps RnT to RnT . Let hT : RnT 7→ RnT be a maximal invariant

of GT which selects a specific orbit, i.e. for all y ∈ RnT there exists gr ∈ GT so that
hT (y) = gr(y), and assume that the distribution hTFT (m, γ, θ, ξ) of hT (YT ) does not

depend on ξ for all γ ∈ Γ and θ ∈ {θ0} ∪ Θ–by Theorem 3 on p. 292 of Lehmann

(1986), this is always the case when GT induces a transitive group on the parameter
space Ξ, i.e. if grFT (m, γ, θ0, ξ) = FT (m, γ, θ0, ḡr(ξ)) for some ḡr : Ξ 7→ Ξ and for all

ξ1, ξ2 ∈ Ξ, there is an r ∈ R such that ξ1 = ḡr(ξ2). Denote by P
h
T (m, γ, θ) the distribution

of φT (hT (YT )), and assume that in the typical model m, P
h
T (m, γ, θ) Ã P h(γ, θ) for all

γ ∈ Γ, θ ∈ Θ ∪ {θ0}. Denote byMh
0 andMh

1 the set of all models where, for all γ ∈ Γ

and ξ ∈ Ξ, P h
T (m, γ, θ0, ξ) Ã P h(γ, θ0) and P h

T (m, γ, θ, ξ) Ã P h(γ, θ) for all θ ∈ Θ,

respectively. Assuming that the Radon-Nikodym derivative of P h(γ, θ) with respect to

P h(γ, θ0) satisfies the required assumption, Theorem 1 is applicable and provides for a

given weighting function the asymptotic weighted average power maximizing test among

all tests that have correct asymptotic null rejection probability for all modelsMh
0 . Note

that this test–say, ϕ̂h
T–is a function of φT (hT (YT )), and thus invariant with respect to

GT , so that ϕ̂h
T is trivially also the best invariant test among such tests. Furthermore, all

models inMi
j are also inMh

j for j = 0, 1, so that ϕ̂
h
T also satisfies (7). It is tempting to

conclude that ϕ̂h
T also maximizes weighted average power in the class of all invariant tests

that satisfy (7). This is not obvious, though, since not all models inMh
0 are necessarily

also inMi
0, so that ϕ̂

h
T is optimal with respect to an asymptotic size constraint over a

larger set of null models.

Unit Root Test Example, ctd: With ξ = ξT = 0 and φT : RT 7→ D[0,1] defined as

φT (y) = T−1/2yb·T c, we have φT (YT ) = T−1/2uT,b·Tc, so Mi
0 contains all models with

T−1/2uT,b·T c Ã J0(·). Let R = R, define gr ∈ GT as gr(y) = y + rT 1/2 and let hT (YT ) =

(yT,1− ȳT , · · · , yT,T − ȳT )0 = g−ȳT (YT ) with ȳT = T−1
PT

t=1 yT,t. ThenMh
0 is the set of all

models satisfying φT (hT (YT )) = φμT (YT ) = T−1/2(uT,b·Tc − T−1
PT

t=1 uT,t)Ã Jμ
0 (·). Note

that this is a strictly larger set than the set of models for which T−1/2uT,b·T c Ã J0(·). The
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efficiency of LRμ(θ1, φ
μ
T (YT )) noted above is thus not sufficient to conclude that rejecting

for large values of LRμ(θ1, φ
μ
T (YT )) is the asymptotically point-optimal translation in-

variant test with correct asymptotic rejection probability whenever T−1/2uT,b·T c Ã J0(·).
N
It would be possible to draw the desired conclusion if any invariant test that satisfies

(7) necessarily also has correct asymptotic null rejection probability for all models in

Mh
0 , i.e. if for invariant tests, (7) implies lim supT→∞

R
ϕTdFT (m, γ, θ0, ξ) ≤ α for all

m ∈Mh
0 and γ ∈ Γ. The following Theorem provides general conditions under which

this is the case.

Theorem 3 Suppose (i) R and S are complete and separable metric spaces; (ii) there

exists a Borel-measurable function h̃ : S 7→ S such that P h(γ, θ0) = h̃P i(γ, θ0);

(iii) for all r ∈ R, there exists a continuous function g̃r : S 7→ S such that

supy∈RnT dS(φT (gr(y)), g̃r(φT (y))) → 0, where dS is the metric on S; (iv) there exists a

Borel-measurable function ρ : S 7→ R such that x = g̃ρ(x)(h̃(x)) for all x ∈ S. If a test ϕT

is invariant with respect to GT and satisfies (7), then lim supT→∞
R
ϕTdFT (m, γ, θ0, ξ) ≤

α for all m ∈Mh
0, γ ∈ Γ and ξ ∈ Ξ.

