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Abstract

This paper presents methods for evaluating the effects of reallocating an indivisible input
across production units. When production technology is nonseparable such reallocations,
although leaving the marginal distribution of the reallocated input unchanged by construc-
tion, may nonetheless alter average output. Examples include reallocations of teachers
across classrooms composed of students of varying mean ability and altering assignment
mechanisms for college roommates in the presence of social interactions. We focus on the
effects of reallocating one input while holding the assignment of another, potentially com-
plementary input, fixed. We present a class of such reallocations — correlated matching
rules — that includes the status quo allocation, a random allocation, and both the perfect
positive and negative assortative matching allocations as special cases. Our econometric
approach involves first nonparametrically estimating the production function and then av-
eraging this function over the distribution of inputs induced by the new assignment rule.
Formally our methods build upon the partial mean literature (e.g., Newey 1994, Linton and
Nielsen 1995). We derive the large sample properties of our proposed estimators and assess
their small sample properties via a limited set of Monte Carlo experiments. An application,
assessing the effects of spousal sorting on child education (e.g., Kremer 1996), concretely
illustrates our methods.
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1 Introduction

Consider an input into a production process. For each firm output may be monotone in this
input, but at different rates. If the input is indivisible and its aggregate stock fixed, it will be
impossible to simultaneously raise the input level for all firms. In such cases it may be of interest
to consider the output effects of reallocations of the input across firms. Here we investigate
econometric methods for assessing the effect on average output of such reallocations. A key
feature of reallocations is that while potentially altering input levels for each firm, they keep
the marginal distribution of the input across the population of firms fixed.

We consider a two parameter family of feasible reallocations that include several focal allo-
cations as special cases. Reallocations in this family may depend on the distribution of a second
input or firm characteristic. This characteristic may be correlated with the firm-specific return
to the input to be reallocated.

One reallocation redistributes the input across firms such that it has perfect rank correlation
with the second input. We call this allocation the positive assortative matching allocation. We
also consider a negative assortative matching allocation where the input is redistributed to have
perfect negative rank correlation with the second input. A third allocation involves randomly
assigning the input across firms. This allocation, by construction, ensures independence of the
two inputs. A fourth allocation simply maintains the status quo assignment of the input.

Our family of reallocations, which we call correlated matching rules, includes each of the
above allocations as special cases. In particular the family traces a path from the positive to
negative assortative matching allocations. Each reallocation along this path keeps the marginal
distribution of the two inputs fixed, but is associated with a different level of correlation be-
tween the two inputs. Each of the reallocations we consider are members of a general class of
reallocation rules that keep the marginal distributions of the two inputs fixed.

We derive an estimator for average output under correlated matching. Our estimator re-
quires that the first input is exogenous conditional on the second input and additional firm
characteristics. Except for the case of perfect negative and positive rank correlation the esti-
mator has the usual parametric convergence rate. For the two extremes the rate of convergence
is slower. In all cases we drive the asymptotic distribution of the estimator.

Our focus on reallocation rules that keep the marginal distribution of the inputs fixed is
appropriate in applications where the input is indivisible, such as in the allocation of teachers
to classes or managers to production units. In other settings it may be more appropriate to
consider allocation rules that leave the total amount of the input constant by fixing its average
level. Such rules would require some modification of the methods considered in this paper.

Our methods may be useful in a variety of settings. One class of examples concerns comple-
mentarity of inputs in production functions (e.g. Athey and Stern, 1998). If the first and second
inputs are everywhere complements, then the difference in average output between the positive
and negative assortative matching allocations provides a nonparametric measure of the degree
of complementarity. This measure is invariant to monotone transformations of the inputs. If the
production function is not supermodular interpretation of this difference is not straightforward,
although it still might be viewed as some sort of ‘global’ measure of input complementarity.
With this concern in mind we also provide a local measure of complementarity. In particular
we consider whether small steps away from the status quo and toward the perfect assortative
matching allocation raise average output.

A second example concerns educational production functions. Card and Krueger (1992)
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study the relation between educational output as measured by test scores and teacher quality.
Teacher quality may improve test scores for all students, but average test scores may be higher
or lower depending on whether, given a fixed supply of teachers, the best teachers are assigned
to the least prepared students or vice versa. Parents concerned solely with outcomes for their
own children may be most interested in the effect of raising teacher quality on expected scores.
A school board, however, may be more interested in maximizing expected test scores given a
fixed set of classes and teachers by optimally matching teachers to classes.

A third class of examples arises in settings with social interaction (c.f., Manski 1993; Brock
and Durlauf 2001). Sacerdote (2001) studies the peer effects in college by looking at the rela-
tion between outcomes and roommate characteristics. From the perspective of the individual
student or her parents it may again be of interest whether a roommate with different charac-
teristics would, in expectation, lead to a different outcome. This is what Manski (1993) calls
an exogenous or contextual effect. The college, however, may be interested in a different effect,
namely the effect on average outcomes of changing the procedures for assigning roommates.
While it may be very difficult for a college to change the distribution of characteristics in the
incoming classes, it may be possible to change the way roommates are assigned. In Graham,
Imbens and Ridder (2006b) we consider average effect of segregation policies.

In all these cases we focus on policies that change the way a fixed distribution of inputs is
allocated to a population of units with a fixed distribution of characteristics. We are interested
in the effect such policies have on the distribution of outcomes. Typically the most interesting
measure will be the average level of the outcome. We will call the causal effects of such policies
Aggregate Redistributional Effects (AREs).

If production functions are additive in inputs the questions posed above have simple an-
swers: average outcomes are invariant to input reallocations. While reallocations may raise
individual outcomes for some units, they will necessarily lower them by an offsetting amount
for others. Reallocations are zero-sum games. With additive and linear functions even more
general assignment rules that allow the marginal input distribution to change while keeping its
average level unchanged do not affect average outcomes. In order for these questions to have
interesting answers, one therefore needs to explicitly recognize and allow for non-additivity
and non-linearity of a production function in its inputs. For this reason our approach is fully
nonparametric.

The current paper builds on the larger treatment effect and program evaluation literature.1

More directly, it is complementary to the small literature on the effect of treatment assignment
rules (Manski, 2004; Dehejia, 2004; Hirano and Porter, 2005). Our focus is different from
that in the Manski, Dehejia, and Hirano-Porter papers. First, we allow for continuous rather
than discrete or binary treatments. Second, our assignment policies to do not change the
marginal distribution of the treatment, whereas in the previous papers treatment assignment
for one unit is not restricted by assignment for other units. Our policies are fundamentally
redistributions. In the current paper we focus on estimation and inference for specific assignment
rules. It is also interesting to consider optimal rules as in Manski, Dehejia and Hirano-Porter.
The class of feasible reallocations/redistributions includes all joint distributions of the two
inputs with fixed marginal distributions. When the inputs are continuously-valued, as we
assume in the current paper, the class potential rules is very large. Characterizing the optimal
allocation within this class is therefore a non-trivial problem. When both inputs are discrete-
valued the problem of finding the optimal allocation is tractable as the joint distribution of

1For recent surveys see Angrist and Krueger (2001), Heckman, Lalonde and Smith (2001), and Imbens (2004).
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the inputs is characterized by a finite number of parameters. In Graham, Imbens and Ridder
(2006a) we consider optimal allocation rules when both inputs are binary, allowing for general
complementarity or substitutability between the two inputs.

Our paper is also related to recent work on identification and estimation of models of social
interactions (e.g., Manski 1993, Brock and Durlauf 2001). We do not focus on directly charac-
terizing the within-group structure of social interactions, an important theme of this literature.
Rather our goal is simply to estimate the average relationship between group composition and
outcomes. The average we estimate may reflect endogenous behavioral responses by agents
to changes in group composition, or even equal an average over multiple equilibria. Viewed
in this light our approach is reduced form in nature. However it is sufficient for, say, an uni-
versity administrator to characterize the outcome effects of alternative roommate assignment
procedures.

The econometric approach taken here builds on the partial mean literature (e.g., Newey,
1994; Linton and Nielsen, 1995). In this literature one first estimates a regression function
nonparametrically. In the second stage the regression function is averaged, possibly after some
weighting with a known or estimable weight function, over some of the regressors. Similarly
here we first estimate a nonparametric regression function of the outcome on the input and
other characteristics. In the second stage the averaging is over the distribution of the regressors
induced by the new assignment rule. This typically involves the original marginal distribution
of some of the regressors, but a different conditional distribution for others. Complications
arise because this conditional covariate distribution may be degenerate, which will affect the
rate of convergence for the estimator. In addition the conditional covariate distribution itself
may require nonparametric estimation through its dependence on the assignment rule. For the
policies we consider the assignment rule will involve distribution functions and their inverses
similar to the way these enter in the changes-in-changes model of Athey and Imbens (2005).

The next section lays out our basic model and approach to identification. Section 3 then
defines and motivates the estimands we seek to estimate. Section 4 presents of our estimators,
and derives their large-sample properties, for the case where inputs are continuously-valued.
Section 5 presents a simple test for the efficiency of the status quo allocation of inputs. Section
6 deals with estimation and inference in the case where inputs take on discrete values. In this
case the problem is fully parametric and large sample standard errors can be computed using
the delta method Section 7 presents an application and the results of a small Monte Carlo
exercise.

2 Model

In this section we present the basic model and identifying assumptions. For clarity of exposition
we use the production function terminology; although our methods are appropriate for a wide
range of applications as emphasized in the introduction. Let Yi(w) be the output associated
with input level w for firm i = 1, . . . ,N . We are interested in reallocating the input W across
firms. We focus upon reallocations which hold the marginal distribution of W fixed. As such
they are appropriate for settings where W is a plausibly indivisible input, such as a manager
or teacher with a certain level of experience and expertise. The presumption is also that the
aggregate stock of W is difficult to augment.

In addition to W there are two other (observed) firm characteristics that may affect output:
X and Z, where X is a scalar and Z is a vector of dimension K. The first characteristic
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X could be a measure of, say, the quality of the long-run capital stock, with Z being other
characteristics of the firm such as location and age. These characteristics may themselves be
inputs that can be varied, but this is not necessary for the arguments that follow. In particular
the unconfoundedness or exogeneity assumption that we make for the first input need not hold
for these characteristics.

We observe for each firm i = 1, . . . ,N the level of the input, Wi, the characteristics Xi

and Zi, and the realized output level, Yi = Yi(Wi). In the educational example the unit of
observation would be a classroom. The variable input W would be teacher quality, and X
would be a measure of quality of the class, e.g., average test scores in prior years. The second
characteristic Z could include other measures of the class, e.g., its age or gender composition,
as elements. In the roommate example the unit would be the individual, with W the quality
of the roommate (measured by, for example, a high school test score), and the characteristic
X would be own quality. The second set of characteristics Z could be other characteristics of
the dorm or of either of the two roommates such as smoking habits (which may be used by
university administrators in the assignment of roommates).

Our identifying assumption is that conditional on firm characteristics (X,Z0)0 the assignment
of W , the level of the input to be reallocated, is unconfounded or exogenous.

Assumption 2.1 (Unconfoundedness/Exogeneity)

Y (w) ⊥ W
¯̄̄
X,Z, for all w ∈W ⊂ <1.

This type of assumption is common in the (binary) treatment effect literature where its
precise form is due to Rosenbaum and Rubin (1983). To interpret the assumption, consider
first the case where there are no additional characteristics (i.e., no dim(X) = dim(Z) = 0).
Then Assumption 2.1 requires that Y (w) ⊥W . This implies that the average output we would
observe if all firms were assigned input level W = w equals the average output among firms
that were in fact assigned input level W = w

E[Y (w)] = E[Y |W = w].

This requires that the distribution of unobservables, or potential outcomes, for the subpopula-
tion of firms that were assigned W = w be the same as that for the overall population of firms;
a condition that holds under random assignment of W .

The full assumption requires this equality to hold only in subpopulations homogenous in X
and Z. Let

g(w,x, z) = E[Y |W = w,X = x, Z = z],

denote the average output associated with input level w and characteristics x and z. Under
unconfoundedness we have — among firms with identical values ofX and Z — an equality between
the counterfactual average output that we would observe if all firms in this subpopulation
were assigned W = w, and the average output we observe for the subset of firms within this
subpopulation that are in fact assigned W = w. That is

g(w,x, z) = E[Y (w)|X = x,Z = z].

Assumption 2.1 has proved controversial (c.f., Imbens 2004). It holds under conditional
random assignment of W to units; as would occur in an explicit experiment. However random-
ized allocation mechanisms are also used by administrators in some institutional settings. For

[4]



example some universities match freshman roommates randomly conditional on responses in
a housing questionnaire (e.g., Sacerdote 2001). This assignment mechanism is consistent with
Assumption 2.1. In other settings, particularly where assignment is bureaucratic, as may be
true in some educational settings, a plausible set of conditioning variables may be available.
In this paper we focus upon identification and estimation under Assumption 2.1. In principle,
however, the methods could be extended to accommodate other approaches to identification
based upon, for example, instrumental variables.

Much of the treatment effect literature (e.g., Angrist and Krueger, 2000; Heckman, Lalonde
and Smith, 2000; Manski, 1990; Imbens, 2004) has focused on the average effect of an increase
in the value of the treatment. In particular, in the binary treatment case (w ∈ {0, 1}) interest
has centered on the average treatment effect

EX,Z [g(1,X, Z)− g(0,X,Z)].

With continuous inputs one may be interested in the full average output function g(w, x, z)
(Imbens, 2000; Flores, 2005) or in its derivative with respect to the input,

∂g

∂w
(w,x, z),

either at a point or averaged over some distribution of inputs and characteristics (e.g., Powell,
Stock and Stoker, 1989; Hardle and Stoker, 1989).

Here we are interested in a different estimand. We focus on policies that redistribute the
input W according to a rule based on the X characteristic of the unit. For example upon
assignment mechanisms that match teachers of varying experience to classes of students based
on their mean ability. One might assign those teachers with the most experience (highest
values of W ) to those classrooms with the highest ability students (highest values of X) and
so on. In that case average outcomes would reflect perfect rank correlation between W and
X . Alternatively, we could be interested in the average outcome if we were to assign W to be
negatively perfectly rank correlated with X. A third possibility is to assign W so that it is
independent of X. We are interested in the effect of such policies on the average value of the
output. We refer to such effects as Aggregate Redistributional Effects (AREs).

The above reallocations are a special case of a general set of reallocation rules that fix the
marginal distributions of W and X, but allow for correlation in their joint distribution. For
perfect assortative matching the correlation is 1, for negative perfect assortative matching -1,
and for random allocation 0. By using a bivariate normal cupola we can trace out the path
between these extremes.

We wish to emphasize that there are at least two limitations to our approach. First, we
focus on comparing specific assignment rules, rather than searching for the optimal assignment
rule within a class. The latter problem is a particularly demanding in the current setting
with continuously-valued inputs as the optimal assignment for each unit depends both on the
characteristics of that unit as well as on the marginal distribution of characteristics in the
population. When the inputs are discrete-valued both the problems of inference for a specific
rule as well as the problem of finding the optimal rule become considerably more tractable. In
that case any rule, corresponding to a joint distribution of the inputs, is characterized by a
finite number of parameters. Maximizing estimated average output over all rules evaluated will
then generally lead to the optimal rule. Graham, Imbens and Ridder (2006a) provide a detailed
discussion for the binary case.
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A second limitation is that of this class of assignment rules leaves the marginal distribution
of inputs unchanged. This latter restriction is perfectly appropriate in cases where the inputs
are indivisible, as, for example, in the social interactions and educational examples. In other
cases one need not be restricted to such assignment rules. A richer class of estimands would
allow for assignment rules that maintain some aspects of the marginal distribution of inputs
but not others. A particularly interesting class consists of assignment rules that maintain the
average (and thus total) level of the input, but allow for its arbitrary distribution across units.
This can be interpreted as assignment rules that ‘balance the budget’. In such cases one might
assign the maximum level of the input to some subpopulation and the minimum level of the
input to the remainder of the population. Finally, one may wish to consider arbitrary decision
rules where each unit can be assigned any level of the input within a set. In that case interesting
questions include both the optimal assignment rule as a function of unit-level characteristics
as well as average outcomes of specific assignment rules. In the binary treatment case such
problems have been studied by Dehejia (2005), Manski (2004), and Hirano and Porter (2005).

We consider the following four estimands that include four benchmark assignment rules.
All leave the marginal distribution of inputs unchanged. This obviously does not exhaust the
possibilities within this class. Many other assignment rules are possible, with corresponding
estimands. However, the estimands we consider here include focal assignments, indicate of the
range of possibilities, and capture many of the methodological issues involved.

3 Target estimands

The first estimand we consider is expected average outcome given perfect assortative matching
of W on X conditional on Z:

βpam = E[g(F−1W |Z(FX |Z(X |Z)|Z),X,Z)], (3.1)

where FX|Z(X|Z) denotes the conditional CDF of X given Z and F−1W |Z(p|Z) is the quantile of
order p ∈ [0, 1] associated with the conditional distribution of W given Z (i.e., F−1

W |Z(p|Z) is
a conditional quantile function). Therefore F−1W |Z(FX |Z(X|Z)|Z) computes a unit’s location on
the conditional CDF of X given Z and reassigns it the corresponding quantile of the conditional
distribution of W given Z. Thus among units with the same realization of Z, those with the
highest value of X are reassigned the highest value of W and so on.

