
Estimating Mixtures of Discrete Choice Model

Paul A. Ruud
University of California, Berkeley

September 20, 2007

In this note, we take up a computational problem observed with fitting such
mixtures of discrete choice models as the mixed multinomial logit, the parameter
values explode as a numerical optimization algorithm maximizes the logarithm
of the simulated likelihood function. We describe two identification issues that
can increase the probability of this phenomenon. First, the parameters of the
variance-covariance matrix of differences in the latent utility indexes may not
be identified. Second, that variance-covariance matrix may be singular.

1 The Mixed Multinomial Logit Model

A leading example of a mixture of discrete choice models is the mixed multino-
mial logit (MMNL). McFadden and Train define an MMNL model as a multi-
nomial logit model with random coefficients. The probability that alternative j
is chosen is

Pr {j |X,β} =
exp

(
x′jβ

)∑J
k=0 exp (x′kβ)

, j = 0, 1, . . . , J

Pr {β ≤ b |X} ∼ G(b;θ),

for a choice set with J + 1 alternatives indexed by j, observable variables X =[
x′j ; j = 0, . . . , J

]
, and c.d.f. G(b;θ). Alternatively,

Pr {j |X,θ} =
∫ exp

(
x′jb

)∑J
k=0 exp (x′kb)

dG(b;θ).

Let K denote the dimension of the column vectors xj and β. Let θ ∈ Θ ⊂ RM .
A leading specification sets G(b;θ) to a multivariate normal distribution

and implementation uses the method of maximum simulated likelihood (MSL).
For the multivariate normal specification, the simulated probabilities are often
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computed as

P (j,θ; X, ω) = ER

[
exp

(
x′jβ(θ;ωr)

)∑J
k=0 exp (x′kβ(θ;ωr))

]

≡
R∑
r=1

exp
(
x′jβ(θ;ωr)

)∑J
k=0 exp (x′kβ(θ;ωr))

1
R
,

β(θ;ωr) = µ+ Σ1/2ωr

where ω = [ωr; r = 1, . . . , R], ωr
i.i.d.∼ N(0, IK), and Σ1/2 is a matrix square

root of a variance-covariance matrix Σ. In this case, for s 6= 1 and b 6= 0,

exp
(
s · x′jb

)∑J
k=0 exp (s · x′kb)

6=
exp

(
x′jb

)∑J
k=0 exp (x′kb)

with nonzero probability and no scale normalization is required; both µ and Σ
are identified. The scale normalization appears implicitly in the multinomial
logit part of the specification.

Occasionally, one finds references to computational problems implementing
the MMNL. The fitted coefficients explode before numerical convergence of the
computational algorithm. Simulations show that even a pure MNL data gen-
erating process, where Σ = 0, generates such problems. Paradoxically, this
phenomenon may become more probable as one increases R, the number of
simulations for each observation. One might expect that as the variance in the
likelihood simulator falls such problems would become less likely.

One cause of this phenomenon is the mixture specification itself. If any
component distribution in the mixture can have no weight, an estimator of the
mixture generally has nonzero probability of assigning no weight to that com-
ponent. Both the multivariate normal component and the multivariate logistic
component can have zero probability without making the choice probabilities
zero. In this parameterization, the normal component contributes nothing to
the mixture if Σ = 0. The logistic component contributes nothing if its scale
relative to the normal component is zero, which occurs when µ and Σ1/2 are
made infinite while keeping the relative magnitudes of these parameters fixed.
We will offer a reparameterization to address this computational problem below.

Note also that for some data sets the probability that MMNL computations
will seek a parameter boundary increases with the number of simulations per ob-
servation. This occurs because at the boundary the MMNL fitted probabilities
become crude frequency simulations. A finite number of simulations R permits
a crude frequency probability simulator to place the lower bound 1/R on all
fitted probabilities. Without some fitted probabilities approaching zero, poorly
predicted observations do not penalize the quasi-log likelihood function so as to
steer clear of the parameter boundary. The larger the number of simulations
the greater the probability that this will occur.
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2 The MMNL Approximation Property