Unit Root Test Example, ctd: With h̃ : D[0,1] 7→ D[0,1] defined as h̃(x) = x(·) −R 1
0
x(s)ds, g̃r : D[0,1] 7→ D[0,1] defined as g̃r(x) = x(·) + r and ρ : D[0,1] 7→ R defined

as ρ(x) =
R 1
0
x(s)ds, we find Jμ

0 = h̃(J0) a.s., supy∈RT sups∈[0,1] |T−1/2(ybsT c + T 1/2r) −
(T−1/2ybsT c + r)| = 0, and x = h̃(x) + ρ(x) = g̃ρ(x)(h̃(x)) for all x ∈ D[0,1], so that

the assumptions of Theorem 3 hold. We can therefore conclude that for any transla-

tion invariant unit root test ϕT with asymptotic null rejection probability of at most α

whenever T 1/2uT,b·T c Ã J0(·) also has asymptotic null rejection probability of at most
α whenever φμT (YT ) Ã Jμ

0 . As noted above, the best test in the latter class rejects for

large values of LRμ(θ1, φ
μ
T (YT )), so that this test is also the asymptotically point-optimal

translation invariant test. N
For the proof of Theorem 3, note that with x = g̃ρ(x)(h̃(x)) for all x ∈ S, one can

construct the distribution P i(γ, θ0) by applying an appropriate random transformation

g̃r to each x drawn under P h(γ, θ0)–in the unit root example, the appropriate r is

distributed as Jμ
0 (0), since J0(s) = Jμ

0 (s)−Jμ
0 (0) a.s. The assumptions of Theorem 3 are

17



now sufficient to ensure a tight enough link between this construction for P i(γ, θ0) and

the limit of the small sample analogously transformedMh
0 models. For each model in

Mh
0 , one can thus construct a corresponding model inMi

0 by applying an appropriate

random transformation gr ∈ GT for each T . But the rejection probability of invariant

tests, by definition, do not change by such transformation, and the result follows.

A related, but slightly different application of Theorem 3 concerns the elimination

of nuisance parameters from the limiting problem. In general, the limiting measures of

φT (YT ) under the null and local alternatives may depend on nuisance parameters that

cannot be consistently estimated. If these parameters can be eliminated by an appeal

to invariance with maximal invariant h̃ : S 7→ S, then one can straightforwardly invoke

Theorem 1 to φhT (YT ) = h̃(φT (YT )), whose limiting distribution, by construction, does

not depend on such nuisance parameters. But as above, this way of proceeding does not

guarantee that the resulting test is also the best invariant test in the original problem,

and Theorem 3 provides conditions under which it is.

Low Frequency Unit Root Test Example, ctd: The weak convergence (5)

to the q dimensional multivariate limiting random variable X in XT =

φT (YT ) = (T−3/2
PT

t=1 ψ1(t/T )uT,t, · · · , T−3/2
PT

t=1 ψq(t/T )uT,t)
0 Ã X =

(ω
R 1
0
ψ1(s)Jθ(s)ds, · · · , ω

R 1
0
ψq(s)Jθ(s)ds)

0 cannot directly serve as a basis for the

construction of a point-optimal unit root test, since ω is unknown and cannot

be consistently estimated without imposing additional regularity. However, with

h̃(X) = X/
√
X 0X recognized as a maximal invariant to the scale transformations

X → cX for c 6= 0, the point-optimal scale invariant test in the limiting problem simply
rejects for large values of the Radon-Nikodym derivative LRh of the measures of h̃(X)

under the local-to-unity alternative with θ = θ1 and the null with θ = 0. By Theorem 1,

this test is efficient in the class of unit root tests with correct asymptotic null rejection

probability whenever h̃(φT (YT )) Ã h̃(X) with θ = 0. In addition, by Theorem 3, this

test is also the point-optimal scale invariant unit root test with correct asymptotic

rejection probability whenever φT (YT )Ã X with θ = 0. N
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3 Applications

The results discussed in the last section imply that a number of standard inference

procedures are efficient in the class of all tests with correct null asymptotic rejection

probability for all models that satisfy a certain weak convergence property. This section

provides the details of this claim for three problems other than the univariate unit root

testing problem discussed above4; specifically, we consider Elliott and Jansson’s (2003)

point-optimal tests for unit roots with stationary covariates, the standard Generalized

Method of Moments (GMM) Wald tests and tests for parameter stability in a GMM

framework as considered by Sowell (1996). It is not hard to see that the results of

this paper also strengthen the optimality of Jansson’s (2004, 2005) point-optimal sta-

tionarity tests and tests for the null hypothesis of cointegration, respectively, which are

optimal by construction for i.i.d. Gaussian disturbances. We omit details for brevity.

In addition, the results of this paper are useful for making efficiency claims about non-

standard econometric methods that have a high-level weak convergence assumption as

their starting point; see Müller and Watson (2006) and Ibragimov and Müller (2007).