The focus on reallocations within subpopulations defined by Z, as opposed to population-
wide reallocations, is because the average outcome effects of such reallocations solely reflect
complementarity or substitutability between W and X.

To see why this is the case consider the alternative estimand

βpam2 = E
£
g
¡
F−1W (FX(X),X,Z

¢¤
. (3.2)

This gives average output associated with population-wide perfect assortative matching of W
on X. If, for example, X and Z are correlated, then this reallocation, in addition to altering the
joint distribution ofW and X, will alter the joint distribution ofW and Z. Say Z is also a scalar
and is positively correlated with X. Population-wide positive assortative matching will induce
perfect rank correlated between W and X, but it will also increase the degree of correlation
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between W and Z. This complicates interpretation when g (w,x, z) may be non-separable in w
and z as well as w and x.

An example helps to clarify the issues involved. Let W denote an observable measure of
teacher quality, X mean (beginning-of-year) achievement in a classroom, and Z the fraction
of the classroom that is female. If begining-of-year achievement varies with gender, then X
and Z will be correlated. A reallocation that assigns high quality teachers to high achievement
classrooms, will also tend to assign such teachers to classrooms will an above average fraction
of females. Average achievement increases observed after implementing such a reallocation may
reflect complementarity between teacher quality and begining-of-year student achievement or
it may be that the effects of changes in teacher quality vary with gender and that, conditional
on gender, their is no complementarity between teacher quality and achievement. By focusing
on reallocations of teachers across classrooms with similar gender mixes, but varying baseline
achievement, (3.1) provides a more direct avenue to learning about complementarity.2

Both (3.1) and (3.2) may be policy relevant, depending on the circumstances, and both are
identified under Assumption 2.1. Under the additional assumption that

g(w,x, z) = g1(w,x) + g2(z),

the estimands, while associated with different reallocations, also have the same basic interpre-
tation. Here we nonetheless focus upon (3.1), although all of our results extend naturally and
directly to (3.2).

Our second estimand is the expected average outcome given negative assortative matching:

βnam = E[g(F−1
W |Z(1− FX |Z(X|Z)|Z),X,Z)]. (3.3)

If, within subpopulations homogenous in Z, W and X are everywhere complements, then the
difference βpam − βnam provides a measure of the strength input complementarity. When g (·)
is not supermodular interpretation of this difference is not straightforward. In Section 5 below
we present a measure of ‘local’ (relative to the status quo allocation) complementarity between
X and W .

Average output under the status quo allocation is given by

βsq = E[Y ] = E[g(W,X,Z)],

while average output under the random matching allocation is given by

βrm =

Z
z

∙Z
x

Z
w

g(w, x, z)dFW |Z(w|z)dFX|Z(x|z)
¸
dFZ(z).

This last estimand gives average output when W and X are independently assigned within
subpopulations.

The perfect positive and negative assortative allocations are focal allocations, being em-
phasized in theoretical research (e.g., Becker and Murphy 2000). The status quo and random
matching allocations are similarly natural benchmarks. However these allocations are just four
among the class of feasible allocations. This class is comprised of all joint distributions of
inputs consistent with fixed marginal distributions (within subpopulations homogenous in Z).
As noted in the introduction, if the inputs are continuously distributed this class of joint dis-
tributions is very large. For this reason we only consider a subset of these joint distributions.

2We make the connection to complementarity more explicit in Section 5 below.
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To be specific, we concentrate on a two-parameter subset of the feasible allocations that have
as special cases the negative and positive assortative matching allocations, the independent al-
location, and the status quo allocation. By changing the two parameters we trace out a ‘path’
in two directions: further from or closer to the status quo allocation, and further from or closer
to the perfect sorting allocations. Borrowing a term from the literature on cupolas, we call this
class of feasible allocations comprehensive, because it contains all four focal allocations as a
special case.

Average output under the correlated matching allocation is given by

βcm(ρ, τ) = τ ·E[Y ]+(1−τ)·
Z

g(w, x, z)dΦ
¡
Φ−1(FW |Z(w|z)),Φ−1(FX |Z(x|z)); ρ

¢
FZ(z), (3.4)

for τ ∈ [0, 1] and ρ ∈ (−1, 1).
The case with τ = 1 corresponds to the status quo:

βsq = βcm(ρ, 1)

The case with τ = ρ = 0 corresponds to random allocation of inputs within sub-populations
defined by Z:

βrm = βcm(0, 0) =

Z
z

∙Z
x

Z
w
g(w, x, z)dFW |Z(w|z)dFX|Z(x|z)

¸
dFZ(z).

While the cases with τ = 0 and ρ → 1 and −1 correspond respectively to the perfect positive
and negative assortative matching allocations. More generally, with τ = 0 we allocate the
inputs using a normal copula in a way that allows for arbitrary correlation between W and X
indexed by the parameter ρ. In principle we could use other copulas.

4 Estimation and inference with continuously-valued inputs

In this section we present feasible estimators for the perfect positive, negative and correlated
matching estimands and state their large sample properties. While the βcm(ρ, τ) can be es-
timated at standard parametric rates for τ ∈ [0, 1] and ρ ∈ (−1, 1). Average output under
the perfect positive and negative assortative matching allocations, βpam and βnam, can only be
estimated an nonparametric rates. We therefore consider inference separately for the two cases.

4.1 Estimation of bβpam, bβnam and βcm(ρ, τ )

[NOTE: There is a disjunct between what follows and what was stated in Section 3 above. In
particular we need to use estimators of the conditional CDFs FX |Z(X|Z) and FW |Z(W |Z) as
well as the conditional quantile function F−1

W |Z(p|Z). There are several off the shelf possibilities
here. For now I have proceeded with using the unconditional estimators as before. Thus these
estimators calculate average output under “population wide” reallocations not realloactions
within subpopulations homogenous in Z.]

The estimator for the status quo average outcome is just the average sample outcome, β̂sq =P
i Yi/N . This is efficient and inference is entirely standard. For the other estimators we first

need to estimate the regression function g(w,x, z). We estimate g(w,x, z) using nonparametric
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methods. We use kernel methods, although series estimators could also be used. For a kernel
K(u), with u ∈ RK+2, bandwidth b, and with Vi = (Wi,Xi, Z

0
i)
0 and v = (w, x, z0)0, we have

ĝ(w,x, z) =

PN
i=1 Yi ·K((v − Vi)/b)PN
i=1K((v − Vi)/b)

.

In the sequel we use the notation Kb(v) =
1

bK+2
K
¡
v
b

¢
.

Each of our estimators also require plug-in estimates of either FX(x) or FW (w) or both.
For these objects we use the empirical CDFs

F̂X(x) =
1

N

NX
i=1

1{Xi ≤ x}, F̂W (w) =
1

N

NX
i=1

1{Wi ≤ w}.

For the quantile function F−1W (q), required for the perfect positive and negative matching cases,
we use the inverse of the empirical distribution function of W, i.e.,

F̂−1W (q) = inf
w∈W

1{F̂W (w) ≥ q}.

We then estimate βpam and βnam by the analog estimators

bβpam = 1

N

NX
i=1

ĝ
³
F̂−1W (F̂X(Xi)),Xi, Zi

´
,

and

bβnam = 1

N

NX
i=1

ĝ
³
F̂−1W (1− F̂X(Xi)),Xi, Zi

´
.

For the purposes of estimation, the correlated matching allocations are redefined using a
truncated bivariate normal cupola. The truncation ensures that the denominator in the weights
of the correlated matching ARE are bounded from 0, so that we do not require trimming. The
bivariate standard normal PDF is

φ(x1, x2; ρ) =
1

2π
p
1− ρ2

e
− 1
2(1−ρ2) (x

2
1−2ρx1x2+x22),

with a corresponding joint CDF denoted by Φ(x1, x2; ρ). Observe that

Pr(−c < x1 ≤ c,−c < x2 ≤ c) = Φ(c, c; ρ)−Φ(c,−c; ρ)− [Φ(−c, c; ρ)− Φ(−c,−c; ρ)] ,

so that the truncated standard bivariate normal PDF is given by

φc(x1, x2; ρ) =
φ(x1, x2; ρ)

Φ(c, c; ρ)− Φ(c,−c; ρ)− [Φ(−c, c; ρ)−Φ(−c,−c; ρ)]

with −c < x1, x2 ≤ c. Denote the truncated bivariate CDF by Φc.
The truncated normal bivariate CDF gives a comprehensive cupola, because the correspond-

ing joint CDF

HW,X(w,x) = Φc
¡
Φ−1c (FW (w)),Φ

−1
c (FX (x)); ρ

¢
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has marginal CDFs equal to HW,X(w,∞) = FW (w) and HW,X(∞, x) = FX(x), it reaches the
upper and lower Fréchet bounds on the joint CDF for ρ = 1 and ρ = −1, respectively, and it
has independent W,X as a special case for ρ = 0.

To obtain an estimate of βcm(ρ, τ) we note that joint PDF associated with HW,X(w,x)
equals

hW,X(w,x) = φc
¡
Φ−1c (FW (w)),Φ

−1
c (FX(x)); ρ

¢ fW (w)fX(x)

φc
¡
Φ−1c (FW (w))

¢
φc
¡
Φ−1c (FX(x))

¢ ,
and hence that βcm(ρ, 0), redefined in terms of the truncated normal, is given by

βcm(ρ, 0) =

Z
x,z

Z
w
g(w,x, z)

φc
¡
Φ−1c (FW (w)),Φ

−1
c (FX(x)); ρ

¢
φc
¡
Φ−1c (FW (w))

¢
φc
¡
Φ−1c (FX(x))

¢fW (w)fX,Z(x, z)dwdxdz.

Replacing the integrals with sums over the empirical distribution we get the analog estimator

bβcm(ρ, 0) = 1

N2

NX
i=1

NX
j=1

ĝ(Wi,Xj , Zj)
φc

³
Φ−1c (F̂W (Wi)),Φ−1c (F̂X(Xj)); ρ

´
φc

³
Φ−1c (F̂W (Wi))

´
φc

³
Φ−1c (F̂X(Xj))

´ .
Observe that if ρ = 0 (independent matching) the ratio of densities on the right hand side is
equal to 1.

For τ > 0, the βcm(ρ, τ) estimand is a convex combination of average output under the
status quo and a correlated matching allocation. The corresponding sample analog is

bβcm(ρ, τ) = τ · bβsq + (1− τ) · bβcm(ρ, 0).
This estimator is linear in the nonparametric regression estimator ĝ and nonlinear in the em-
pirical CDFs of X and W . This structure simplifies the asymptotic analysis.

4.2 Asymptotic properties of the correlated matching estimator

A useful and insightful representation of βcm(ρ, 0) is as an average of partial means (c.f., Newey
1994). This representation provides intuition both about the structure of the estimand as well
as its large sample properties. Fixing W at W = w but averaging over the joint distribution of
X and Z we get the partial mean:

η (w) = EX,Z [g(w,X,Z)× d(w,X)] , (4.5)

where

d(w,x) =
φc(Φ

−1
c (FW (w)),Φ

−1
c (FX(x)); ρ)

φc(Φ
−1
c (FW (w)))φc(Φ

−1
c (FX(x)))

. (4.6)

Observe that (4.5) is a weighted averaged of the production function over the joint distribution
of X and Z holding the value of the input to be reallocated W fixed at W = w. The weight
function d(w,X) depends upon the truncated normal cupola. In particular, the weights give
greater emphasis to realizations of g(w,X,Z) that are associated with values of X that will be
assigned a value of W close to w as part of the correlated matching reallocation. Thus (4.5)
equals the average post-reallocation output for those firms being assigned W = w. To give a
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concrete example (4.5) is the post-reallocation expected achievement of those classrooms that
will be assigned a teacher of quality W = w.

Equation (4.5) also highlights the value of using the truncated normal copula. Doing so
ensures that the denominators of the copula ‘weights’ in (4.5) are bounded from zero. The
copula weights thus play the role similar to fixed trimming weights used by Newey (1994).

If we average these partial means over the marginal distribution ofW we get βcm(ρ, 0), since

βcm(ρ, 0) = EW [η (W )] ,

yielding average output under the correlated matching reallocation.
From the above discussion it is clear that our correlated matching estimator can be viewed

as a semiparametric two-step method-of-moments estimator with a moment function of

m(Y,W, βcm(ρ, τ), η (W )) = τY + (1− τ) η (W )− βcm(ρ, τ).

Our estimator, bβcm(ρ, τ), is the feasible GMM estimator based upon the above moment function
after replacing the partial mean (4.5) with a consistent estimate. While the above representation
is less useful for deriving the asymptotic properties of bβcm(ρ, τ) it does provide some insight as
to why we are able to achievement parametric rates of convergence.

To derive the asymptotic distribution of bβcm(ρ, τ) we show that bβcm(ρ, 0) is asymptotically
linear (this is sufficient since the sample mean of Y is clearly a linear estimator and bβcm(ρ, τ)
is a linear combination of Y and bβcm(ρ, 0)). This result is obtained in two steps. First, we
express bβcm(ρ, τ)− βcm(ρ, τ) as a sum of U-statistics. Second, we determine the projections of
these U-statistics to derive the asymptotically linear representation.

For the first step we follow the approach in Newey (1994). In particular, we define the
functions

k1,ijk(ζ) =
ĥ1(Wj ,Xk, Zk) + ζYiKb(Wj −Wi,Xk −Xi, Zk −Zi)

ĥ2(Wj ,Xk, Zk) + ζKb(Wj −Wi, Xk −Xi, Zk −Zi)
(4.7)

and

k2,ijk(ζ) =
φc(Φ

−1
c ( bFW (Wj) + ζI(Wj ≤Wi)),Φ−1c ( bFX(Xk) + ζI(Xk ≤ Xi)); ρ)

φc(Φ
−1
c ( bFW (Wj) + ζI(Wj ≤Wi)))φc(Φ

−1
c ( bFX(Xk) + ζI(Xk ≤ Xi)))

(4.8)

where ĥ1(w,x, z) and ĥ2(w, x, z) respectively equal

ĥ1(w, x, z) =
1

N

NX
i=1

yiKb(w −Wi, x−Xi, z −Zi) (4.9)

and

ĥ2(w, x, z) =
1

N

NX
i=1

Kb(w −Wi, x−Xi, z − Zi), (4.10)

such that the kernel estimate of the production function is equal to their ratio, i.e., ĝ(w, x, z) =
ĥ1(w,x, z)/ĥ2(w,x, z).
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Taking product of (4.7) and (4.8) and summing over all j and k we have

1

N2

NX
j=1

NX
k=1

k1,ijk(ζ)k2,ijk(ζ). (4.11)

Observe that

1

N2

NX
j=1

NX
k=1

k1,ijk(ζ)k2,ijk(ζ)

¯̄̄̄
¯̄
ζ=0

=
1

N

NX
j=1

bη (Wj) = bβcm(ρ, 0).
Differentiating (4.11) with respect to ζ and evaluating at ζ = 0 therefore provides an

estimate of the influence of the ith observation in bγ — the vector of estimated partial means
which are averaged over in (4.11) — on bβcm(ρ, 0). We have

∂k1,ijk
∂ζ

(ζ)

¯̄̄̄
ζ=0

=
Kb(Wj −Wi,Xk −Xi, Zk −Zi)

ĥ2(Wj ,Xk, Zk)
×
Ã
Yi −

ĥ1(Wj ,Xk, Zk)

ĥ2(Wj ,Xk, Zk)

!
,

and using the derivatives of the cupola in Appendix A.2 we also have

∂k2,ijk
∂ζ

(ζ)

¯̄̄̄
ζ=0

= êW (Wj ,Xk)I(Wi ≤Wj) + êX(Wj ,Xk)I(Xi ≤ Xk),

where

êW (Wj , Xk) =
ρφc(Φ

−1
c ( bFW (Wj)),Φ

−1
c ( bFX(Xk)); ρ)

(1− ρ2)φc(Φ
−1
c ( bFW (Wj)))2φc(Φ

−1
c ( bFX(Xk)))

× (4.12)h
Φ−1c ( bFX(Xk))− ρΦ−1c ( bFW (Wj))

i
êX(Wj , Xk) =

ρφc(Φ
−1
c ( bFW (Wj)),Φ

−1
c ( bFX(Xk)); ρ)

(1− ρ2)φc(Φ
−1
c ( bFW (Wj)))φc(Φ

−1
c ( bFX(Xk)))2

× (4.13)h
Φ−1c ( bFW (Wj))− ρΦ−1c ( bFX(Xk))

i
.

Our estimated influence function is therefore given by

bψi = m(Yi,Wi, bβcm(ρ, 0), bγ (Wi))+
1

N2

NX
j=1

NX
k=1

"
∂k1,ijk
∂ζ

(ζ)

¯̄̄̄
ζ=0

× k2,ijk(ζ) + k1,ijk ×
∂k2,ijk
∂ζ

(ζ)

¯̄̄̄
ζ=0

#
,

(4.14)

where the second and third terms are estimates of the first-order effect of the ith observation’s
effect on sampling variation in moment function operating through the estimated regression
function g (w,x, z) and CDFs of W and X respectively.