McFadden and Train say “Under mild regularity conditions, any discrete choice
model derived from random utility maximization has choice probabilities that
can be approximated as closely as one pleases by a MMNL model.” This involves
approximating both a utility function and a distribution function. This approx-
imation property is frequently cited as a motivation for applying the MMNL
model.1

To focus on the approximation of choice probabilities and the role played by
the multinomial logistic distribution, suppose that the functional form of the
utility functions are known to be Xβ0. The approximation property applies
to this special case. Moreover, the McFadden/Train conditions imply an exact
result: the choice probabilities may be identically equal to those of an MMNL
model. Train (2003) makes a similar point. To see this, note that

exp (σaj)∑J
k=0 exp (σak)

→ 1 {aj ≥ ak, k = 0, . . . , J}

monotonically as σ →∞. Therefore, the monotone convergence theorem implies

lim
σ→∞

E [Pr {yj = 1 |X, σ · β} |X] = E
[

lim
σ→∞

Pr {yj = 1 |X, σ · β} |X
]

= Pr
{
x′jβ ≥ x′kβ, k = 0, . . . , J |X

}
,

which is the choice probability function of the population RUM. In the limit,
the scale of the multinomial logistic component vanishes relative to the rest of
the MMNL utility specification, and an exact model is achieved by choosing the
population distribution of the β.

This approximation property of the MMNL is shared by many other tractable
specifications. McFadden (1989) originally proposed several “smoothed fre-
quency simulators” that could be treated as similar approximations. Generaliz-
ing from MMNL, an example is distributions with independent and identically
distributed εj , j = 0, . . . , J , and tractable marginal c.d.f.s F (a) = Pr {εj ≤ a}.
In this case,

Pr {yj = 1 |X,β} 6= E

∏
k 6=j

F
(
0 ≤ x′jβ − x′kβ + εj

)
|X,β


1For example, Hensher and Greene (2003, fn. 7) say

The proof in McFadden and Train (2001) that mixed logit can approximate any
choice model, including any multinomial probit model is an important message.
The reverse cannot be said: a multinomial probit model cannot approximate any
mixed logit model, since multinomial probit relies critically on normal distribu-
tions. If a random term in utility is not normal, then mixed logit can handle it
and multinomial probit cannot. Apart from this point, the difference between
the models is a matter of which is easier to use in a given situation.
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because

lim
σ→∞

E

∏
k 6=j

F
(
0 ≤ σ ·

(
x′jβ − x′kβ

)
+ εj

)
|X,β


=
∏
k 6=j

1
{
x′jβ ≥ x′kβ

}
= 1

{
x′jβ ≥ x′kβ, k = 0, . . . , J

}
The integration required over εj may not be tractable, but this is easily accom-
modated by including εj in the x′jβ component that is simulated in the typical
feasible implementation of MMNL. A potential drawback is that the simulated
probabilities will not sum to one across alternatives.

Alternatives to the extreme value distribution posited by MMNL include the
univariate Cauchy, logistic, and normal distributions. The normal distribution
is a leading member because it also produces the multinomial probit model.
Like the MMNL, the normal does not require simulation with respect to εj .
Conditional on εj and β,

Pr {yj = 1 |X,β, εj} =
∏
k 6=j

Φ
(
(xk − xj)

′
β − εj

)
Using Gauss-Hermite quadrature, one can approximate the equicorrelated MNP
integral,

Pr {yj = 1 |X,β} = E

∏
k 6=j

Φ
(
(xk − xj)

′
β − εj

)
|X,β

 . (1)

Such approximation has become the basis for routine estimation (in Stata) of
equicorrelated probit models for panel data. These simulated probabilities will
sum to one.

3 Multinomial Probit

The multinomial probit model is one case that motivated the MMNL approxi-
mation. Focusing on identification for this special case is helpful for the appli-
cation of MMNL. Let X = [x′k] denote the (J + 1) × K matrix of alternative
characteristics. Let the εj ∼ N(0, 1) independently. For convenience, we iso-
late the conditionally homoscedastic part of the Xβ by decomposing it into
X1β1 + X2β2 where X2 spans the space of alternative specific dummy vari-
ables. Let the matrix Ω denote

Ω = Var [X2β2 | X1β1] .