3.1 Efficient Unit Root Tests with Stationary Covariates

Elliott and Jansson (2003) consider the modelÃ
yT,t

xT,t

!
=

Ã
αy + βyt

αx + βxt

!
+

Ã
uT,t

νxT,t

!
(8)

where YT = ((yT,1, x
0
T,1)

0, · · · , (yT,T , x0T,T ))0 ∈ RnT is observed, αy, βy and uT,t =

ρTuT,t−1+νyT,t are scalars, uT,0 = Op(1) for all T , ρT = 1−θ/T for some fixed θ ≥ 0, and
xT,t, αx, βx and ν

x
T,t are n− 1 dimensional vectors. The objective is to efficiently exploit

the stationary covariates xT,t in the construction of a test of the null hypothesis of a

unit root in yT,t, H0 : θ = 0 against the alternative H1 : θ > 0. Consider first the case

with αy = αx = βy = βx = 0 known. The approach of Elliott and Jansson (2003) is to

4The efficiency claim about ERS’s point-optimal statistic in the case with an unknown mean is easily

generalized to the case with unknown time trend, and to alternative assumptions about the initial

condition, as considered by Elliott (1999) and Elliott and Müller (2003).
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first apply the Neyman-Pearson Lemma to determine, for each T , the point-optimal test

against θ = θ1 when νT,t = (ν
y
T,t, ν

x0
T,t)

0 ∼i.i.d. N (0,Ω) for known Ω. In a second step,

they construct a feasible test that is (i) asymptotically equivalent the point-optimal test

when νT,t ∼i.i.d. N (0,Ω) and (ii) that is robust to a range of autocorrelation structures
and error distributions. So by construction, their test can only claim efficiency for the

special case of i.i.d. Gaussian disturbances.

In order to apply the results in Section 2 of this paper, we need to consider the typical

weak convergence properties of model (8). Standard weak dependence assumptions on

νT,t imply for some suitable long-run covariance matrix estimator Ω̂T

Ω̂T
p→ Ω and GT (·) =

Ã
T−1/2uT,b·T c

T−1/2
Pb·T c

t=1 ν
x
T,t

!
Ã Gθ(·) (9)

where Ω is positive definite, Gθ(s) =
R s
0
(e−θ(s−r), 1, · · · , 1)Ω1/2dW (r), and W is a n× 1

standard Wiener process. By Girsanov’s Theorem, the Radon-Nikodym derivative of the

distribution of Gθ with respect to the distribution of G0, evaluated at G = (Gy, G
0
x)
0, is

given by

LR(Ω, θ,G) = exp

∙
−θ
Z 1

0

G(s)0S1Ω
−1dG(s)− 1

2
θ2
Z 1

0

G(s)0S1Ω
−1S1G(s)ds

¸
(10)

= exp

∙
−1
2

θ

ωyy
(Gy(1)

2 − 1)− θωyx

Z 1

0

Gy(s)dGx(s)− 1
2

θ2

ω2yy

Z 1

0

Gy(s)
2ds

¸
where S1 is the n×n matrix S1 = diag(1, 0, · · · , 0) and the first row of Ω−1 is (ωyy, ωyx).

Since
R 1
0
Gy(s)dGx(s) is not a continuous mapping, we cannot directly apply Theorem

1. However, typical weak dependence assumptions on νT,t also imply (see, for instance,

Phillips (1988), Hansen (1990) and de Jong and Davidson (2000)), that

UT = T−1
TX
t=2

uT,t−1ν
x
T,t − Σ̂T Ã Uθ =

Z 1

0

Gθ
y(s)dG

θ
x(s) (11)

for a suitably defined (n− 1)× 1 vector Σ̂T
p→ Σ (which equals

P∞
s=1E[ν

x
T,tν

y
T,t+s] when

νT,t is covariance stationary) jointly with (9). Clearly, the Radon-Nikodym derivative

of the measure of (Gθ, Uθ) with respect to the measure of (G0, U0), evaluated at G0, is

also given by LR(Ω, θ,G0) in (10), and one can write LR(Ω, θ,G0) = LRU(Ω, θ,G0, U0)
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for a continuous function LRU . Theorem 1 thus applies and shows that rejecting for

large values of LRU(Ω̂T , θ1, GT , UT ) is the point-optimal unit root test for the alternative

θ = θ1 > 0 among all tests that have correct asymptotic null rejection probabilities

whenever (9) and (11) hold.