Replacing estimates with population values in (4.14), summing over i = 1, . . . ,N and letting
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bN ↓ 0 as N →∞ we obtain the following asymptotically equivalent expression for bβcm(ρ, 0)
bβcm(ρ, 0)− βcm(ρ, 0) =

1

N2

NX
j=1

NX
k=1

g(Wj ,Xk, Zk)d(Wj ,Xk)− βcm(ρ, 0)

+
1

N

NX
i=1

fW (Wi)fXZ(Xi, Zi)

fW,X,Z(Wi,Xi, Zi)
(Yi − g(Wi,Xi, Zi))d(Wi,Xi)

+
1

N3

NX
i=1

NX
j=1

NX
k=1

eW (Wj , Xk)(I(Wi ≤Wj)− FW (Wj))g(Wj ,Xk, Zk)

+
1

N3

NX
i=1

NX
j=1

NX
k=1

eX(Wj , Xk)(I(Xi ≤ Xk)− FX(Xk))g(Wj ,Xk, Zk),

with d(Wj , Xk) as defined in (4.6) above and eW (Wj ,Xk) and eX(Wj , Xk) as given by (4.12)
and (4.13) but with population values replacing estimates.

The first, third and fourth lines of the above expression are (two-sample) U-statistics. The
final asymptotically linear expression is obtained by projection of these statistics

bβcm(ρ, 0)− βcm(ρ, 0) =
1

N

NX
i=1

E [g(W,Xi, Zi)d(W,Xi)]− βcs

+
1

N

NX
i=1

E [g(Wi,X,Z)d(Wi,X)]− βcs

+
1

N

NX
i=1

fW (Wi)fXZ(Xi, Zi)

fWXZ(Wi, Xi, Zi)
(Yi − g(Wi,Xi, Zi))d(Wi,Xi)

+
1

N

NX
i=1

E [eW (W,X)g(X,W,Z)(I(Wi ≤W )− FW (W ))]

+
1

N

NX
i=1

E [eW (W,X)g(X,W,Z)(I(Xi ≤ X)− FX(X))] ,

where the expectations are over the product of the marginal distributions of W and X,Z. Note
that the term that accounts for the estimation of the regression function is uncorrelated with
all other terms, which simplifies the expression for the asymptotic variance.

In order to state a formal result we need the following assumptions

Assumption 4.1 Let v = (w x z0)0. The function K(v) is bounded on a bounded set V and
K(v) = 0 for v ∈ Vc. Also K is a kernel of order SZ

V
K(v)dv = 1

Z
V
vsK(v)dv = 0

for s = 1, . . . , S with vs =
Q

s1≥0,...,sK+2≥0,s1+···sK+2=s
vs11 · · · v

sK+2
K+2

Assumption 4.2 The joint density fW,X,Z (w, x, z) has compact support W ×X ×Z and the
density is bounded from 0 and ∞ on this support.

[13]



Assumption 4.3 The function g(w,x, z) = E[Y |W = w,X = x, Z = z] that is defined on
W×X ×Z can be extended to <K+2 such that it is S times continuously differentiable and the
S-th derivative is bounded on <K+2.

Assumption 4.4 E[Y 2|W,X,Z] is bounded on W ×X ×Z.

Assumption 4.5 The bandwidth sequence is such that as N →∞

N
1
4

√
lnN

b
K
2
+1

N →∞,
√
Nb

S(K+2)
N → 0.

Theorem 4.1 If assumptions 4.1-4.5 hold, thenbβcm(ρ, τ) p→ βcm(ρ, τ)

and

√
N(bβcm(ρ, τ)− βcm(ρ, τ)) = τ

1√
N

NX
i=1

(yi − βsq) + (1− τ)
1√
N

NX
i=1

ψi + op(1)

with

ψi = E [g(W,Xi, Zi)d(W,Xi)]− βcm(ρ, 0) + E [g(Wi,X,Z)d(Wi,X)]− βcm(ρ, 0) (4.15)

+
fW (Wi)fXZ(Xi, Zi)

fWXZ(Wi,Xi, Zi)
(Yi − g(Wi,Xi, Zi))d(Wi,Xi)

+ E [eW (W,X)g(X,W,Z)(I(Wi ≤W )− FW (W ))]

+ E [eW (W,X)g(W,X,Z)(I(Xi ≤ X)− FX(X))] .

and d(w,x), eX(w,x) and eW (w, x) as defined above.

Proof. See Appendix A.1
A consistent estimate of the asymptotic variance of bβcm is given by 1

N

PN
i=1(τ(Yi − βsq) +

(1− τ) bψi)
2, where bψi is as defined in (4.14) above.

4.3 Asymptotic properties of the perfect assortative matching estimator

In this subsection we discuss the large sample properties of β̂
pam

. The rate of convergence
of β̂

pam
to βpam is slower than the regular parametric rate. This is because we estimate a

nonparametric regression function with more arguments than we average over in the second
stage. We will show that

β̂
pam − βpam = Op

³
N−1/2b

−1/2
N

´
.

However, in order to improve the performance of confidence intervals we will take into ac-
count additional terms in the asymptotic expansion beyond the leading Op(N−1/2b

−1/2
N ) term.

Specifically, we take into account the Op(N
−1/2) terms.

Formally, we will show that

β̂
pam

= βpam + βpam + b
−1/2
N μ̂Y + μ̂W + μ̂X + μ̂g + op

³
N−1/2

´
,
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with μ̂Y , μ̂W , μ̂X , and μ̂g sample averages satisfying a joint central limit theorem:

√
N ·

⎛⎜⎜⎝
μ̂Y
μ̂W
μ̂X
μ̂g

⎞⎟⎟⎠ d−→ N

⎛⎜⎜⎝
⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ ,Ω

⎞⎟⎟⎠ .

We propose a consistent estimator Ω̂ for Ω. As the estimator for the variance ofN1/2b
1/2
N (β̂

pam−
βpam we then propose to use

σ̂2β =

⎛⎜⎜⎜⎝
1

b
1/2
N

b
1/2
N

b
1/2
N

⎞⎟⎟⎟⎠
0

Ω̂

⎛⎜⎜⎜⎝
1

b
1/2
N

b
1/2
N

b
1/2
N

⎞⎟⎟⎟⎠ .

As N →∞, this converges to

plimN→∞σ̂2β = Ω11,

because bN → 0. Hence we could simply estimate the asymptotic variance as

σ̃2β = Ω̂11.

Nevertheless, it is likely that taking into account the variation in μ̂W , μ̂X and μ̂g will improve
the finite sample properties of the confidence intervals.

We are interested in the asymptotic distribution of

β̂
pam

=
1

N

NX
i=1

ĝ
³
F̂−1W (F̂X(Xi)),Xi

´
.

Assumption 4.6 There are positive integers ∆ and s such that K(u) is differentiable of order
∆, the derivatives of order ∆ are Lipschitz, K(u) is zero outside a bounded set,

R
K(u)du = 1,

and for all j < s,
R
K(u)[⊗jl=1]du = 0.

quote from newey: “The last condition requires that the kernel be a higher order (bias
reducing) kernel of order s.”

Assumption 4.7 (probably superfluous given other assumptions) There is a non-
negative integer d and an extension of g(x) to all of Rk that is continuously differentiable to
order d on Rk.

Assumption 4.8 (probably superfluous given other assumptions) For p ≥ 4, E[|Y |p] ≤
∞, E[|Y |p|X = x]f(x) is bounded, E[km(z, β0, g)k2] <∞.

Assumption 4.9 (Smoothness of g(w,x))
g(w,x) is twice continuously differentiable with respect to w on W×X.

[15]



Assumption 4.10 (Distribution of Data)
(i) The support of W is W, a compact subset of R,
(ii) the support of X is X, a compact subset of R,
(iii) the joint distribution of W and X is bounded and bounded away from zero on W× X,
(iv) the conditional expectations μ4(v) = E[Y 4|W = w,X = x] is bounded.

Assumption 4.11 The bandwidth bN satisfies bN → 0, N−1b−2k1N → 0 N2/p−1b−kN ln(N)→ 0,
(p is moment of Y that exists)

(Whitney assumes (Nbk1N )
−1 converges to zero, but he uses a complicated condition on the

fourth moment of Y given V in Assumption 5.1 that may be more restrictive. It is a little
unclear to me).

First we decompose β̂
pam − βpam into four parts plus a lower order remainder term. The

first part corresponds to the uncertainty in ĝ(·, ·), the second corresponds to the uncertainty in
F̂−1W (·), the third part corresponds to the uncertainty in F̂X(·), and the final part corresponds
to the difference between the average of g

³
F−1W (F̂X(Xi)),Xi

´
and its expectation.

Lemma 4.1

β̂
pam − βpam =

1

N

NX
i=1

ĝ
¡
F−1W (FX(Xi)) ,Xi

¢
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
(4.16)

+
1

N

NX
i=1

g
³
F̂−1W (FX(Xi)) ,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
(4.17)

+
1

N

NX
i=1

g
³
F−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
(4.18)

+
1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
− E

£
g
¡
F−1W (FX(X)) , X

¢¤
+ op

³
N−1/2

´
. (4.19)

Define

gw(w,x) =
∂g

∂w
(w,x), and gww(w, x) =

∂2g

∂w2
(w, x),

qWX(w,x) =
gw(F

−1
W (FX(x)), x)

fW (F
−1
W (FX(x)))

· (1{FW (w) ≤ FX(x)}− FX(x)) ,

μ̂WX =
1

N2

NX
i=1

NX
j=1

qWX(Wi,Xj),

qW (w) = E[qWX(w,X)], and qX(x) = E[qWX(W,x)],

μ̂W =
1

N

NX
i=1

qW (Wi),

[16]



rX1X2(x1, x2) =
gw(F

−1
W (FX(x2)), x2)

fW (F
−1
W (FX(x2)))

· (1{x1 ≤ x2}− FX(x2)) ,

μ̂X1X2
=

1

N2

NX
i=1

NX
j=1

rX1X2(Xi,Xj),

rX(x) = E[rX1X2(x,X)], and rZ(x) = E[rX1X2(X,x)],

μ̂X =
1

N

NX
i=1

rX(Xi).

Next we give asymptotically linear representations for the first three components of the differ-
ence β̂

pam − βpam (the fourth is already a sample average). Define

ψNi = σ
k1/2
N ·

Z ¡
Yi − g(F−1W (FX(u)), u)

¢
·KσN (F

−1
W (FX(u))−Wi, u−Xi)du,

Lemma 4.2 (Asymptotic Linearity)
(i)

1

N

NX
i=1

g
³
F̂−1W (FX(Xi)) ,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
=
1

N

NX
i=1

qW (Wi)+op

³
N−1/2

´
(ii)

1

N

NX
i=1

g
³
F−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
=
1

N

NX
i=1

rX(Xi)+op
³
N−1/2

´
(iii)

σk1/2

N
·

NX
i=1

³
ĝ
¡
F−1W FX(Xi)), Xi

¢
− g

¡
F−1W FX(Xi)),Xi

¢´
=
1

N
·

NX
i=1

ψσi + op
³
N−1/2

´
.

Next, we give asymptotic normality results for the asymptotic linear representations. Define:

Ω33 =

Z Z "Z
K

Ã
∂F−1W (FX(v2))

∂v2
u2 + u1, u2

!
du2

#2
du1σ

2(F−1W (FX(v2)), v2))fW,X(F
−1
W (FX(v2)), v2)dv2

Lemma 4.3

1

N1/2
·

NX
i=1

⎛⎜⎜⎝
qW (Wi)
rX(Xi)

(ψσi − E[ψσi])
g(F−1W FX(Xi))− E

£
g(F−1W FX(X))

¤
⎞⎟⎟⎠ d−→ N

⎛⎜⎜⎝
⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ ,Ω

⎞⎟⎟⎠ .

All remaining results are collected in Appendix A.3.
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5 A test for ‘local’ complementarity of w and x

A potential problem with the β (ρ, τ) family of estimands is that the support requirements
for their precise estimation may be difficult to satisfy in practice, particularly for allocations
‘distant’ from the status quo. For this reason a measure of local (to the status quo) comple-
mentarity between W and X would be valuable. To this end we next characterize the mean
effect associated with a ‘small’ increase toward either positive or negative assortative matching.
The resulting estimand forms the basis of a simple test for local efficiency of the status quo
allocation.

We implement our local reallocation as follows: for λ ∈ [−1, 1], letWλ = λ·X+(
p
1− λ2)·W

be a random variable indexed by λ. The average output associated with positive assortative
matching on Wλ is given by

βlr(λ) = E[g(F−1W |Z(FWλ|Z(Wλ|Z)|Z),X,Z)]. (5.20)

For λ = 0 and λ = 1 we have Wλ = W and Wλ = X respectively and hence βlr(0) = βsq and
β lr(1) = βpam. Perfect negative assortative matching is also nested in this framework since

Pr (−X ≤ −x|Z) = 1− FX |Z (x|Z) ,

and hence for λ = −1 we have βlr(−1) = βnam. Values of λ close to zero induce reallocations
of W that are ‘local’ to the status quo, with λ > 0 and λ < 0 generating shifts toward positive
and negative assortative matching respectively.

The sign of the effect on average outcomes associated with a small step away from the status
quo and toward positive assortative matching is given by the sign of

γ =
∂β lr

∂λ
(0), (5.21)

while that associated with a small step toward negative assortative matching is given by the
sign of −γ.

Equation (5.21) has two alternative representations which are given in the following Lemma.

Lemma 5.1 γ = ∂βlr(0)/∂λ has equivalent representations of

γ = E
∙
∂g

∂w
(W,X,Z) · (X −m (W,X))

¸
, (5.22)

where m (w, z) = E [X|W = w,Z = z] and, if the support of X is bounded (i.e., a ≤ X ≤ b), of

γ = E
∙
V ar (X |W,Z) · EX |W,Z

∙
ω (V )

∂2g

∂w∂x
(W,X, Z) |W,Z

¸¸
, (5.23)

where V = (W,X,Z 0)0 as above and

ω (W, t,Z) =
1

dFX |W,Z (t|W,Z)

EX|W,Z [X −m (W,X) |W,Z,X ≥ t]
¡
1− FX|W,Z (t|W,Z)

¢R r=b
r=a EX|W,Z [X −m (W,X) |W,Z,X ≥ r]

¡
1− FX |W,Z (r|W,Z)

¢
dr

are weights with a population mean of 1 (i.e., EX|W,Z [ω (V ) |W,Z] = 1) and which emphasize

values of ∂2g
∂w∂x (W,X,Z) where X is near its conditional mean, m (W,X) .
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Proof. See Appendix A.4.
Representation (5.22), as we demonstrate below, suggests a straightforward method-of-

moments approach to estimating γ0. Representation (5.23) is valuable for interpretation. Equa-
tion (5.23) demonstrates that a test of H0 : γ = 0 is a test of the the null of no complementarity
or substitutability between W and X. If γ > 0, then in the ‘vicinity of the status quo’ W and
X are complements; if γ < 0 they are substitutes. The precise meaning of the ‘vicinity of the
status quo’ is implicit in the form of the weight function ω (V ).

Deviations of γ from zero imply that the status quo allocation does not maximize average
outcomes. For γ > 0 a shift toward positive assortative matching will raise average outcomes,
while for γ < 0 a shift toward negative assortative matching will do so. Lemma 5.1 therefore
provides the basis of a test for whether the status quo allocation is locally efficient.

Estimation of γ proceeds in two-steps. First we estimate g (w,x, z) andm (w, z) using kernel
methods as in Section 4. In the second step we estimate γ by method-of-moments using the
sample analog of the moment condition

E [m (Y, V, γ0, g,m)] = E [∇wg (W,X,Z) (X −m (W,Z))− γ0] = 0,

where g (W,X,Z) and m (W,Z) are replaced with the first step estimates, i.e.,

bγ = 1

N

XN

i=1
∇wbg (Wi,Xi, Zi)× (Xi − bm (Wi, Zi)). (5.24)

Note that we compute ∇wbg (w,x, z) by analytically differentiating bg (w, x, z) with respect to w.
The asymptotic properties of bγ are derived analogously to those of bβcm and are summarized

by Theorem 5.1.

Theorem 5.1 Under conditions 4.1 to 4.5 bγ is √N consistent and asymptotically normal, i.e.,bγ p→ γ

and
√
N(bγ − γ0)

D→ N (0,Λ0), Λ0 = V ar (ψ)

where ψ = m (Y, V, γ0, g,m) + δ (Y, V ) with

δ (Y, V ) = − 1

fW,X,Z (W,X,Z)

∂fW,X,Z (W,X, Z)

∂W
(Y − g (W,X,Z)) (X −m (W,Z))

− ∂m (W,Z)

∂W
(Y − g (W,X,Z))

− E
∙
∂g (W,X, Z)

∂W
|W = w,Z = z

¸
(X −m (W,Z)).