An identifiable and unrestricted parameterization of Ω is to set the first row
and column to zeros and to scale the remaining J × J submatrix, denoted
Ω2 = [ωij ; i, j = 1, . . . , J ]. We specify ΣJj=1ωjj = 1.
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With this specification, the probit kernel above corresponds to decomposing

Ω2 = (Ω2 − α · (IJ + JJ)) + α · (IJ + JJ)

for some scalar α > 0, where IJ is a J × J identity matrix and JJ is a J × J
matrix of ones. The matrix α · (IJ + JJ) is the familiar equicorrelated variance-
covariance matrix and (1) corresponds to integrating over β2 conditional on
β1. The α rescales the ε distribution so that the Ω2 − α · (IJ + JJ) component
remains positive semi-definite. If the population Ω were a scalar matrix, then
α · (IJ + JJ) would be the conditional variance-covariance matrix of the utility
differences that determine a choice probability.

Given this decomposition, motivated by a mixed MNP specification, identi-
fication requires a normalization for α. A convenient choice is to take α as the
smallest eigenvalue of the generalized eigenvalue problem

|Ω2 − α · (IJ + JJ)| = 0.

This eigenvalue is always positive, because Ω2 is positive semi-definite and IJ +
JJ is positive definite; α is strictly greater than zero if Ω2 is nonsingular. The
remainder Ω2−α·(IJ + JJ) is a positive semi-definite matrix with rank less than
or equal J − 1. It is common to parameterize this in terms of a lower-triangular
matrix square root. However, this specification requires that this square root is
singular.

It is not necessary to solve the eigenvalue problem in implementation. Simply
solve

1 =
∑
j,k

c2jk + J α(C) ⇐⇒ α(C) =
1−

∑
j,k c

2
jk

J

so that the normalization of the variance-covariance matrix corresponds to set-
ting a diagonal element of a Cholesky factor equal to zero. α > 0 is enforced by
the functional form

Pr {yj = 1 |X,β}

= E

∏
k 6=j

Φ

(
(x1k − x1j)

′
β1 + ∆kjCω −

√
α(C)εj√

α(C)

)
|X1β1

 .
where C = [cij ] is a J × J lower triangular matrix with cJJ = 0 and

CC′ = Ω2 − α(C) · (IJ + JJ) .

Given that a MMNL with multivariate normal β is observationally simi-
lar to the MMNP, a similar reparameterization would be sensible there. This
would prevent parameters from running to the parameter boundary when the
estimates put no probability on the logit component because in that case α(C)
approaches zero instead. Because the logistic and normal probability functions
are similar, we expect the differences between MMNP and MMNL estimates
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to be inconsequential for statistical inference. If, however, the logit component
is considered structural, and not merely convenient, then restricting cJJ = 0
is inappropriate and cJJ should be estimated along with the other unknown
parameters.

4 Singular Variance-Covariance Matrix

There is another reason why estimated MMNL parameters may land on a bound-
ary of the parameter space: the estimator for Ω may be singular. That this is
a possibility is apparently not widely known. Though it may not be expected
a priori, if Ω is singular the choice probabilities are still well-defined. Because
IJ + JJ is nonsingular, the parameterization above restricts Ω to be definite
except when α(C) = 0 or, under the original parameterization, the coefficients
in the latent conditional regression functions go to infinity.

Note that a small number of replications will often mask this problem as well,
so that as the number of simulations is increased exploding MMNL parameter
estimators become more likely. The mixed logit model will yield estimates of
unidentified parameters. One way to see or understand that this is possible is
to consider the mixed logit model estimator when there is only one simulation
per observation. In this case, the quasi-MLE of an over-parameterized mixing
distribution is easily computed because the model is the familiar conditional
logit model.

A singular multivariate distribution for the latent utilities of the discrete
choice model presents new problems for statistical inference. Such alternative
approaches to inference with simulation as the Gibbs sampler and the GHK sim-
ulator cannot accommodate this possibility in their current forms. The mixture
model, appropriately parameterized, can but discontinuities in the estimator
objective function or its derivatives repose old computational issues.
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