In fact, the feasible tests suggested by Elliott and Jansson (2003) are asymptotically

equivalent to a test that rejects for large values of LRU(Ω̂T , θ1, GT , UT ).
5 This equiva-

lence is no coincidence: i.i.d. Gaussian νT,t obviously satisfy GT Ã Gθ for θ ∈ {0, θ1},
and if the small sample likelihood ratio statistics converge jointly to some limiting ran-

dom variable with unit expectation for θ = 0, then contiguity implies that this limiting

random variable is the Radon-Nikodym derivative of the distribution of Gθ1 with re-

spect to the distribution of G0 (see, for instance, Lemma 27 of Pollard (2001)). The

method above, which starts with the Radon-Nikodym derivative directly, is arguably a

more straightforward way of determining a test in this equivalence class. But the much

more important insight, of course, concerns the optimality properties of this test: While

Elliott and Jansson (2003) could only claim optimality for data with i.i.d. Gaussian

disturbances, Theorem 1 shows that the test is efficient against all local alternatives

satisfying (9) and (11) with θ = θ1 if one imposes size control for all models satisfying

(9) and (11) with θ = 0. In other words, under this size constraint, no test exists with

higher asymptotic power for any disturbance distribution or autocorrelation structure

satisfying (9) and (11) with θ = θ1.

When the deterministic terms are not fully known, i.e. the parameters αy,αx, βy,

and/or βx are not known, it is natural to impose an appropriate invariance requirement.

Specifically, considering the case where αy and αx are unconstrained and βy = βx = 0,

one might impose invariance to the transformations

{(yT,t, x0T,t)0}Tt=1 → {(yT,t + ay, x
0
T,t + a0x)

0}Tt=1 ay ∈ R, ax ∈ Rn−1. (12)

A maximal invariant of this group of transformations is given by the demeaned data

{(ŷT,t, x̂0T,t)0}Tt=1, where ŷT,t = yT,t − ȳT , x̂T,t = xT,t − x̄T , ȳT = T−1
PT

t=1 yT,t and

x̄T = T−1
PT

t=1 xT,t. Elliott and Jansson (2003) derive the limiting behavior of the

5Elliott and Jansson (2003) do not rely on (11), though, but exploit the assumption of a finite lag

VAR autocorrelation structure in νT,t to implicitly construct an appropriate UT .
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likelihood ratio statistics of this maximal invariant when νT,t ∼i.i.d. N (0,Ω), and thus
obtain the asymptotically point-optimal invariant unit root test under that assumption.

Considering again the weak convergence properties of a typical model, we obtain

Ω̂T
p→ Ω and

⎛⎜⎜⎝
T−1/2ŷT,b·Tc

T−1/2
Pb·T c

t=1 x̂T,t

T−1/2
PT

t=2 ŷT,t−1x̂T,t − Σ̂T

⎞⎟⎟⎠Ã

⎛⎜⎜⎝
Ĝθ
y(·)

Ĝθ
x(·)R 1

0
Ĝθ
y(s)dĜ

θ
x(s)

⎞⎟⎟⎠ (13)

where Ĝθ
y(s) = Gθ

y(s)−
R 1
0
Gθ
y(s)ds and Ĝ

θ
x(s) = Gθ

x(s)−sGθ
x(1). For brevity, we omit an

explicit expression for the Radon-Nikodym derivative LRĜ of the measure of (Ĝθ
y, Ĝ

θ
x)

with respect to the measure of (Ĝ0
y, Ĝ

0
x), but note that it could be deduced from the

limiting result in Elliott and Jansson (2003) by again invoking the change in asymptotic

measure implied by contiguity, just as in the argument above. By Theorem 1, rejecting

for large values of LRĜ, evaluated at sample analogoues, is the asymptotically efficient

robust test for models defined via (13). Furthermore, in the notation of Section 2.3, with

φT (YT ) = (T−1/2yT,b·Tc, T
−1/2Pb·T c

t=1 xT,t, T
−1PT

t=2 yT,t−1xT,t) ∈ D[0,1] × Dn−1
[0,1] × Rn−1,

r = (ry, r
0
x)
0 ∈ R × Rn−1, gr({(yT,t, x0T,t)0}Tt=1) = {(yT,t + T 1/2ry, x

0
T,t + T−1/2r0x)

0}Tt=1,
g̃r(y, x, z) = (y(·)+ry, x(·)+rx·, z+ry(x(1)−x(0))+rx

R 1
0
y(s)ds), hT ({(yT,t, x0T,t)0}Tt=1) =

{(ŷT,t, x̂0T,t)0}Tt=1 and h̃(y, x, z) = (y(·)−
R 1
0
y(s)ds, x(·)−·x(1), z−(x(1)−x(0))

R 1
0
y(s)ds),

we find that Theorem 3 is applicable, and that rejecting for large values of LRĜ, evaluated

at sample analogues, is also the asymptotically point-optimal invariant unit root test

among all tests with correct asymptotic null rejection probability all models satisfying

(9) and (11) with θ = 0.