Proof. See Appendix A.5
Theorem 5.1 follows from the fact that bγ admits an asymptotically linear representation of
bγ = γ0 +

1

N

XN

i=1
{m (Yi, Vi, γ, g,m) + δ (Yi, Vi)}+ op(1/

√
N). (5.25)

If bg (w,x, z) and bm (x, z) are replaced by their population values in (??) the final three terms in
(5.25) drop out; these terms therefore represent the effect on the moment function of replacing
g (w,x, z) and m (x, z) with their nonparametric first step estimates. The first two capture the
effect of sampling error in ∇wbg (w,x, z) on the large sample behavior of m (Y, V, γ, g,m) , while
the final one captures the effect of sampling error in bm (x, z).
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6 Estimation and inference with Discretely-valued inputs

In Section 4 we assumed that both inputs (W,X) are continuous. Fortunately we can use the
same basic approach for discretely-valued inputs. Only for ρ = 1 or ρ = −1 (perfect sorting)
are there some complications.

We first consider −1 < ρ < 1. The general formula for a bivariate discrete density if W
takes the values w1, . . . , wK with probabilities p1, . . . , pK and X takes the values x1, . . . , xL
with probabilities q1, . . . , qL is given by

hW,X(wk, xl) = Pr(W = wk, X = xl)

= HW,X(wk, xl)−HW,X(wk, xl−)−HW,X(wk−, xl) +HW,X(wk−, xl−)
= HW,X(wk, xl)−HW,X(wk, xl−1)− [HW,X(wk−1, xl)−HW,X(wk−1, xl−1)]

Because FW (wk) =
Pk

i=1 pi and FX(xl) =
Pl

j=1 qj we have

HW,X(wk, xl) = Φ

⎛⎝Φ−1Ã kX
i=1

pi

!
,Φ−1

⎛⎝ lX
j=1

qj

⎞⎠ ; ρ
⎞⎠ ,

and, as can be easily verified,

dΦ

⎛⎝Φ−1Ã kX
i=1

pi

!
,Φ−1

⎛⎝ lX
j=1

qj

⎞⎠ ; 0
⎞⎠ = (FW (wk)− FW (wk−1))(FX(xl)− FX(xl−1)),

which is just a product of the marginal probability mass functions pk = dFW (wk) and ql =
dFW (wl).

The average output given correlated matching is

βcm(ρ, 0) =

Z
z

KX
k=1

LX
l=1

g(wk, xl, z)hW,X(wk, xl)dFZ|X(z|xl)

The estimator replaces pk and ql by the observed fractions p̂k and q̂l. If there is no Z or if
Z is discrete, g(wk, xl, z) is estimated by the sample average of Y for the observations with
W = wk, X = xl, and Z = z. Inference in this case is entirely standard. Standard errors can
be computed using the delta method; Appendix A.6 gives the required formulae.

Now consider the cases where ρ = 1 or ρ = −1. If ρ = 1 the joint distribution of (W,X) is
degenerate with a one dimensional support {(W,X)|W = F−1W (FX(X))}. In the discrete case
there may be no value of k such that

kX
i=1

pi =
lX

j=1

qj .

We therefore need compute a K vector w(xl) that specifies the fraction of units for each of
the K values of W that are assigned to firms with X = xl. That is, wk(xl) = r means that a
(randomly selected) fraction r of the units with W = wk is assigned to firms with X = xl.

Because w = F−1W (FX(x)) means that we match w to x, we can use the following algorithm
to determine the K vector w(xl). First, consider x1. There are two possibilities p1 > q1 and
p1 ≤ q1. In the first case

w1(x1) = 1

[20]



w2(x1) = · · · = wK(x1) = 0

We then set p1 = p1 − q1 and consider x2.
In the second case find k1 such that

k1X
i=1

pi ≤ q1 <

k1+1X
i=1

pi

Then

w1(x1) = · · · = wk1(x1) = 1

wk1+1(x1) = q1 −
k1X
i=1

pi

wk1+2(x1) = · · · = wK (x1) = 0

Set for k ≥ 2

w1(xk) = · · · = wk1(xk) = 0

and set

p1 =
k1+1X
i=1

pi − q1

1 = k1 + 1 and consider x2.
After the branch specific redefinition of p1 we compare q2 to p1 and branch as above. If

we choose the second branch k1 should be read as k1 from the previous step plus the new
k1. Repeat this until l = L. For ρ = −1 we relabel wk in reverse order and apply the same
algorithm.

7 Empirical application: martial sorting and child education

To illustrate our methods in practice we present estimates of AREs from a simple setting. In
particular, we consider the effect of parents’ education on the education of their child. Kremer
(1997) is a related application. He considers the connection between neighborhood and martial
sorting in terms of years schooling and inequality in educational attainment among children.
Kremer specifies a linear relation between the average level of education of parents and the
years of schooling of their children. This implies that the average level of childrens’ education
is invariant under reallocations of parents.

We use data on 10,272 children from the NLSY to study the relation between the education
of parents and the education of their children. Table 1 gives summary statistics.

It should be noted that years of education is not uniformly distributed. In the data 43%
of the mothers, 35% of the fathers, and 44% of the children report that they have 12 years
of education with further spikes at 16 years of education. Reported years of education vary
between 1 and 20. A regression of a child’s years of schooling on that of their mother and
father (see Table 2) shows that the interaction effect is not significant. The relation is nonlinear
however, so that reallocations of parents may affect the average level of child education.
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Table 1: Years of education NLSY; N = 12272

Mean Std. dev.
Ed. child 13.06 2.38
Ed. mother 11.20 2.87
Ed. father 11.20 3.64

Table 2: Regression of education of child on education parents; NLSY, N = 10272

Coefficient Standard err.
Constant 11.27 .19
Ed. mother -.041 .036
Ed. father -.077 .029
Ed. mother2 .011 .0023
Ed. father2 .011 .0015
Ed. mother× Ed. father .0014 .0029
R2 .22

Inspection of the average level of child education cross-classified by parent education shows
that a child’s educational attainment tends to be high if her mother has a high level of education
and her father has a low level of education relative to cases where her mother has a low level
of education and her father a high level of education. This asymmetry is not captured by the
interaction term.

Instead of trying more complicated regression models we directly estimate the average edu-
cation of children under correlated matching. Table 3 gives the average level for selected values
of ρ (τ is set equal to zero throughout). The figure reports the same levels and also gives the
error bands. The standard errors are computed by the delta method (see Appendix A.6). Note
that in this application we have no Z variables, i.e. we assume rather unrealistically that the
status quo assignment is not selective.

8 Conclusions

[TO BE COMPLETED]

Figure 1: Average years of education child given correlated sorting; 95% error bands
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Table 3: Average education given correlated (ρ) sorting

ρ β̂cs Std(β̂cs)
-.99 11.5 .069
-.8 11.7 .048
-.6 11.9 .040
-.4 12.1 .037
-.2 12.4 .034
0. 12.6 .033
.2 12.8 .031
.4 12.9 .030
.6 13.0 .029
.8 13.0 .029
.99 13.1 .039
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Notation

bN = Nα is bandwidth
K = dim (Z)
Wλ = λ ·X + (1− λ) ·W for testing ARE’s
β’s are average outcomes under various policies
βpam for positive assortative matching
βnam for negative assortative matching
βrm for random matching
βsq for status quo
βcm(ρ, τ) for correlated matching
γ is limit of the local complementarity test statistic
g(w, x, z) = E[Y |W = w,X = x,Z = z] = h2(w,x, z)/h1(w,x, z)

m(w, z) = E[X|W = w,Z = z]

Kb(u) =
1

bk+2N

K(u/σ) is kernel, where the dimension of u is k + 2. Kernel is bounded, with bounded
support U ⊂ Rk+2, and of order s.

Support of random variable Z is Z
V = (W,X,Z 0)0 is collection of all random right hand side variables
N observations, (Y i, Vi) i = 1, . . . ,N .
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Appendices

A Proofs of Theorems

A.1 Proof of Theorem 4.1

d(wj , xk) =
φc(Φ

−1
c (FW (wj)),Φ−1c (FX(xk)); ρ)

φc(Φ
−1
c (FW (wj)))φc(Φ

−1
c (FX (xk)))

d̂(wj , xk) =
φc(Φ

−1
c (F̂W (wj)),Φ−1c (F̂X(xk)); ρ)

φc(Φ
−1
c (F̂W (wj)))φc(Φ

−1
c (F̂X (xk)))

h1(w, x, z) =

Z
yfY WXZ(y,w, x, z)dy (1.26)

h2(w, x, z) = fWXZ(w,x, z) (1.27)

The ARE for correlated sorting is

β̂CS =
1

N2

NX
j=1

NX
k=1

ĝ(wj , xk, zk)d̂(wj , xk)

with

ĝ(w,x, z) =
ĥ1(w,x, z)

ĥ2(w,x, z)

g(w,x, z) =
h1(w,x, z)

h2(w,x, z)

Using the identity

âb̂ = ab+ b(â− a) + a(b̂− b) + (â− a)(b̂− b) (1.28)

we have

β̂CS =
1

N2

NX
j=1

NX
k=1

g(wj , xk, zk)d(wj , xk)+ (1.29)

1

N2

NX
j=1

NX
k=1

(ĝ(wj , xk, zk)− g(wj , xk, zk))d(wj , xk)+ (1.30)

1

N2

NX
j=1

NX
k=1

g(wj , xk, zk)(d̂(wj , xk)− d(wj , xk))+ (1.31)

1

N2

NX
j=1

NX
k=1

(ĝ(wj , xk, zk)− g(wj , xk, zk))(d̂(wj , xk)− d(wj , xk)) (1.32)
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In this decomposition the main term (1.29) is a two-sample U-statistic, the terms (1.30) and
(1.31) are correction terms that account for the estimation of the regression function and the
CDFs, and (1.32) is a remainder term that will be shown to be op(1).

To obtain an asymptotically linear representation we express (1.30) and (1.31) as averages.
We first consider (1.30). Using

â

b̂
=

a

b
+
1

b
(â− a)− a

b2
(b̂− b) +

a

b2b̂
(b̂− b)2 − 1

bb̂
(â− a)(b̂− b) (1.33)

we obtain

ĝ(w,x, z)− g(w, x, z) =
1

h2(w,x, z)
(ĥ1(w,x, z)− g(w,x, z)ĥ2(w,x, z))+

h1(w,x, z)

h2(w, x, z)ĥ2(w,x, z)
(ĥ2(w,x, z)− h2(w, x, z))

2−

1

h2(w, x, z)ĥ2(w,x, z)
(ĥ1(w,x, z)− h1(w, x, z))(ĥ2(w,x, z)− h2(w, x, z))

Substitution in (1.30) gives

1

N2

NX
j=1

NX
k=1

1

h2(wj , xk, zk)
(ĥ1(wj , xk, zk)− g(wj , xk, zk)ĥ2(wj , xk, zk))d(wj , xk)+ (1.34)

1

N2

NX
j=1

NX
k=1

h1(wj , xk, zk)d(wj , xk)

h2(wj , xk, zk)ĥ2(wj , xk, zk)
(ĥ2(wj , xk, zk)− h2(wj , xk, zk))

2+ (1.35)

1

N2

NX
j=1

NX
k=1

d(wj , xk)

h2(wj , xk, zk)ĥ2(wj , xk, zk)
(ĥ1(wj , xk, zk)−h1(wj , xk, zk))(ĥ2(wj , xk, zk)−h2(wj , xk, zk))

(1.36)

The main term (1.34) will be expressed as an average. The terms (1.35) and (1.36) are remainder
terms that will be shown to be op(1).

Substitution of ĥ1 and ĥ2 gives the following expression for (1.34)

1

N3

NX
i=1

NX
j=1

NX
k=1

d(wj , xk)

fWXZ(wj , xk, zk)
(yi − g(wj , xk, zk))Kσ(wj −wi, xk − xi, zk − zi) (1.37)

This is a V-statistic with kernel

h(vi, vj , vk) =
d(wj , xk)

fWXZ(wj , xk, zk)
(yi − g(wj , xk, zk))Kσ(wj −wi, xk − xi, zk − zi)

with v = (w x z0)0. To apply the V-statistic projection theorem to (1.37) we need that

E(h(vi, vj , vk)2) <∞
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Because d(wj , xk) is obviously bounded and by assumption 2 fWXZ(wj , xk, zk) is bounded from
0, this holds if

E
£
(yi − g(wj , xk, zk))

2Kσ(wj −wi, xk − xi, zk − zi)
2
¤
<∞ (1.38)

This is true because

E
£
y2iKσ(wj −wi, xk − xi, zk − zi)

2
¤
=

Ewj ,xk,zk

µZ
E(y2|w, x, z)Kσ(wj − w, xk − x, zk − z)2fWXZ(w,x, z)dwdxdz

¶
=

Ewj ,xk,zk

µZ
E(y2|wj − rσ, xk − sσ, zk − tσ)K(r, s, t)2fWXZ(wj − rσ, xk − sσ, zk − tσ)drdsdt

¶
≤

CE(y2) <∞

because E(y2) and K are bounded by assumptions 1 and 4. Here and in the sequel we use a
change of variables in the integral to r = (wj −w)/σ, s = (xk−x)/σ, t = (z−zk)/σ. For (1.38)
we also need that (using the same change of variables in the integral)¯̄

E
£
yig(wj , xk, zk)Kσ(wj − wi, xk − xi, z)k − zi)

2
¤¯̄
≤

Ewj ,xk,zk

∙
|g(wj , xk, zk)|

Z
|g(w, x, z)|Kσ(wj −w,xk − x, zk − z)2fWXZ(w,x, z)dwdxdz

¸
≤

Ewj ,xk,zk(|g(wj , xk, zk)|)Ewi,xi,zi(|g(wi, xi, zi)|) <∞

by assumptions 1-3. Finally, for (1.38) we need

E
£
g(wj , xk, zk)

2Kσ(wj −wi, xk − xi, zk − zi)
2
¤
≤ CEwj ,xk,zk(g(wj , xk, zk)

2) <∞

by assumptions 1-3.
Applying the V-statistic projection to (1.37) we have that

1

N3

NX
i=1

NX
j=1

NX
k=1

d(wj , xk)

fWXZ(wj , xk, zk)
(yi − g(wj , xk, zk))Kσ(wj −wi, xk − xi, zk − zi) =

1

N

NX
i=1

Z
d(wj , xk)

fWXZ(wj , xk, zk)
(yi−g(wj , xk, zk))Kσ(wj−wi, xk−xi, zk−zi)fW (wj)fXZ(xk, zk)dwjdxkdzk+

(1.39)

1

N

NX
j=1

Z
d(wj , xk)

fWXZ(wj , xk, zk)
(g(wi, xi, zi)− g(wj , xk, zk))Kσ(wj −wi, xk −xi, zk − zi)· (1.40)

fXZ(xk, zk)fWXZ(wi, xi, zi)dxkdzkdwidxidzi+

1

N

NX
k=1

Z
d(wj , xk)

fWXZ(wj , xk, zk)
(g(wi, xi, zi)− g(wj , xk, zk))Kσ(wj −wi, xk −xi, zk − zi)· (1.41)
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fW (wj)fWXZ(wi, xi, zi)dwjdwidxidzi + op

µ
1√
N

¶
We show that only the first term (1.39) has a contribution to the asymptotic distribution.
Define for some sequence σN ↓ 0

aiN =

Z
d(wj , xk)

fWXZ(wj , xk, zk)
(yi−g(wj , xk, zk))KσN (wj−wi, xk−xi, zk−zi)fW (wj)fXZ(xk, zk)dwjdxkdzk

Then

|
√
NE(aiN)| =

¯̄̄̄√
NEwi,xi,zi

∙Z
d(wj , xk)

fWXZ(wj , xk, zk)
(g(wi, xi, zi)− g(wj , xk, zk))·

KσN (wj −wi, xk − xi, zk − zi)fW (wj)fXZ(xk, zk)dwjdxkdzk]| =¯̄̄̄Z
d(wj , xk)

fWXZ(wj , xk, zk)

√
N(g(wj − rσN , xk − sσN , zk − tσN )− g(wj , xk, zk))K(r, s, t)·

fW (wj)fXZ(xk, zk)fWXZ(wj − rσN , xk − sσN , zk − tσN)drdsdtdwjdxkdzk|

By Taylor’s theorem

g(wj−rσN , xk−sσN , zk−tσN )−g(wj , xk, zk) =
S−1X
j=0

(−σN)j(K+2)
j!

µ
r
∂

∂w
+ s

∂

∂x
+ t0

∂

∂z

¶j

g(wj , xk, zk)+

σ
S(K+2)
N

(−1)S(K+2)
S!