3.2 GMM Wald Tests

Consider a standard GMM set-up with parameter of interest η ∈ Rk (and possibly some

additional finite dimensional nuisance parameter) in a sample of size T . Parametrize the

true parameter η as η = η0+ T−1/2θ and suppose we are interested in testing H0 : θ = 0

against H1 : θ 6= 0. For a large number of primitive conditions, the GMM estimator η̂

satisfies
√
T (η̂ − η0) Ã X ∼ N (θ, V ), and there exists an estimator V̂T

p→ V . If, for a

given sample of size T , the usual Wald statistic T (η̂−η0)0V̂ −1T (η̂−η0) is compared to the
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1− α quantile of a Chi-squared distribution with k degrees of freedom, at a minimum,

one must deem this asymptotic approximation reasonably accurate for θ = 0.

The limiting random variable X is a multivariate normal with mean θ and known

covariance matrix V . It is well known that for this limiting problem, the test that

rejects for large values of X 0V −1X maximizes weighted average power with respect to

any weighting function w(θ) that depends on θ through θ0V −1θ–such weighting functions

put equal weight on alternatives that are equally difficult to distinguish from the null

hypothesis (cf. Wald (1943)). By Theorem 1, rejecting for large values of T η̂0V̂ −1T η̂, that

is employing the usual GMM Wald test, therefore maximizes this asymptotic weighted

average power among all tests that have correct asymptotic null rejection probability

for all models in which
√
T (η̂ − η0)Ã N (0, V ) and V̂T

p→ V . Thus, without additional

regularity assumptions on the GMM set-up, the standard test is efficient. As argued

in Section 2.1, a desire to derive tests that are robust for all such models might be

motivated either because assuming more would require to take a specific stand on, say,

the uncertain time series properties of the underlying data YT , or because one worries

about the approximation accuracy of additional asymptotic implications of, say, the

knowledge that the underlying data is i.i.d.

3.3 GMM Parameter Stability Tests

Following Sowell (1996), suppose we are interested in testing the null hypothesis that

a parameter η in a GMM framework is constant through time. Parametrizing ηT,t =

η0 + T−1/2θ(t/T ), where θ ∈ Dk
[0,1], this is equivalent to the hypothesis test

H0 : θ = 0 against H1 : θ is not constant. (14)

With YT = (yT,1, · · · , yT,T )0, denote by gT,t(η) ∈ R with ≥ k the sample moment

condition for yT,t evaluated at η, so that under the usual assumptions, the moment con-

dition evaluated at the true parameter value satisfies a central limit theorem, that is

T−1/2
PT

t=1 gT,t(ηT,t)Ã N (0, V ) for some positive definite × matrix V . Furthermore,

with η̂T the usual full sample GMM estimator of η with optimal weighting matrix con-

verging to V −1, we obtain under typical assumptions that for some suitable estimators
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ĤT and V̂T (cf. Theorem 1 of Sowell (1996))

GT (·) = T−1/2
b·T cX
t=1

gT,t(η̂)Ã Gθ(·) and ĤT
p→ H, V̂T

p→ V (15)

where the convergence to Gθ is on D[0,1], Gθ(s) = V 1/2W (s) −
sH(H 0V −1H)−1H 0V −1/2W (1) + H

³R s
0
θ(l)dl − s

R 1
0
θ(l)dl

´
with W a × 1 stan-

dard Wiener process and H some × k matrix full column rank matrix (which is the

probability limit of the average of the partial derivatives of gT,t). Andrews (1993), Sowell

(1996) and Li and Müller (2006) discuss primitive conditions for these convergences.

Sowell (1996) goes on to derive weighted average power maximizing tests of (14) as a

function of Gθ (that is, he computes ϕ∗ in the notation of Theorem 1), and he denotes

the resulting test evaluated at GT (·), ĤT and V̂T (that is, ϕ̂
∗
T in the notation of Theorem

1), an "optimal" test for structural change. Without further restrictions, however, such

tests cannot claim to be efficient: As a simple example, consider the scalar model with

yT,t = η+ θ(t/T )+ εt, where εt is i.i.d. with P (εt = −1) = P (εt = 1) = 1/2. This model

is a standard time varying parameter GMM model with gT,t(η) = yT,t − η = θ(t/T ) + εt

satisfying (15), yet in this model, the test ϕ∗∗T that rejects whenever any one of

{yT,t − yT,t−1}Tt=1 is not −2, 0 or 2 has level zero for any T ≥ 2 and has asymptotic

power equal to one against any local alternative.

Theorem 1 provides a sense in which the tests derived by Sowell (1996) are asymp-

totically optimal: they maximizes asymptotic weighted average power among all tests

that have correct asymptotic null rejection probability whenever (15) holds with θ = 0.

Tests that exploit specificities of the error distribution, such as ϕ∗∗T , to gain higher power

necessarily do not control size for all stable models satisfying (15).

4 Conclusion

This paper suggests a new notion of asymptotic efficiency by imposing size control over a

set of models that satisfy a specific weak convergence. Under relatively weak regularity

conditions on the Radon-Nikodym derivative of the distribution of the limiting random

element under the null and alternative hypothesis, it is found that rejecting for large
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values of this derivative, evaluated at sample analogues, yields an efficient test in this

sense. Since this test typically coincides with the asymptotically efficient test under the

assumption of Gaussian i.i.d. disturbances, this result may be interpreted as providing

a bound on the possibility of adaption. A number of standard tests in the literature are

shown to be efficient in this new sense.
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5 Appendix

Proof of Theorem 1:

(i) We prove the second claim, the first is proved analogously.

Pick any γ. Since ϕ∗ is P e(γ, θ0)-almost everywhere continuous, it is

also P e(γ, θ)-almost everywhere continuous, and P e
T (m, γ, θ) Ã P e(γ, θ) impliesR

ϕ∗(γ1, x)dP
e
T (m, γ, θ)(γ1, x) →

R
ϕ∗(γ1, x)dP

e(γ, θ)(γ1, x) =
R
ϕ∗(γ, x)dP (γ, θ)(x) for

all θ ∈ Θ1. Since 0 ≤ ϕ∗ ≤ 1, the result follows by dominated convergence.
(ii) Take any m ∈M1 and γ ∈ Γ. Denote by F̄T the distribution

R
FT (m, γ, θ)dw(θ).

By assumption, the measure PT (m, γ, θ) of XT = φT (YT ) induced by FT (m, γ, θ) satisfies

(3). By definition of weak convergence, this implies that for any bounded and continuous

function ϑ : S 7→ R,
R
ϑdPT (m, γ, θ)→

R
ϑdP (γ, θ) for any θ ∈ Θ1, so that by dominated

convergence
R
ϑdP̄T =

R R
ϑdPT (m, γ, θ)dw(θ) →

R R
ϑdP (γ, θ)dw(θ) =

R
ϑdP̄ . For

notational brevity, write P0 for the measure P (γ, θ0) on S, and also LR for the S 7→ R
function LR(γ, ·). Note that P̄ is absolutely continuous with respect to P0, with Radon-
Nikodym derivative LR. Pick ε > 0 for which

R
1[LR = ε]dP0 = 0, and note thatR

1[LR ≤ ε]dP̄ ≤ ε
R
1[LR ≤ ε]dP0 ≤ ε. Let B be the indicator function of the set

A = {x ∈ S : LR > ε}. Denote by LRi
the S 7→ R function 1/LR, and pick some m0 ∈

M0 to define the real number κT =
R
(B◦φT )dFT (m0, γ, θ0)/

R
(B◦φT )(LR

i ◦ φT )dF̄T =R
BdPT (m0, γ, θ0)/

R
BLR

i
dP̄T and the probability distribution GT of YT viaZ

A

dGT = κT

Z
A

(B ◦ φT )(LR
i ◦ φT )dF̄T +

Z
A

(1− (B ◦ φT ))dFT (m0, γ, θ0)

for any A ∈ B(RnT ). Then by construction, GT induces the probability distribution QT

of XT , where QT satisfiesZ
ϑdQT = κT

Z
ϑBLRi

dP̄T +

Z
ϑ(1− B)dPT (m0, γ, θ0).

Since B, ϑ and BLR
i
are bounded and P (γ, θ0)-almost everywhere continuous (and

thus also P̄ -almost everywhere continuous) functions S 7→ R, it follows thatR
BdPT (m0, γ, θ0) →

R
BdP0,

R
ϑ(1−B)dPT (m0, γ, θ0) →

R
ϑ(1−B)dP0,

R
BLR

i
dP̄T →R

BLR
i
dP̄ =

R
BdP0 and

R
ϑBLR

i
dP̄T →

R
ϑBLR

i
dP̄ =

R
ϑBdP0, so that

R
ϑdQT →R

ϑdP0. Thus, QT Ã P0, and (4) implies that lim supT→∞
R
ϕTdGT ≤ α.
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Now define the probability measures F̃T viaZ
A

dF̃T = κ̃T

Z
A

(B ◦ φT )(LR ◦ φT )dGT

= κ̃TκT

Z
A

(B ◦ φT )dF̄T

for any ∈ B(RnT ), where κ̃T = 1/(κT
R
(B◦φT )dF̄T ) → κ̃ = 1/

R
1[LR > ε]dP̄ . By

the Neyman-Pearson Lemma, the best test of H̃0 : YT ∼ GT against H̃1 : YT ∼ F̃T

rejects for large values of (BLR) ◦ φT = f ◦ LR ◦ φT , where f(x) = x1[x > ε]. Thus,

the best test for large values of LR ◦ φT . For any T , denote by ϕ̃∗T : RnT 7→ [0, 1]

the (possibly randomized) test that rejects for large values of y 7→ LR(γ, φT (y)) of

level
R
ϕ̃∗TdGT = max(

R
ϕTdGT , α), so that

R
(ϕ̃∗T − ϕT )dF̃T ≥ 0. Note that F̃T is

contiguous to GT , since under GT , the Radon-Nikodym derivative f ◦LR ◦φT converges
weakly to the distribution of κ̃BLR under P̄ by the Continuous Mapping Theorem, andR
κ̃BLRdP̄ = 1. Define ϕ∗T : RnT 7→ [0, 1] as ϕ∗T (y) = ϕ∗(γ, φT (y)). Proceeding as in

part (i) of the proof shows that ARP0(ϕ∗T ,m) = α and limT→∞WAPT (ϕ∗T ,m, γ) = β(γ).