µ
r
∂

∂w
+ s

∂

∂x
+ t0

∂

∂z

¶S

g(wj − rσN , xk − sσN , zk − tσN)

with r, s, t intermediate between 0 and r, s, t. Because g is assumed to be S times differentiable
with an S-th derivative that is bounded on <K+2 and the kernel is of order S, we have that

|
√
NE(aiN)| ≤ C

√
Nσ

S(K+2)
N

where we also use assumptions 1,2.
We have by assumptions 1-3 and using the same change of variables as before

|aiN | ≤ C

Z
|yi−g(wj , xk, zk)||KσN (wj−wi, xk−xi, zk−zi)|fW (wj)fXZ(xk, zk)dwjdxkdzk ≤

C|yi|
Z
|KσN (wj − wi, xk − xi, zk − zi)|fW (wj)fXZ(xk, zk)dwjdxkdzk+

C

Z
|g(wj , xk, zk)||KσN (wj − wi, xk − xi, zk − zi)|fW (wj)fXZ(xk, zk)dwjdxkdzk ≤

C1|yi|+ C2Ewj ,xk,zk(|g(wj , xk, zk)|)

and the right-hand side has a finite expected value. The upper bound on |aiN | also yields an
upper bound on a2iN that has a finite expected value. We have

E(a2iN ) = Eyi,wi,xi,zi

"Z Z
d(wj , xk)

fWXZ(wj , xk, zk)

d(w0j , x
0
k)

fWXZ(w0j , x
0
k, z

0
k)
(yi − g(wj , xk, zk))(yi − g(w0j , x

0
k, z

0
k))·
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KσN (wj −wi, xk − xi, zk − zi)KσN (w
0
j − wi, x

0
k − xi, z

0
k − zi)·

fW (wj)fXZ(xk, zk)fW (w
0
j)fXZ(x

0
k, z

0
k)dwjdxkdzkdw

0
jdx

0
kdz

0
k

¤
=

Eyi,wi,xi,zi

∙Z Z
d(wi + rσN , xi + sσN )

fWXZ(wi + rσN , xi + sσN , zi + tσN)

d(wi + r0σN , xi + s0σN )

fWXZ(wi + r0σN , xi + s0σN , zi + t0σN)
·

(yi − g(wi + rσN , xi + sσN , zi + tσN ))(yi − g(wi + r0σN , xi + s0σN , zi + t0σN ))·
K(r, s, t)K(r0, s0, t0)fW (wi + rσN)fXZ(xi + sσN , zi + tσN)·
fW (wi + r0σN)fXZ(xi + s0σN , zi + t0σN )drdsdtdr0ds0dt0

Hence by dominated convergence

lim
N→∞

E(a2iN ) = Eyi,wi,xi,zi

∙
d(wi, xi)2

fWXZ(wi, xi, zi)2
(yi − g(wi, xi, zi))

2fW (wi)
2fXZ(xi, zi)

2

¸
≡ V

We conclude that for any sequence σN that satisfies
√
Nσ

S(K+2)
N ↓ 0

1√
N

NX
i=1

(aiN − E(aiN )) =
1√
N

NX
i=1

aiN + op(1)

so that by the Lindeberg-Feller Central Limit Theorem

1√
N

NX
i=1

aiN
d→ N(0, V ) (1.42)

Next we consider (1.40). With a change of variables and by the same assumptions that were
used to bound |

√
NE(aiN)| we have

E

⎡⎣¯̄̄̄¯̄ 1√N
NX
j=1

Z
d(wj , xk)

fWXZ(wj , xk, zk)
(g(wi, xi, zi)− g(wj , xk, zk))Kσ(wj −wi, xk − xi, zk − zi)·

fXZ(xk, zk)fWXZ(wi, xi, zi)dxkdzkdwidxidzi|] ≤
√
NEwj

∙¯̄̄̄Z
d(wj , xk)

fWXZ(wj , xk, zk)
(g(wj − rσN , xk − sσN , zk − tσN )− g(wj , xk, zk))K(r, s, t)·

fXZ(xk, zk)fWXZ(wj − rσN , xk − sσN , zk − tσN )dxkdzkdrdsdt|] ≤

C
√
Nσ

S(K+2)
N

Z ¯̄̄̄
¯
µ
r
∂

∂w
+ s

∂

∂x
+ t0

∂

∂z

¶S

g(wj − rσN , xk − sσN , zk − tσN)

¯̄̄̄
¯ |K(r, s, t)|·

fW (wj)fXZ(xk, zk)dwjdxkdzkdrdsdt

so that if
√
Nσ

S(K+2)
N ↓ 0

1√
N

NX
j=1

Z
d(wj , xk)

fWXZ(wj , xk, zk)
(g(wi, xi, zi)−g(wj , xk, zk))Kσ(wj−wi, xk−xi, zk−zi)· (1.43)

fXZ(xk, zk)fWXZ(wi, xi, zi)dxkdzkdwidxidzi = op(1)
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by the Markov inequality. An analogous argument gives that

1√
N

NX
k=1

Z
d(wj , xk)

fWXZ(wj , xk, zk)
(g(wi, xi, zi)−g(wj , xk, zk))Kσ(wj−wi, xk−xi, zk−zi)· (1.44)

fW (wj)fWXZ(wi, xi, zi)dwjdwidxidzi = op(1)

if
√
Nσ

S(K+2)
N ↓ 0.

Next, we consider (1.35). Newey (1994) shows that under assumptions 1-4

sup
w,x,z∈W×X×Z

|ĥj(w,x, z)− hj(w,x, z)| = Op

Ãr
lnN

N
σ
−K

2
−1

N + σ
S(K+2)
N

!
(1.45)

for j = 1, 2. Hence we have¯̄̄̄
¯̄√NN2

NX
j=1

NX
k=1

h1(wj , xk, zk)d(wj , xk)

h2(wj , xk, zk)ĥ2(wj , xk, zk)
(ĥ2(wj , xk, zk)− h2(wj , xk, zk))

2

¯̄̄̄
¯̄ ≤

³
N

1
4 supw,x,z∈W×X×Z |ĥ2(w, x, z)− h2(w, x, z)|

´2
infw,x,z∈W×X×Z |ĥ2(w,x, z)|

1

N2

NX
j=1

NX
k=1

¯̄̄̄
h1(wj , xk, zk)d(wj , xk)

h2(wj , xk, zk)

¯̄̄̄
Now

inf
w,x,z∈W×X×Z

|ĥ2(w,x, z)| ≥ inf
w,x,z∈W×X×Z

|h2(w,x, z)|− sup
w,x,z∈W×X×Z

|ĥ2(w,x, z)−h2(w, x, z)|

Hence¯̄̄̄
¯̄√NN2

NX
j=1

NX
k=1

h1(wj , xk, zk)d(wj , xk)

h2(wj , xk, zk)ĥ2(wj , xk, zk)
(ĥ2(wj , xk, zk)− h2(wj , xk, zk))

2

¯̄̄̄
¯̄ = op(1) (1.46)

if σN is such that

N
1
4

√
lnN

σ
K
2
+1

N →∞ N
1
4σ

S(K+2)
N → 0 (1.47)

An analogous argument shows that for (1.36) we have

√
N

N2

NX
j=1

NX
k=1

d(wj , xk)

h2(wj , xk, zk)ĥ2(wj , xk, zk)
(ĥ1(wj , xk, zk)−h1(wj , xk, zk))(ĥ2(wj , xk, zk)−h2(wj , xk, zk)) =

(1.48)

op(1)

if σN satisfies (1.47). This completes the discussion of the first part of the correction term.
The second part of the correction term is obtained from (1.31). Using the definition of k in

(1.58) and a second-order Taylor expansion we have

d̂(wj , xk)− d(wj , xk) = k(F̂W (wj), F̂X(xk))− k(FW (wj), FX(xk)) =

[31]



∂k

∂s1
(FW (wj), FX(xk))(F̂W (wj)− FW (wj)) +

∂k

∂s2
(FW (wj), FX(xk))(F̂X(xk)− FX(xk))+

1

2

∂2k

∂s21
(FW (wj), FX(xk))(F̂W (wj)−FW (wj))

2+
1

2

∂2k

∂s22
(FW (wj), FX(xk))(F̂X(xk)−FX(xk))2+

∂2k

∂s1∂s2
(FW (wj), FX(xk))(F̂W (wj)− FW (wj))(F̂X(xk)− FX(xk))

with FW (wj), FX(xk) intermediate values. Substitution in (1.31) gives

√
N

N2

NX
j=1

NX
k=1

g(wj , xk, zk)(d̂(wj , xk)− d(wj , xk)) =

√
N

N2

NX
j=1

NX
k=1

g(wj , xk, zk)
∂k

∂s1
(FW (wj), FX(xk))(F̂W (wj)− FW (wj))+ (1.49)

√
N

N2

NX
j=1

NX
k=1

g(wj , xk, zk)
∂k

∂s2
(FW (wj), FX(xk))(F̂X(xk)− FX(xk))+ (1.50)

1

2

√
N

N2

NX
j=1

NX
k=1

g(wj , xk, zk)
∂2k

∂s21
(FW (wj), FX(xk))(F̂W (wj)− FW (wj))

2+ (1.51)

1

2

√
N

N2

NX
j=1

NX
k=1

g(wj , xk, zk)
∂2k

∂s22
(FW (wj), FX(xk))(F̂X(xk)− FX(xk))

2+ (1.52)

√
N

N2

NX
j=1

NX
k=1

g(wj , xk, zk)
∂2k

∂s1∂s2
(FW (wj), FX(xk))(F̂W (wj)−FW (wj))(F̂X(xk)−FX (xk))

(1.53)

where the derivatives are given in (1.59)-(1.63).
The leading terms (1.49) and (1.50) are V-statistics. For instance, (1.49) can expressed as

√
N

N2

NX
j=1

NX
k=1

NX
l=1

g(wj , xk, zk)
∂k

∂s1
(FW (wj), FX(xk))(I(wl ≤ wj)− FW (wj)) = (1.54)

1√
N

NX
1=1

Ewj ,xk,zk

∙
g(wj , xk, zk)

∂k

∂s1
(FW (wj), FX(xk))(I(wi ≤ wj)− FW (wj))

¸
+ op(1)

and (1.50) is

1√
N

NX
1=1

Ewj ,xk ,zk

∙
g(wj , xk, zk)

∂k

∂s2
(FW (wj), FX(xk))(I(xi ≤ xk)− FX(xk))

¸
+op(1) (1.55)

both by the V-statistic projection theorem.
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The terms in (1.51)-(1.53) are op(1). We show this for (1.51) with the proof for the other
terms being analogous. First, note that inspection of (1.61) shows that this is a bounded
function. Hence¯̄̄̄

¯̄12
√
N

N2

NX
j=1

NX
k=1

g(wj , xk, zk)
∂2k

∂s21
(FW (wj), FX(xk))(F̂W (wj)− FW (wj))

2

¯̄̄̄
¯̄ ≤

C
√
N sup

w∈W
|F̂W (w)− FW (w)|2 ≤ C

µ
N

1
4 sup

w
|F̂W (w)− FW (w)|

¶2
= op(1)

by the law of the iterated logarithm.
The final step in the proof is to deal with (1.32). We have¯̄̄̄
¯̄√NN2

NX
j=1

NX
k=1

(ĝ(wj , xk, zk)− g(wj , xk, zk))(d̂(wj , xk)− d(wj , xk))

¯̄̄̄
¯̄ ≤

N
1
4 sup
w,x,z∈W×X×Z

|ĝ(w,x, z)− g(w,x, z)| ·N 1
4 sup
w,x∈W×X

|d̂(w, x)− d(w,x)|

We have

N
1
4 sup
w,x∈W×X

|d̂(w, x)− d(w,x)| =

N
1
4 sup
w,x∈W×X

¯̄̄̄
∂k

∂s1
(FW (w), FX(x))(F̂W (w)− FW (w)) +

∂k

∂s2
(FW (w), FX(x))(F̂X(x)− FX (x))

¯̄̄̄
≤

C1N
1
4 sup
w∈W

|F̂W (w)− FW (w)|+C2N
1
4 sup
x∈X

|F̂X(x)− FX(x)| = op(1)

Using (1.33) we have

sup
w,x,z∈W×X×Z

|ĝ(w,x, z)− g(w,x, z)| ≤

sup
w,x,z∈W×X×Z

1

|h2(w,x, z)|
|ĥ1(w, x, z)−h1(w, x, z)|+ sup

w,x,z∈W×X×Z

|g(w, x, z)|
|h2(w,x, z)|

|ĥ2(w,x, z)−h2(w, x, z)|+

sup
w,x,z∈W×X×Z

|g(w, x, z)|
|h2(w, x, z)ĥ2(w,x, z)|

|ĥ2(w,x, z)− h2(w,x, z)|2+

sup
w,x,z∈W×X×Z

1

|h2(w, x, z)ĥ2(w,x, z)|
|ĥ2(w,x, z)− h2(w,x, z)||ĥ1(w,x, z)− h1(w,x, z)|

Hence by (1.45) we have that for a sequence σN that satisfies (1.47)

N
1
4 sup
w,x,z∈W×X×Z

|ĝ(w,x, z)− g(w,x, z)| = op(1)

This completes the proof of the theorem. ¤
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A.2 Derivatives of the Truncated Normal Cupola

We consider the functions

c1(s) = φc(Φ
−1
c (s))

and

c2(s1, s2) = φc(Φ
−1
c (s1),Φ

−1
c (s2); ρ)

with 0 ≤ s ≤ 1 and 0 ≤ s1, s2 ≤ 1. The derivatives are

dc1
ds
(s) = −Φ−1c (s) (1.56)

∂c2
∂s1

(s1, s2) = −
φc(Φ

−1
c (s1),Φ

−1
c (s2); ρ)

1− ρ2
Φ−1c (s1)− ρΦ−1c (s2)

φc(Φ
−1
c (s1))

(1.57)

Define

k(s1, s2) =
c2(s1, s2)

c1(s1)c2(s2)
(1.58)

We have

∂k

∂s1
(s1, s2) = −

φc(Φ
−1
c (s1),Φ

−1
c (s2); ρ)

φc(Φ
−1
c (s1))φc(Φ

−1
c (s2))

½
ρ2Φ−1c (s1) + ρΦ−1c (s2)

φc(Φ
−1
c (s1))

¾
(1.59)

∂k

∂s2
(s1, s2) = −

φc(Φ
−1
c (s2),Φ

−1
c (s1); ρ)

φc(Φ
−1
c (s1))φc(Φ

−1
c (s2))

½
ρ2Φ−1c (s2) + ρΦ−1c (s1)

φc(Φ
−1
c (s2))

¾
(1.60)

∂2k

∂s21
(s1, s2) =

φc(Φ
−1
c (s2),Φ

−1
c (s1); ρ)

φc(Φ
−1
c (s1))3φc(Φ

−1
c (s2))

· (1.61)n¡
ρ2Φ−1c (s2) + ρΦ−1c (s1)

¢2 − ¡ρ2Φ−1c (s2) + ρΦ−1c (s1)
¢
Φ−1c (s1)− ρ2

o
∂2k

∂s22
(s1, s2) =

φc(Φ
−1
c (s2),Φ

−1
c (s1); ρ)

φc(Φ
−1
c (s1))φc(Φ

−1
c (s2))3

· (1.62)n¡
ρ2Φ−1c (s1) + ρΦ−1c (s2)

¢2 − ¡ρ2Φ−1c (s1) + ρΦ−1c (s2)
¢
Φ−1c (s2)− ρ2

o
∂2k

∂s1∂s2
(s1, s2) =

φc(Φ
−1
c (s2),Φ

−1
c (s1); ρ)

φc(Φ
−1
c (s1))2φc(Φ

−1
c (s2))2

· (1.63)©¡
ρ2Φ−1c (s1) + ρΦ−1c (s2)

¢ ¡
ρ2Φ−1c (s2) + ρΦ−1c (s1)

¢
− ρ

ª
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A.3 Materials related to derivation of large sample properties of βpam

Before proving the main results we present some preliminary results.
For a real valued random variable Y with support Y = [y, y], define

F̂Y (y) =
NX
i=1

1{Yi ≤ y},

and, for q ∈ (0, 1]

F̂−1Y (q) = min{y ∈ Y : F̂Y (y) ≥ q},

and F̂−1Y (0) = y.
First some Lemmas from AI.

Lemma A.1 For any δ < 1/2, with Y = [y, y], and FY (y) continuously differentiable on Y,

sup
y∈Y

N δ · |F̂Y (y)− FY (y)|
p→ 0.

Proof: See Lemma A.2 in AI.

Lemma A.2 For any δ < 1/2, with Y = [y, y], and FY (y) continuously differentiable on Y,

sup
q∈[0,1]

Nδ · |F̂−1Y (q)− F−1Y (q)| p→ 0.

Proof: See Lemma A.3 in AI.
We will use the following generalization of this:

Lemma A.3 For any δ < 1/2, with Y = [y, y], X = [x, x] and FY (y) and FX(x) continuously
differentiable on Y, with FY (y) bounded away from zero on Y:

sup
x∈X

N δ ·
¯̄̄
F̂−1Y

³
F̂X(x)

´
− F−1Y (FX(x))

¯̄̄
p→ 0.

Proof: By the triangle inequality

sup
x∈X

N δ ·
¯̄̄
F̂−1Y

³
F̂X(x)

´
− F−1Y (FX(x))

¯̄̄
≤ sup

x∈X
N δ ·

¯̄̄
F̂−1Y

³
F̂X(x)

´
− F−1Y

³
F̂X(x)

´¯̄̄
+sup

x∈X
N δ ·

¯̄̄
F−1Y

³
F̂X(x)

´
− F−1Y

³
F̂X(x)

´¯̄̄
≤ sup

q∈[0,1]
Nδ ·

¯̄̄
F̂−1Y (q)− F−1Y (q)

¯̄̄
+ sup

x∈X,y∈Y
N δ · 1

fY (y)

¯̄̄
F̂X(x)− FX(x)

¯̄̄
.