Since both ϕ̃∗T and ϕ∗T reject for large values of LR and are of asymptotic level α, we

have
R
|ϕ̃∗T − ϕ∗T |dGT → 0, so that by contiguity, also

R
|ϕ̃∗T − ϕ∗T |dF̃T → 0. Thus

lim supT→∞
R
(ϕ∗T − ϕT )dF̃T ≥ 0. To complete the proof, note that the total variation

distance between F̃T and F̄T is bounded above by
R
((1−B)◦φT )dF̄T →

R
1[LR ≤ ε]dP̄ ≤

ε, so that lim supT→∞WAPT (ϕT ,m, γ) ≤ β(γ) + ε and the result follows, since ε was

arbitrary.

Proof of Theorem 2:

Similar to proof of Theorem 1 above. Pick 1/2 > ε > 0 such that P0(LR = ε) = 0.

Define ALR = {x ∈ S : LR > ε}. Since P̄ is absolutely continuous with respect to P0,

there exists an open set AL such that P̄ (AL) > 1− ε and LR : AL 7→ R is Lipschitz, so
that with A = AL ∩ ALR, LR

i
: A 7→ R is bounded and Lipschitz. Furthermore, since

S\A is closed, there exists a Lipschitz function C : S 7→ [0, 1] that is zero on S\A and for
which

R
CdP̄ ≥ 1− 3ε (see Pollard (2002), p. 172-173 for an explicit construction). For

future reference, define BLR to be the indicator function of ALR, and note that BLRC = C.
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With F̄T =
R
FT (m1, γ, θ)dw(θ) and P̄T = φT F̄T , define

κT =

Z
(C ◦ φT )dFT (m0, γ, θ0)/

Z
(C ◦ φT )(LR

i ◦ φT )dF̄T

=

Z
CdPT (m0, γ, θ0)/

Z
CLRi

dP̄T → 1

and the probability distribution GT of YT viaZ
A

dGT = κT

Z
A

(C ◦ φT )(LR
i ◦ φT )dF̄T +

Z
A

(1− (C ◦ φT ))dFT (m0, γ, θ0)

for any A ∈ B(RnT ). Then by construction, GT induces the probability distribution QT

of XT , where QT satisfiesZ
ϑdQT = κT

Z
ϑCLRi

dP̄T +

Z
ϑ(1− C)dPT (m0, γ, θ0).

Now

∆(QT , P0) = sup
||ϑ||BL≤1

|
Z

ϑ(dQT − dP0)|

= sup
||ϑ||BL≤1

|
Z
(ϑC(κTLR

i
dP̄T − dP0) + ϑ(1− C)(dPT (m0, γ, θ0)− dP0)|

≤ sup
||ϑ||BL≤1

|
Z

ϑCLRi
(κTdP̄T − dP̄ )|+ sup

||ϑ||BL≤1
|
Z

ϑ(1− C)(dPT (m0, γ, θ0)− dP0)|

≤ ||CLRi||BL(∆BL(P̄T , P̄ ) + |1− κT |) + ||1− C||BL∆BL(PT (m0, γ, θ0), P0)

and also

|κT − 1| = |
R
CdPT (m0, γ, θ0)R
CLRi

dP̄T

−
R
CdP0R
CLRi

dP̄
|

≤ ||CLRi||BL∆BL(P̄T , P̄ ) + ||C||BL∆BL(PT (m0, γ, θ0), P0)R
CLRi

dP̄T

.

Thus, lim supT→∞∆BL(QT , P0)/δ(γ, T ) = 0, so that for large enough T , GT ∈Mu
0(δ),

and (6) implies lim supT→∞
R
ϕTdGT ≤ α.

Now define the probability measures F̃T viaZ
D

dF̃T = κ̃T

Z
D

(BLR ◦ φT )(LR ◦ φT )dGT

= κ̃TκT

Z
D

(C ◦ φT )dF̄T + κ̃T

Z
D

(BLR(1− C)LR ◦ φT )dFT (m0, γ, θ0)
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for D ∈ B(RnT ), where κ̃T = 1/(κT
R
(C ◦ φT )dF̄T +

R
(BLR(1 − C)LR ◦

φT )dFT (m0, γ, θ0)) → 1/
R
(C+BLR−BLRC)dP̄ = 1/

R
BLRdP̄ and 1 ≤ 1/

R
BLRdP̄ ≤

1+ 2ε. The best test of H̃0 : YT ∼ GT against H̃1 : YT ∼ F̃T thus rejects for large values

of (BLRLR) ◦ φT , i.e. LR ◦ φT . Noting that the total variation distance between F̃T and

F̄T is bounded above byZ
|1− κ̃TκT (C ◦ φT )|dF̄T ≤ |1− κ̃TκT |+

Z
(1− C)dP̄T

→ |
Z
BLRdP̄ |−1 + 1−

Z
CdP̄ ≤ 4ε

the remainder of the proof is just as the proof of Theorem 1 above.

Proof of Theorem 3:

Pick any γ ∈ Γ, ξ ∈ Ξ and m ∈ Mh
0 . Denote the distribution of YT by FT =

FT (m, γ, θ0, ξ), and write PT = φTFT , P h
T = (φT ◦ hT )FT , P0 = P i(γ, θ0) and P h = h̃P0.

Let Dn
[0,1] the space of n-valued cadlag functions on the unit interval, equipped with the

Billingsley metric, and define the mapping χT : RnT 7→ Dn
[0,1] as {yt}Tt=1 7→ T−1Φ(yb·Tc),

where Φ is the cdf of a standard normal applied element by element. Note that χT is

injective, and denote by χ−1T the Dn
[0,1] 7→ RnT function such that χ−1T (χT (y)) = y for all

y ∈ RnT . Since sups∈[0,1] ||χT (s)|| ≤ 1/T → 0, the probability measures (φT ◦ hT , χT )FT

on the separable space S×Dn
[0,1] converge weakly to the product measure P

h×δ0, where

δ0 puts all mass at the zero function in Dn
[0,1]. By Theorem 11.7.2 of Dudley (2002),

there exists a probability space (Ω∗,F∗, P ∗) and functions ηT : Ω∗ 7→ S×Dn
[0,1] such that

ηTP
∗ = (φT ◦ hT , χT )FT , ηP ∗ = P h × δ0 and ηT (ω

∗)→ η(ω∗) for P ∗-almost all ω∗ ∈ Ω∗.

In particular, (σ◦ηT )P ∗ = P h
T and (χ

−1
T ◦d◦ηT )P ∗ = FT , where σ : S×Dn

[0,1] 7→ S and d :

S×Dn
[0,1] 7→ Dn

[0,1] are the usual projections of S×Dn
[0,1] on S andD

n
[0,1], respectively. Also,

for almost all ω∗, φT◦hT ◦χ−1T ◦d◦ηT (ω∗) = σ◦ηT (ω∗). Let ν be the probability measure on
B(R×S) induced by (ρ, h̃) : S 7→ R×S under P0, i.e. ν = (ρ, h̃)P0. Since x = g̃ρ(x)(h̃(x))

for all x ∈ S, P0 = g̃ν, where g̃ : R×S 7→ S is defined as g̃(r, x) = g̃r(x). By Proposition

10.2.8 of Dudley (2002) there exists a probability kernel νx from (S,B(S)) to (R,B(R))

such that for each A ∈ B(S) and B ∈ B(R), ν(A × B) =
R
A
νx(B)dP

h(x). Note that

the mapping Ω∗×B(S) 7→ [0, 1] defined via (ω∗, A) 7→ νσ◦η(ω∗)(A) is a probability kernel

from (Ω∗,F∗) to (R,B(R)). We can thus construct the product probability measure μ
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on (Ω∗ ×R), (F∗ ⊗B(R)) via μ(C ×A) =
R
C
νσ◦η(ω∗)(A)dP

∗(ω∗), and by construction,

the mapping (ω∗, r) 7→ g̃r ◦σ ◦ η(ω∗) induces the measure P0 under μ. Furthermore, note
that for μ-almost all (ω∗, r), φT ◦ gr ◦ hT ◦ χ−1T ◦ d ◦ ηT (ω∗) = g̃r ◦ φT ◦ hT ◦ χ−1T ◦ d ◦
ηT (ω

∗) + o(T ) = g̃r ◦ σ ◦ ηT (ω∗) + o(T ) → g̃r ◦ σ ◦ η(ω∗). But almost sure convergence
implies weak convergence, so that the measures GT on RnT induced by the mapping

(ω∗, r) 7→ gr ◦ hT ◦ χ−1T ◦ d ◦ ηT (ω∗) under μ satisfy φTGT Ã P0. Thus, by assumption,

lim supT→∞
R
ϕTdGT ≤ α. Since ϕT is invariant and hT is a maximal invariant, there is

no loss in generality to assume that ϕT (yT ) is a function of hT (yT ) by Theorem 1 on p.

285 of Lehmann (1986). From hT ◦ gr ◦ hT = hT we have hTGT = hTFT , and thus also

lim supT→∞
R
ϕTdFT ≤ α.
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