The first term is op(1) by Lemma A.2, and the second by the fact that FY (y) is continuous
differentiable with its derivative bounded away from zero, in combination with Lemma A.1. ¤
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Lemma A.4 (Uniform Convergence) Suppose Y = [y, y], and FY (y) is twice continuously
differentiable on Y, with its first derivative fY (y) =

∂FY
∂y (y) bounded away from zero on Y.

Then, for 0 < η < 3/4 and δ > max(2η − 1, η/2),

sup
y∈Y,x≤N−δ,x+y∈Y

Nη ·
¯̄̄
F̂Y (y + x)− F̂Y (y)− (FY (y + x)− FY (y))

¯̄̄
p−→ 0.

Proof: See Lemma A.5 in AI.

Lemma A.5 () Suppose Y = [y, y], and FY (y) is twice continuously differentiable on Y, with
its first derivative fY (y) = ∂FY

∂y (y) bounded away from zero on Y. Then, for 0 < η < 3/4 and
δ > max(2η − 1, η/2),

sup
y∈Y,x≤N−δ,x+y∈Y

Nη ·
¯̄̄
F̂Y (y + x)− F̂Y (y)− fY (y) · x

¯̄̄
p−→ 0.

Proof: By the triangle inequality

sup
y∈Y,x≤N−δ,x+y∈Y

Nη ·
¯̄̄
F̂Y (y + x)− F̂Y (y)− fY (y) · x

¯̄̄
≤ sup

y∈Y,x≤N−δ,x+y∈Y
Nη ·

¯̄̄
F̂Y (y + x)− (FY (y + x)− FY (y))

¯̄̄
+ sup

y∈Y,x≤N−δ,x+y∈Y
Nη · |FY (y + x)− FY (y)− fY (y) · x| .

The first term on the right-hand side converges to zero in probability by Lemma A.4. To show
that the second term converges to zero note that

sup
y∈Y,x≤N−δ,x+y∈Y

Nη · |FY (y + x)− FY (y)− fY (y) · x|

≤ sup
y∈Y,x≤N−δ,x+y∈Y,λ∈[0,1]

Nη · |fY (y + λx) · x− fY (y) · x|

≤ sup
y∈Y,x≤N−δ,x+y∈Y

Nη · |FY (y + x)− FY (y)− fY (y) · x|

≤ sup
y∈Y,z∈Y,x≤N−δ,x+y∈Y

Nη ·
¯̄̄̄
∂fY
∂y

(z) · λx2
¯̄̄̄

≤ sup
y∈Y,x≤N−δ

Nηx2
∂fY
∂y

(y)→ 0,

because ∂fY
∂y (y) is bounded, x < N−δ, and δ > η/2.

Lemma A.6 Suppose Y = [y, y], and FY (y) is twice continuously differentiable on Y, with its
first derivative fY (y) =

∂FY
∂y (y) bounded away from zero on Y. Then, for all 0 < η < 5/7,

sup
q∈[0,1]

Nη ·
¯̄̄̄
¯F̂−1Y (q)− F−1Y (q) +

1

fY (F
−1
Y (q))

³
F̂Y (F

−1
Y (q))− q

´¯̄̄̄¯ p→ 0.
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Proof: See Lemma A.6 in AI.
Next, some results from Newey (1994b).

Lemma A.7 Suppose that E[|Y |p] < ∞ for p > 2, E[|Y |p|X = x]f(x) is bounded, X ⊂ Rk is
compact, Assumption 4.6 is satisfied for ∆ ≥ j, and σ = σ(N) such that σ(N) is bounded and
N1−(2/p)σ(N)k/ ln(N)→∞. Then

kĝ − E[ĝ]kj = Op

³
ln(N)1/2(Nσ(N)k+2j)−1/2

´
. (1.64)

Lemma A.8 If Assumption 4.6, 4.7, and 4.8 are satisfied for d ≥ j + s, then

kE[ĝ]− gkj = O(σ(N)s). (1.65)

Lemma A.9 If the hypotheses of Lemma’s A.7 and A.8 are satisfied and Assumption 4.7 is
satisfied with for d ≥ j + s, then

kĝ − gkj = Op(ln(N)
1/2(Nσ(N)k+2j)−1/2 + σ(N)s. (1.66)

Next, a result from Newey (1997).
Now we present some results directly relevant to the estimator for βpam.

Lemma A.10

μ̂WX − μ̂W = op
³
N−1/2

´
.

Proof: μ̂WX is a V-statistic. Hence it can be approximated by two sums

μ̂WX = E[μ̂WX ]

+
1

N

NX
i=1

(qW (Wi)− E[qW (W )]) +
1

N

NX
i=1

(qX(Xi)− E[qX(X)]) + op
³
N−1/2

´
.

However, qX(x) = 0, so that the third term vanishes and

μ̂WX = E[μ̂WX ] +
1

N

NX
i=1

(qW (Wi)− E[qW (W )]) + op
³
N−1/2

´

=
1

N

NX
i=1

qW (Wi) + op
³
N−1/2

´
= μ̂W + op

³
N−1/2

´
¤

Lemma A.11

μ̂X1X2
− μ̂X = op

³
N−1/2

´
.

Proof: The proof is the same as the proof of Lemma A.10, and therefore omitted. ¤
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Lemma A.12
√
N · μ̂W

d−→ N
¡
0,E[qW (Wi)

2]
¢
,

and
√
N · μ̂X

d−→ N
¡
0,E[qX(Xi)

2]
¢
.

Proof: Because E[qWX(W,X)] = 0, it follows that E[qW (W )] = 0. Then a central limit
theorem implies the result. For the second part, we have similarly E[qX1X2(X,x2)] = 0, and
therefore E[qX(X)] = 0, and then a central limit theorem implies the second result. ¤

Proof of Lemma 4.1:

θ̂ − θ =
1

N

NX
i=1

ĝ
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
− E

£
g
¡
F−1W (FX(X)) ,X

¢¤

=
1

N

NX
i=1

ĝ
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
(1.67)

−
Ã
1

N

NX
i=1

ĝ
¡
F−1W (FX(Xi)) , Xi

¢
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢!
(1.68)

+
1

N

NX
i=1

ĝ
¡
F−1W (FX(Xi)) ,Xi

¢
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) , Xi

¢
(1.69)

+
1

N

NX
i=1

g
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
³
F−1W

³
F̂X(Xi)

´
,Xi

´
(1.70)

−
Ã
1

N

NX
i=1

g
³
F̂−1W (FX(Xi)) ,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢!
(1.71)

+
1

N

NX
i=1

g
³
F̂−1W (FX(Xi)) ,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
(1.72)

+
1

N

NX
i=1

g
³
F−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
(1.73)

+
1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
− E

£
g
¡
F−1W (FX(X)) , X

¢¤
. (1.74)

Since the right-hand side of (4.16) is equal to (1.69), (4.17) equals (1.72), (4.18) equals (1.73),
and the first two terms in (4.19) equal (1.74), we only need to show that the sum of (1.67),
(1.68), (1.70), and (1.71) are op(N−1/2). We do this by showing that the sum of (1.67) and
(1.68) is op(N−1/2), and that the sum of (1.70) and (1.71) is op(N−1/2).

First consider the sum of (1.67) and (1.68).

1

N

NX
i=1

ĝ
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
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−
Ã
1

N

NX
i=1

ĝ
¡
F−1W (FX(Xi)) , Xi

¢
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢!

=
1

N

NX
i=1

ĝ
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

ĝ
¡
F−1W (FX(Xi)) ,Xi

¢
−
Ã
1

N

NX
i=1

g
³
F̂−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢!

=
1

N

NX
i=1

∂ĝ

∂w

¡
F−1W (FX(Xi)) , Xi

¢ ³
F̂−1W

³
F̂X(Xi)

´
− F−1W (FX(Xi))

´

+
1

N

NX
i=1

∂2ĝ

∂w2
(w̃i,Xi)

³
F̂−1W

³
F̂X(Xi)

´
− F−1W (FX(Xi))

´2
(1.75)

− 1
N

NX
i=1

∂g

∂w

¡
F−1W (FX(Xi)) ,Xi

¢³
F̂−1W

³
F̂X(Xi)

´
− F−1W (FX(Xi))

´

− 1
N

NX
i=1

∂2g

∂w2
(w̃i,Xi) ·

³
F̂−1W

³
F̂X(Xi)

´
− F−1W (FX(Xi))

´2
. (1.76)

=
1

N

NX
i=1

µ
∂ĝ

∂w

¡
F−1W (FX(Xi)) ,Xi

¢
− ∂g

∂w

¡
F−1W (FX(Xi)) , Xi

¢¶
×
³
F̂−1W

³
F̂X(Xi)

´
− F−1W (FX(Xi))

´
+ op

³
N−1/2

´
.

≤ sup
x∈X

¯̄̄̄
∂ĝ

∂w

¡
F−1W (FX(x)) , x

¢
− ∂g

∂w

¡
F−1W (FX(x)) , x

¢¯̄̄̄
(1.77)

× sup
x∈X

¯̄̄³
F̂−1W

³
F̂X(x)

´
− F−1W (FX(x))

´¯̄̄
+ op

³
N−1/2

´
. (1.78)

In the second to last equality we used the fact that (1.76) is op(N−1/2) because ∂2g(w,x)/∂w2

is bounded and because (F̂−1W (F̂X(Xi))−F−1W (FX(Xi)))
2 is op(N−1/2 by Lemma A.6. In addition

(1.75) is op(N−1/2) because supw,x |∂2ĝ(w, x)/∂w2−∂2g(w,x)/∂w2| = op(1), so supw,x |∂2ĝ(w,x)/∂w2| ≤
2 supw,x |∂2g(w,x)/∂w2| with probability approaching 1.

By Lemma ??, supx∈X | ∂ĝ∂w (F
−1
W (FX(x)), x)− ∂g

∂w (F
−1
W (FX(x)), x)| = op(N

−η). Using Lemma
A.6 it follows that supx∈X |(F̂−1W (F̂X(x))−F−1W (FX(x)))| = op(N−(1/2−η/2), so that the product
in (1.77)-(1.78) is op(N−1/2). This finishes the part of the proof showing that the sum of (1.67)
and (1.68) is op(N−1/2).

Next, consider the sum of (1.70) and (1.71). First we show that

1

N

NX
i=1

F̂−1W

³
F̂X(Xi)

´
− 1

N

NX
i=1

F−1W

³
F̂X(Xi)

´
(1.79)

−
Ã
1

N

NX
i=1

F̂−1W (FX(Xi))−
1

N

NX
i=1

F−1W (FX(Xi))

!
= op

³
N−1/2

´
(1.80)
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By Lemma A.6

1

N

NX
i=1

F̂−1W

³
F̂X(Xi)

´
− 1

N

NX
i=1

F−1W

³
F̂X(Xi)

´

−
Ã
1

N

NX
i=1

F̂−1W (FX(Xi))−
1

N

NX
i=1

F−1W (FX(Xi))

!

=
1

N

NX
i=1

1

fW

³
F−1W

³
F̂X(Xi)

´´ · ³F̂W

³
F−1W

³
F̂X(Xi)

´´
− F̂X(Xi)

´
(1.81)

− 1
N

NX
i=1

1

fW
¡
F−1W (FX(Xi))

¢ · ³F̂W

¡
F−1W (FX(Xi))

¢
− FX(Xi)

´
(1.82)

+
1

N

NX
i=1

1

fW
¡
F−1W (FX(Xi))

¢ · ³F̂W

³
F−1W

³
F̂X(Xi)

´´
− F̂X(Xi)

´
(1.83)

− 1
N

NX
i=1

1

fW
¡
F−1W (FX(Xi))

¢ ·³F̂W ³
F−1W

³
F̂X(Xi)

´´
− F̂X(Xi)

´
+ op

³
N−1/2

´
(1.84)

=
1

N

NX
i=1

⎛⎝ 1

fW
³
F−1W

³
F̂X(Xi)

´´ − 1

fW
³
F−1W

³
F̂X(Xi)

´´
⎞⎠ (1.85)

×
³
F̂W

³
F−1W

³
F̂X(Xi)

´´
− F̂X(Xi)

´
(1.86)

− 1
N

NX
i=1

1

fW
¡
F−1W (FX(Xi))

¢ (1.87)

×
³³

F̂W
¡
F−1W (FX(Xi))

¢
− FX(Xi)

´
−
³
F̂W

³
F−1W

³
F̂X(Xi)

´´
− F̂X(Xi)

´´
(1.88)

Lemma A.1 implies that supq∈[0,1] |F̂W (F−1W (q)) − q| = op(N−δ for any δ < 1/2. The same

Lemma, combined with continuous differentiability of FW (w), implies that supx∈X |fW (F−1W (F̂X(x)))
−1−

fW (F
−1
W (FX(x)))−1| = op(N−δ). Hence the product (1.85)-(1.86) is op(N−1/2).

To show that the product (1.87)-(1.88) is op(N−1/2) it is sufficient to show that

sup
¯̄̄³
F̂W

¡
F−1W (FX(x))

¢
− FX(x)

´
−
³
F̂W

³
F−1W

³
F̂X(x)

´´
− F̂X(x)

´¯̄̄
= op

³
N−1/2

´
(1.89)

since we can ignore the factor in (1.85) because it is bounded. We can rewrite this as

sup
¯̄̄³
F̂W

¡
F−1W (FX(x))

¢
− FX(x)

´
−
³
F̂W

³
F−1W

³
F̂X(x)

´´
− F̂X(x)

´¯̄̄
(1.90)

sup
¯̄̄³
F̂W

¡
F−1W (FX(x))

¢
− F̂W

³
F−1W

³
F̂X (x)

´´´
(1.91)
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−
³
F−1W (FW (FX(x)))− F−1W

³
FW

³
F̂X(x)

´´´¯̄̄
, (1.92)

which is op(N−1/2) by an application of Lemma A.4, e.g., with η = 2/3 and δ = 2/5. This
shows that (1.79)-(1.80) holds.

In addition, for all δ < 1/2, by Lemma A.2,

F̂−1W

³
F̂X(Xi)

´
− F−1W

³
F̂X(Xi)

´
= op

³
N−δ

´
, (1.93)

and

F̂−1W (FX(Xi))− F−1W (FX(Xi)) = op

³
N−δ

´
. (1.94)

In order to prove that the sum (1.70) and (1.71) is op(N−1/2), it is now sufficient to prove that
with a continuously differentiable function g(w, x), for some δ < 1/2 and some η > 0,

sup
w∈W,x∈X,|a|,|b|,|c|<N−δ,|−a−b+c|<N−1/2−η

|g(w,x)− g(w + a, x)− (g(w + b, x)− g(w + c, x)| = op
³
N−1/2

´
Using a Taylor series expansion we can write

g(w,x)− g(w + a, x)− (g(w + b, x)− g(w + c, x)

− ∂g

∂w
(w, x) · a− 1

2

∂2g

∂w2
(wa, x) · a2 −

∂g

∂w
(w, x) · b− 1

2

∂2g

∂w2
(wb, x) · b2

+
∂g

∂w
(w,x) · c− 1

2

∂2g

∂w2
(wc, x) · c2

−(a+b−c)· ∂g
∂w
(w, x)−1

2

∂2g

∂w2
(wa, x)·a2−

1

2

∂2g

∂w2
(wb, x)·b2+

1

2

∂2g

∂w2
(wc, x)·c2 = op

³
N−1/2

´
.

¤

Lemma A.13

1

N

NX
i=1

ĝ
¡
F−1W (FX(Xi)) , Xi

¢
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
= op ()

Proof of Lemma 4.2:
By a mean value theorem there are ai such that

g
³
F̂−1W (FX(Xi)) , Xi

´
= g

¡
F−1W (FX(Xi)) ,Xi

¢
+ gw (ai,Xi) ·

³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
and |ai − F−1W (FX(Xi))| ≤ |F̂−1W (FX(Xi))− F−1W (FX(Xi))|. Thus

g
³
F̂−1W (FX(Xi)) , Xi

´
= g

¡
F−1W (FX(Xi)) , Xi

¢
+ gw

¡
F−1W (FX(Xi)) ,Xi

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
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+
¡
gw
¡
F−1W (FX(Xi)) ,Xi

¢
− gw (ai, Xi)

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
.

Consider the second term on the right-hand side. By a mean value theorem and by Assumption
?? we have for some bi ∈W:¡

gw
¡
F−1W (FX(Xi)) ,Xi

¢
− gw (ai,Xi)

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
= gww(bi,Xi) ·

¡
F−1W (FX(Xi))− ai

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
.

Because |ai−F−1W (FX(Xi))| ≤ |F̂−1W (FX(Xi))−F−1W (FX(Xi))| this can be bounded in absolute
value by

|gww(bi,Xi)| ·
³
F̂−1W (FX(Xi))− F−1W (FX (Xi))

´2
≤ |gww(bi, Xi)| · sup

q∈[0,1]

³
F̂−1W (q)− F−1W (q)

´2
Because supq∈[0,1]N

δ(F̂−1W (q)− F−1W (q)) = op(1) for all δ < 1/2, it follows that the last term is
op(N

−2δ) for all δ < 1/2 and therefore op(N−1/2), and thus

g
³
F̂−1W (FX(Xi)) , Xi

´
= g

¡
F−1W (FX(Xi)) ,Xi

¢
+gw

¡
F−1W (FX(Xi)) ,Xi

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
+ op

³
N−1/2

´
.

The remaining step is to show that

μ̂W −
1

N

NX
i=1

gw
¡
F−1W (FX(Xi)) ,Xi

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
= op

³
N−1/2

´
.

By Lemma A.10 it is sufficient to show that

μ̂WX−
1

N

NX
i=1

gw
¡
F−1W (FX(Xi)) , Xi

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´
= op

³
N−1/2

´
. (1.95)

First we work on the second term:

¯̄̄̄
¯ 1N

NX
i=1

gw
¡
F−1W (FX(Xi)) ,Xi

¢
·
³
F̂−1W (FX(Xi))− F−1W (FX(Xi))

´

− 1
N

NX
i=1

gw
¡
F−1W (FX(Xi)) , Xi

¢
fW (F

−1
W (FX(Xi)))

³
F̂W (F

−1
W (FX(Xi)))− FX(Xi)

´¯̄̄̄¯ = op

³
N−1/2

´
,

by Lemma A.6. Substituting in for μ̂WX we are then left with:

1

N2

NX
i=1

NX
j=1

qWX(Wi,Xj)
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− 1
N

NX
i=1

gw
¡
F−1W (FX(Xi)) ,Xi

¢
fW (F

−1
W (FX(Xi)))

³
F̂W (F

−1
W (FX(Xi)))− FX(Xi)

´

=
1

N2

NX
i=1

NX
j=1

qWX(Wi,Xj)

− 1

N2

NX
i=1

NX
j=1

gw
¡
F−1W (FX(Xi)) , Xi

¢
fW (F

−1
W (FX(Xi)))

¡
1{Wj ≤ F−1W (FX(Xi))}− FX(Xi)

¢

=
1

N2

NX
i=1

NX
j=1

qWX(Wi,Xj)

− 1

N2

NX
i=1

NX
j=1

gw
¡
F−1W (FX(Xi)) , Xi

¢
fW (F

−1
W (FX(Xi)))

(1{FW (Wj) ≤ FX(Xi)}− FX(Xi)) ,

which is equal to zero. ¤
Proof of Lemma ??: By Lemma A.11 it is sufficient to show that

1

N

NX
i=1

g
³
F−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) , Xi

¢
− μ̂X1X2

= op
³
N−1/2

´
Using a Taylor series expansion we obtain:

1

N

NX
i=1

g
³
F−1W

³
F̂X(Xi)

´
,Xi

´
− 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) , Xi

¢

=
1

N

NX
i=1

gw
¡
F−1W (FX(Xi)) ,Xi

¢
fW

¡
F−1W (FX(Xi))

¢ ·
³
F̂X(Xi)− FX(Xi)

´
+Op

µ³
F̂X(Xi)− FX(Xi)

´2¶

=
1

N2

NX
i=1

NX
j=1

gw
¡
F−1W (FX(Xi)) ,Xi

¢
fW

¡
F−1W (FX(Xi))

¢ · (1{Xj ≤ Xi}− FX(Xi)) + op
³
N−1/2

´
= μ̂X1X2

+ op
³
N−1/2

´
¤

Lemma A.14

1

N

NX
i=1

g
¡
F−1W (FX(Xi)) ,Xi

¢
−E

£
g
¡
F−1W (FX(X)) ,X

¢¤ d−→ N
³
0,E

h¡
g
¡
F−1W (FX(X)) ,X

¢
− θ
¢2i´

.
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Proof: This follows directly from a central limit theorem and the smoothness assumptions
on g(w, x), FW (w) and FX(x). ¤.

We are interested in the asymptotic distribution of

γ̂ = β̂
pam − 1

N

NX
i=1

g
¡
F−1W (FX(Xi)) , Xi

¢
(1.96)

=
1

N

NX
i=1

¡
ĝ
¡
F−1W (FX(Xi)) ,Xi

¢
− g

¡
F−1W (FX(Xi)) ,Xi

¢¢
.

Let

V =

µ
V1
V2

¶
,

with V1, V2, and V vectors of dimension k1, k2, and k = k1 + k2.
Let r(u) be a function from V2 to V1, with derivative r0(u) = ∂r

∂u (u).
We are interested in the distribution of

1

N

NX
i=1

(ĝ (r(V2i), V2i)− g (r(V2i), V2i)) ,

where ĝ(v1, v2) is a kernel estimator. The kernel is K(v), and the estimator for g(v) is

ĝ(v) =
NX
i=1

Yi ·
Kσ(Vi − v)PN
j=1Kσ(Vj − v)

,

with

Kσ(v) =
1

σk
· K(v/σ),

so that

Kσ(v1, v2) =
1

σk
· K(v1/σ, v2/σ).

Lemma A.15 (Newey (1994), Lemma B.4)
Let h(v) = E[Y |V = v] · fV (v) with ĥ(v) a kernel estimator for h(v),

ĥ(v) =
1

N

NX
i=1

Yi ·Kσ(Vi − v),

with the kernel Kσ(v) satisfying the conditions in Assumption ??. Let the (Yi, Vi) satisfy the
conditions in Assumption ??, and let bN satisfy the bandwidth conditions in Assumption 4.11.
Then

sup
v

¯̄̄
ĥ(v)− h(v)

¯̄̄
= Op

µ
ln(N)1/2 ·

³
NbkN

´−1/2
+ bsN

¶
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Lemma A.16 Let k(v) be a function from V ⊂ Rk to V, with V compact, and k(v) continuously
differentiable on its domain. Let g : V → R be continuously differentiable, and let h(v) =
E[Y |V = v] · fV (v) with ĥ(v) a kernel estimator for h(v),

ĥ(v) =
1

N

NX
i=1

Yi ·Kσ(Vi − v),

with the kernel Kσ(v) satisfying the conditions in Assumption ??. Let the (Yi, Vi) satisfy the
conditions in Assumption ??, and let bN satisfy the bandwidth conditions in Assumption 4.11.
Then

U1 =
1

N

NX
i=1

³
ĥ(k(Vi))− h(k(Vi))

´
· g(Vi)−

Z ³
ĥ(k(u))− h(k(u))

´
· g(u)fV (u)du

= op
³
N−1/2

´
.

Proof of Lemma A.16: There are three steps in the proof. First we obtain a U -statistic
representation for U : U1 = U2 + op(N−1/2) with

U2 =
1

N

NX
i=1

X
j>i

m2(Yi, Vi, Yj , Vj), (1.97)

with m2(·) symmetric: m2(y0, v0, y1, v1) = m2(y1, v1, y0, v0). Second, using U -statistic results
we obtain an asymptotically linear representation for U2: U2 = U3 + op(N−1/2) with

U3 =
1

N

NX
i=1

m3(Vi), (1.98)

with E[m3(V )] = 0. Third, we show that

sup
v∈V

m3(v)→ 0.

This implies that U3 = op(N−1/2).
¤
Proof of Lemma ??: There are two steps in the proof. First we linearize the estimator

and second we apply Lemma A.16. First define

h1(v) = fV (v),

and

h2(v) = E[Y |V = v] · fV (v),

with corresponding kernel estimators

ĥ1(v) =
1

N

NX
i=1

Kσ(Vi − v),
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and

ĥ2(v) =
1

N

NX
i=1

Yi ·Kσ(Vi − v).

Then

g(v) =
h2(v)

h1(v)
, and ĝ(v) =

ĥ2(v)

ĥ1(v)
.

The first step is to show that we can linearize the difference between the estimator and the
estimand:

1

N

NX
i=1

ĥ2(r(Vi2), Vi2)

ĥ1(r(Vi2), Vi2)
− 1

N

NX
i=1

h2(r(Vi2), Vi2)

h1(r(Vi2), Vi2)

=
1

N

NX
i=1

ĥ2(r(Vi2), Vi2)− h2(r(Vi2), Vi2)

h1(r(Vi2), Vi2)

− 1
N

NX
i=1

h2(r(Vi2), Vi2)

h21(r(Vi2), Vi2)
ĥ1(r(Vi2), Vi2)− h1(r(Vi2), Vi2) + op

³
N−1/2

´
.

The linearization remainder term is:

1

N

NX
i=1

ĥ2(r(Vi2), Vi2)

ĥ1(r(Vi2), Vi2)
− 1

N

NX
i=1

h2(r(Vi2), Vi2)

h1(r(Vi2), Vi2)

− 1
N

NX
i=1

ĥ2(r(Vi2), Vi2)− h2(r(Vi2), Vi2)

h1(r(Vi2), Vi2)

+
1

N

NX
i=1

h2(r(Vi2), Vi2)

h21(r(Vi2), Vi2)
ĥ1(r(Vi2), Vi2)− h1(r(Vi2), Vi2)

=
1

N

NX
i=1

ĥ2(r(Vi2), Vi2)

ĥ1(r(Vi2), Vi2)
− 1

N

NX
i=1

h2(r(Vi2), Vi2)

ĥ1(r(Vi2), Vi2)

+
1

N

NX
i=1

h2(r(Vi2), Vi2)

ĥ1(r(Vi2), Vi2)
− 1

N

NX
i=1

h2(r(Vi2), Vi2)

h1(r(Vi2), Vi2)

− 1
N

NX
i=1

ĥ2(r(Vi2), Vi2)− h2(r(Vi2), Vi2)

h1(r(Vi2), Vi2)

+
1

N

NX
i=1

h2(r(Vi2), Vi2)

h21(r(Vi2), Vi2)
ĥ1(r(Vi2), Vi2)− h1(r(Vi2), Vi2)

=
1

N

NX
i=1

ĥ2(r(Vi2), Vi2)− h2(r(Vi2), Vi2)

ĥ1(r(Vi2), Vi2)
(1.99)
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− 1
N

NX
i=1

ĥ2(r(Vi2), Vi2)− h2(r(Vi2), Vi2)

h1(r(Vi2), Vi2)
(1.100)

− 1
N

NX
i=1

h2(r(Vi2), Vi2)

ĥ1(r(Vi2), Vi2)h1(r(Vi2), Vi2)
·
³
ĥ1(r(Vi2), Vi2)− h1(r(Vi2), Vi2)

´
(1.101)

+
1

N

NX
i=1

h2(r(Vi2), Vi2)

h21(r(Vi2), Vi2)
·
³
ĥ1(r(Vi2), Vi2)− h1(r(Vi2), Vi2)

´
(1.102)

By Lemma A.15 supv |ĥj(v)− hj(v)| = Op(ln(N)1/2 ·
¡
NbkN

¢−1/2
+ bsN). By the rate conditions

on bH , this is op(N−1/4). By Assumption ?? it follows that supv |1/ĥj(v) − 1/hj(v)| is also
op(N−1/4). This implies that the sum of (1.122) and (1.123) and the sum of (1.101) and (1.102)
are both op

¡
N−1/2¢. This completes the first step.

The second step applies Lemma A.16 twice. First with k(v) = (r(v2)0, v02)
0, h(v) = h1(v),

g(v) = h2(r(v2), v2)/h21(r(v2), v2) ¤
Proof of Lemma ??: The ψNi−E[ψNi] for a triangular array with the terms ψNi−E[ψNi]

and ψNj −E[ψNj ] and identically distributed. We will apply Liapounov’s central limit theorem
to this triangular array. First we show that

E [ψNi]
d−→ 0. (1.103)

Define

h1(v1, v2) = fV1,V2(v1, v2)

h2(v1, v2) = E[Y |V1 = v1, V2 = v] · fV1,V2(v1, v2)
with kernel estimators

ĥ1(v1, v2) =
1

N

NX
i=1

KσN (V1i − v1, V2i − v2)

ĥ2(v1, v2) =
1

N

NX
i=1

Yi ·KσN (V1i − v1, V2i − v2)

Then

E [ψNi] = E

"
1

N

NX
i=1

ψNi

#

= E

"
1

N

NX
i=1

σ
k1/2
N ·

Z
(Yi − g(k(u), u)) ·KσN (r(u)− Vi1, u− V2i)du

#

= σ
k1/2
N · E

"Z
1

N

NX
i=1

(Yi − g(k(u), u)) ·KσN (r(u)− Vi1, u− V2i)du

#

= σ
k1/2
N · E

∙Z ³
ĥ2(r(u), u)− ĥ1(r(u), u) · g(r(u), u)

´
du

¸
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= σk1/2N ·
Z ³

E
h
ĥ2(r(u), u)

i
− E

h
ĥ1(r(u), u)

i
· g(r(u), u)

´
du

We can bound this by¯̄̄̄
σ
k1/2
N ·

Z ³
E
h
ĥ2(r(u), u)

i
− E

h
ĥ1(r(u), u)

i
· g(r(u), u)

´
du

¯̄̄̄

≤
¯̄̄̄
σ
k1/2
N ·

Z
(h2(r(u), u)− h1(r(u), u) · g(r(u), u))du

¯̄̄̄
(1.104)

+σ
k1/2
N ·

Z
sup
v1,v2

¯̄̄
E
h
ĥ2(v1, v2)

i
− h2(v1, v2)

¯̄̄
du (1.105)

+σ
k1/2
N ·

Z
sup
v1,v2

¯̄̄
E
h
ĥ1(v1, v2)

i
− h1(v1, v2)

¯̄̄
· |g(r(u), u)| du (1.106)

(1.104) is equal to C ·σk1/2N which converges to zero. By uniform convergence of E[ĥ1(v1, v2) and
E[ĥ2(v1, v2) to h1(v1, v2) and h2(v1, v2) respectively it follows that (1.105) and (1.106) converge
to zero. This demonstrates (1.103).

Second, we show that

E
£
(ψNi)

2
¤ d−→ Ω. (1.107)

First,

E
£
(ψNi)

2
¤
= σk1N · E

"µZ
(Yi − g(r(u), u))KσN (r(u)− Vi1, u− Vi2)du

¶2#

= σk1N · E
"µZ

(g(Vi1, Vi2)− g(r(u), u))KσN (r(u)− Vi1, u− Vi2)du

¶2#
(1.108)

+σk1N · E
"
σ2(Vi1, Vi2)

µZ
KσN (r(u)− Vi1, u − Vi2)du

¶2#
. (1.109)

We show that (1.108) is op(1) and that (1.109) converges to Ω. First, (1.108):

σk1N · E
"µZ

(g(Vi1, Vi2)− g(r(u), u))KσN (r(u)− Vi1, u− Vi2)du

¶2#

=
1

σk1+2k2N

· E
"µZ

(g(Vi1, Vi2)− g(r(u), u))K
µ
r(u)− Vi1

σ
,
u− Vi2

σ

¶
du

¶2#

=
1

σk1+2k2N

·
Z µZ

(g(v1, v2)− g(r(u), u))K
µ
r(u)− v1

σ
,
u− v2
σ

¶
du

¶2
fV1,V2(v1, v2)dv1dv2.

By change of variables from v1 to s = (r(v2)− v1)/σ, with Jacobian |J| = σk1 this is equal to

1

σ2k2N

·
Z µZ

(g(r(v2 − sσ, v2)− g(r(u), u))K
µ
r(u)− r(v2)

σ
+ s,

u− v2
σ

¶
du

¶2
fV1,V2(r(v1)−sσ, v2)dsdv2.
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By change of variable in the inner integral from u to t = (u − v2)/σ with Jacobian |J| = σk2

this is equal toZ µZ
(g(r(v2 − sσ, v2)− g(r(v2 + tσ), v2 + tσ))K

µ
r(v2 + tσ)− r(v2)

σ
+ s, t

¶
dt

¶2
×fV1,V2(r(v2)− sσ, v2)dsdv2. (1.110)

There is are compact sets S and T such that

K
µ
r(v2 + tσ)− r(v2)

σ
+ s, t

¶
is zero for (s, t) /∈ S× T. For (s, t) ∈ S× T we can bound

|g(r(v2 − sσ, v2)− g(r(v2 + tσ), v2 + tσ)| ≤ Cσ

for some constant C. Hence we can bound (1.110) by

Cσ

Z
1{s ∈ S}

µZ
1{t ∈ T}K

µ
r(v2 + tσ)− r(v2)

σ
+ s, t

¶
dt

¶2
fV1,V2(r(v2)−sσ, v2)dsdv2 ≤ C2σ.

where the last inequality follows from the boundedness of K(v1, v2) and fV1,V2(v1, v2) and the
compactness of S, T and V2. This shows that (1.108) is op(1). Next, consider (1.109): First,

σk1N · E
"
σ2(V1, V2)

µZ
KσN (r(u)− V1, u− V2)du

¶2#

=
1

σk1+2k2N

· E
"
σ2(V1, V2)

µZ
K
µ
r(u)− V1

σ
,
u− V2

σ

¶
du

¶2#

=
1

σk1+2k2N

·
Z

σ2(v1, v2)

µZ
K
µ
r(u)− v1

σ
,
u− v2
σ

¶
du

¶2
fV1,V2(v1, v2)dv1dv2.

By change of variable from v1 to s = (r(v2)− v1)/σ with Jacobian |J | = σk1N this is equal to:

1

σ2k2N

·
Z

σ2(r(v1)−sσ, v2)
µZ

K
µ
r(u)− r(v1)

σ
+ s,

u− v2
σ

¶
du

¶2
fV1,V2(r(v2)−sσ, v2)dsdv2.

By change of variables from u to t = (u− v2)/σN with Jacobian |J | = σk2N this is equal to

1

σ2k2N

·
Z

σ2(r(v1)−sσ, v2)
µZ

σk2N · K
µ
r(v2 + tσ)− r(v1)

σ
+ s, t

¶
dt

¶2
fV1,V2(r(v2)−sσ, v2)dsdv2

=

Z
σ2(r(v1)−sσ, v2)

µZ
K
µ
r(v2 + tσ)− r(v1)

σ
+ s, t

¶
du

¶2
fV1,V2(r(v2)−sσ, v2)dsdv2.

(1.111)
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To show that (1.111) converges to Ω, we write

σ2(r(v2)− sσ, v2)

µZ
K
µ
r(v2 + tσ)− r(v1)

σ
+ s, t

¶
du

¶2
fV1,V2(r(v2)− sσ, v2)dv1dv2 −Ω

=

Ã
σ2(r(v2)− sσ, v2)

µZ
K
µ
r(v2 + tσ)− r(v1)

σ
+ s, t

¶
du

¶2
fV1,V2(r(v2)− sσ, v2)dv1dv2

(1.112)

−σ2(r(v2), v2)
µZ

K
µ
r(v2 + tσ)− r(v1)

σ
+ s, t

¶
du

¶2
fV1,V2(r(v2)− sσ, v2)dv1dv2

!
(1.113)

+

Ã
σ2(r(v2), v2)

µZ
K
µ
r(v2 + tσ)− r(v1)

σ
+ s, t

¶
du

¶2
fV1,V2(r(v2)− sσ, v2)dv1dv2

(1.114)

−σ2(r(v2), v2)
µZ

K
¡
r0(v2)t+ s, t

¢
du

¶2
fV1,V2(r(v2)− sσ, v2)dv1dv2

!
(1.115)

Ã
σ2(r(v2), v2)

µZ
K
¡
r0(v2)t+ s, t

¢
du

¶2
fV1,V2(r(v2)− sσ, v2)dv1dv2 (1.116)

σ2(r(v2), v2)

µZ
K
¡
r0(v2)t+ s, t

¢
du

¶2
fV1,V2(r(v2), v2)dv1dv2

!
(1.117)

+

Z
σ2(r(v2), v2)

µZ
K
¡
r0(v2)t+ s, t

¢
du

¶2
fV1,V2(r(v2), v2)dv1dv2 −Ω (1.118)

We show that (1.112)-(1.113), (1.114)-(1.115) and (1.116)-(1.117)are op(1). Combined with the
fact that (1.118) is zero by definition, it follows that (1.111) converges to Ω. There are compact
sets S and T such that for (s, t) /∈ S × T the kernel K ((r(v2 + tσ)− r(v1))/σ + s, t) is equal
to zero for all values of σ and v2. For s ∈ S, t ∈ T, and v2 ∈ V2, K ((r(v2 + tσ)− r(v1))/σ + s, t)
and fV1,V2(r(v2)−sσ, v2) are bounded. In addition, for these values

¯̄
σ2(r(v1)− sσ, v2)− σ2(r(v2), v2)

¯̄
≤

Cσ for some positive constant C. This implies that (1.112)-(1.113) is op(1). Similarly, the dif-
ference |(r(v2 + tσ)− r(v1))/σ − r0(v2)t| ≤ Cσ for some positive constant C, and hence (1.114)-
(1.115) is op(1) Finally, for s ∈ S and v2 ∈ V2 |fV1,V2(r(v2)− sσ, v2)− fV1,V2(r(v2), v2)| ≤ Cσ
for some constant C, which combined with the bounds on K ((r(v2 + tσ)− r(v1))/σ + s, t) and
σ(r(v2), v2) implies that (1.116)-(1.117) is op(1).

The combination of (1.103) and (1.107) then implies

Var(ψNi)
d−→ Ω. (1.119)
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Third, we show that

E
h
|ψNi|4

i
/N

d−→ 0. (1.120)

First consider

σk1N ·
Z

KσN (r(u)− v1, u− v2)du = σk1N ·
Z

1

σkN
K

µ
(r(u)− v1

σN
,
u − v2
σN

¶
du.

By a change of variables from u to t = (u− v2)/σN with Jacobian |J | = σk2N this is equal to

σk1N

Z
1

σk1N
K

µ
(r(tσN + v2)− v1

σN
, t

¶
dt =

Z
K

µ
(r(tσN + v2)− v1

σN
, t

¶
dt.

Since K(v) is bounded and equal to zero outside a compact set, it follows that

sup
v1,v2

σk1N ·
Z

KσN (r(u)− v1, u− v2)du ≤ C, (1.121)

for some constant C. Next, consider

1

N
E
h¯̄̄
ψNi|4

¯̄̄
Vi = v

i
=

σ2k1N

N
· E
"µZ

(Yi − g(k(u), u))KσN (r(u)− Vi1, u− Vi2)du

¶4 ¯̄̄̄¯Vi = v

#
.

By Assumption ?? this can be bounded by

σ2k1N

N
· C · E

"µZ
KσN (r(u)− Vi1, u− Vi2) du

¶4 ¯̄̄̄¯Vi = v

#
.

=
σ2k1N

N
· C ·

µZ
K (r(u)− v1, u− v2)du

¶4
.

=
1

σ2k1N ·N
·C · σ4k1N

µZ
KσN (r(u)− v1, u− v2)du

¶4
≤ C1

σ2k1N ·N
,

where the last inequality follows from (1.121). This shows that

E
h
|ψNi|4

¯̄̄
V = v

i
/N ≤ C1 ·

³
Nσ2k1N

´−1
,

uniformly in v, which in turn implies that (1.120) holds because by Assumption ??, (Nσ2k1N )−1 →
0.

The fourth step involving using (1.119) and (1.120) to show that the Liapounov conditionÃ
NX
i=1

E
h
|ψNi − E[ψNi]|2+δ

i!2
= o

⎛⎝Ã NX
i=1

E
h
|ψNi − E[ψNi]|2

i!2+δ⎞⎠ , (1.122)
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is satisfied for δ = 2. To see this, note that the Liaponouv condition (1.122) with δ = 2 is
equivalent to

NX
i=1

E
h
|ψNi − E[ψNi]|4

i
= o

⎛⎝Ã NX
i=1

E
h
|ψNi − E[ψNi]|2

i!2⎞⎠ .

By the fact that the ψNi have identical distributions for all i for given N this is equivalent to

NE
h
|ψNi − E[ψNi]|4

i
= o

µ
N2

³
E
h
|ψNi − E[ψNi]|2

i´2¶
,

or

E
h
|ψNi − E[ψNi]|4

i
/N = o

µ³
E
h
|ψNi − E[ψNi]|2

i´2¶
. (1.123)

By (1.119) it follows that E
h
|ψNi − E[ψNi]|2

i
converges to V and therefore sufficient for (1.123)

is

E
h
|ψNi − E[ψNi]|4

i
/N = o (1) .

This follows from (1.120). ¤

Theorem A.1 Liapounov’s Central Limit Theorem
Let ψNi, i = 1, . . . ,N , N = 1, 2, . . . form a triangular array of independent random variables
with σ2Ni = Var(ψNi), and let s

2
N =

PN
i=1 σ

2
Ni. If for some δ > 0,Ã

NX
i=1

E
h
|ψNi − E[ψNi]|2+δ

i!2
= o

³¡
s2N
¢2+δ´

, (1.124)

then

1√
N

PN
i=1 (ψNi − E[ψNi])q

s2N/N

d−→ N (0, 1).

For this version of the theorem see Billingsley (1985), Theorem 27.3, page 371.

ω(u) =

µ
−g(r(u), u)

1

¶

V =

Z
ω(x2)

Z
X
K

µ
∂x1(x2)

∂x02
v + u, v

¶
dvΣ(x1(x2), x2)ω(x2)0

Z
X
K

µ
∂x1(x2)

∂x02
v + u, v

¶
dvdudx2

[52]



A.4 Proof of Lemma 5.1

The following Lemma will be useful in the proof to Lemma 5.1 given below.

Lemma A.17 Let X and h (q, x) respectively be a continuous random variable with finite sup-
port X ∈ [a, b], and a continuously differentiable function in x (over the support of X). The
slope coefficient of the (mean squared error minimizing) conditional linear predictor (CLP) of
h (Q,X) given X and conditional on Q = q has a weighted average derivative representation of

b (q) =
Cov (h (Q,X) ,X|Q = q)

V ar (X |Q = q)
= EX |W

∙
ω (Q,X)

∂h (Q,X)

∂x
|Q = q

¸
,

where

ω (s, t) =
1

dFX |Q (t|s)
EX |Q[X − μX |Q (Q) |Q = s,X ≥ t]

¡
1− FX |Q (t|s)

¢R r=b
r=a EX |Q[X − μX |Q (Q) |Q = s,X ≥ r]

¡
1− FX|Q (v|s)

¢
dr

with

EX |Q [ω (Q,X) |Q = q] = 1,

and ω (q, x) such that b (q) gives maximum weight to values of ∂h(Q,X)
∂x with X close to its

conditional mean, μX |Q (q) = EX |Q [X |Q = q], and minimum weight to values of ∂h(Q,X)
∂x with

X near the boundaries of its support.

Proof: We first derive the weighted average derivative representation of the conditional
linear predictor (CLP) slope coefficient. We then use a simple integration by parts argu-
ment to characterize the nature of the derivative weights. Observe that h (Q,X) − h (Q, a) =R t=X
t=a

∂h(Q,t)
∂t dt and that EX |Q[h (Q,a) (X−μX |Q (Q))|Q] = 0. Under weak conditions we there-

fore have

Cov (h (Q,X) ,X|Q) = EX |Q[h (Q,X) (X − μX |Q (Q))|Q]

= EX |Q
∙Z t=X

t=a

∂h (Q, t)

∂t
(X − μX |Q (Q))dt|Q

¸
= EX |Q

∙Z t=b

t=a

∂h (Q, t)

∂t
(X ≥ t) (X − μX|Q (Q))dt|Q

¸
=

Z t=b

t=a

∂h (Q, t)

∂t
EX |Q[(X ≥ t) (X − μX |Q (Q))|Q]dt

=

Z t=b

t=a

∂h (Q, t)

∂t
EX |Q[X − μX |Q (Q) |Q,X ≥ t]

¡
1− FX |Q (t|Q)

¢
dt.

Similarly, the conditional variance of X can be written as

V ar (X|Q) = EX |Q[X(X − μX |Q (Q))|Q]

= EX |Q
∙Z r=X

r=a
1(X − μX|Q (Q))dr|Q

¸
=

Z r=b

r=a

EX|Q[X − μX|Q (Q) |Q,X ≥ r]
¡
1− FX |Q (v|Q)

¢
dv.
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By the definition of a conditional linear predictor (CLP) we have the required weighted average
derivative representation

b (q) = EX |Q
∙
ω (Q,X)

∂h (Q,X)

∂x
|Q = q

¸
for ω (Q,X) as given in the Lemma. That EX |Q [ω (Q,X) |Q = q] = 1 follows immediately. To
show that the weighted average derivative representation of b (Q) gives the most emphasis to
values of ∂h(Q,X)

∂t for X close to its conditional mean, begin by noting that

EX |Q
∙
ω (Q,X)

∂h (Q,X)

∂x
|Q
¸
=

R t=b
t=a

∂h(Q,t)
∂t EX |Q[X − μX |Q (Q) |Q,X ≥ t]

¡
1− FX|Q (t|Q)

¢
dtR r=b

r=a EX |Q[X − μX |Q (Q) |Q,X ≥ r]
¡
1− FX|Q (r|Q)

¢
dr

,

and hence the weight b (Q) places on ∂h(Q,t)
∂t is proportional to

EX |Q
h
X − μX |Q (Q) |Q,X ≥ t

i ¡
1− FX |Q (t|Q)

¢
. (1.125)

Differentiating this expression with respect to t gives

∂

∂t

n
EX |Q[X − μX |Q (Q) |Q,X ≥ t]

¡
1− FX|Q (t|Q)

¢o
=

∂

∂t

Z s=b

s=t

s dFX |Q (s|Q)

− ∂

∂t

£
1− FX|Q (t|Q)

¤
μX|Q (Q)

=
∂

∂t

Z b

t
s dFX |Q (s|Q)

+ μX|Q (Q) · dFX |Q (t|Q)

Integration by parts (with u (s) = 1− FX |Q (s|Q) and v (s) = s) givesZ s=b

s=t

£
1− FX|Q (s|Q)

¤
ds =

©
1− FX|Q (s|Q) s

ª
|s=bs=t +

Z s=b

s=t
s dFX |Q (s|Q) (1.126)

= −
£
1− FX |Q (t|Q)

¤
t+

Z s=b

s=t
s dFX |Q (s|Q) .

Using (1.126) we can express the derivative of
R b
t s dFX |Q (s|Q) as

∂

∂t

Z b

t
s dFX |Q (s|Q) =

∂

∂t

½£
1− FX |Q (t|Q)

¤
t+

Z s=b

s=t

£
1− FX |Q (s|Q)

¤
ds
¾

=
£
1− FX |Q (t|Q)

¤
− t · dFX|Q (t|Q) +

∂

∂t

Z s=b

s=t

£
1− FX |Q (s|Q)

¤
ds

=
£
1− FX |Q (t|Q)

¤
− t · dFX|Q (t|Q)−

£
1− FX |Q (t|Q)

¤
= −t · dFX |Q (t|Q) .

Substituting this result into in the derivative of (1.125) then gives

∂

∂t

n
EX |Q[X − μX |Q (Q) |Q,X ≥ t]

¡
1− FX|Q (t|Q)

¢o
= −(t − μX |Q (Q)) · dFX|Q (t|Q) ,
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which is equal to zero at t = μX |Q (Q) , is negative for t > μX|Q (Q) , and positive for
t < μX|Q (Q), hence the weights attain a maximum at t = μX |Q (Q) and minimums at the
boundaries of the support of X as claimed.

With the proof of Lemma A.17 completed we now prove Lemma 5.1. We first derive the
covariance representation (5.22) of γ. We then derive the weighted average derivative represen-
tation (5.23).

Observe that βlr(λ) equals

βlr(λ) =

Z
w

Z
x

Z
z
g(F−1

W |Z(FWλ|Z(λx+ (1− λ2)1/2w|z)|z), x, z)dFW,X,Z(w, x, z)

and hence, by the Chain Rule and the fact that dFW |Z (w|z) > 0 for all w ∈ W ⊂<1, γ (λ) =
∂βlr(λ)/∂λ equals

γ (λ) =

Z
w

Z
x

Z
z

∂g

∂w
(F−1

W |Z(FWλ|Z(λx+ (1− λ2)1/2w|z)|z), x, z)

× 1

dFW |Z(F
−1
W |Z(FWλ|Z(λx+ (1− λ2)1/2w|z)|z)|z)

×
∂FWλ|Z(λx+ (1− λ2)1/2w|z)

∂λ
· dFW,X,Z (w,x, z).

In order to analyze γ (λ) we begin by deriving an alternative expression for ∂FWλ|Z(λx +

(1− λ2)1/2w|z)/∂λ. Observe that

FWλ|Z(λx+ (1− λ)w|z) = Pr(Wλ ≤ λx+ (1− λ2)1/2w|Z = z) = Pr (Wλ ∈ A|Z = z) ,

where the set A is given by

A =
n
(W,X) : λX + (1− λ2)1/2W ≤ λx+ (1− λ2)1/2w, X ∈ R1, W ∈ R1

o
=

(
(W,X) :W ≤ λx+ (1− λ2)1/2w− λX

(1− λ2)1/2
, X ∈ R1

)
,

which provides the limits of integration required to calculate FWλ|Z(λx+ (1− λ2)1/2w|z) :

FWλ|Z(λx+ (1− λ2)1/2w|z) =
Z s=∞

s==−∞

Z v=
λx+(1−λ2)1/2w−λs

(1−λ2)1/2

v=−∞
dFW,X |Z(v, s|z). (1.127)

By the Chain Rule we have, for g (λ) = λx+(1−λ2)1/2w−λs
(1−λ2)1/2 ,

∂FWλ|Z(λx+ (1− λ2)1/2w|z)
∂λ

=
∂FWλ|Z(λx+ (1− λ2)1/2w|z)

∂g (λ)
g0 (λ; s) .

where

g0 (λ; s) =
1+ λ2(1− λ2)−1

(1− λ2)1/2
(x− s) .
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Applying the ‘Second Fundamental Theorem of Calculus’ to differentiate (1.127) with re-
spect to g (λ) gives

∂FWλ|Z(λx+ (1− λ2)1/2w|z)
∂g (λ)

=

Z s=∞

s=−∞
dFW,X |Z

Ã
λx+ (1− λ2)1/2w − λs

(1− λ2)1/2
, s|z

!
,

and hence

∂FWλ|Z(λx+ (1− λ2)1/2w|z)
∂λ

=

Z s=∞

s=−∞
g0 (λ; s)dFW,X|Z

Ã
λx + (1− λ2)1/2w − λs

(1− λ2)1/2
, s|z

!
.

(1.128)

Substituting (1.128) into the expression for γ (λ) given above yields

γ (λ) =

Z
w

Z
x

Z
z

∂g

∂w
(F−1

W |Z(FWλ|Z(λx+ (1− λ2)1/2w|z)|z), x, z)

× 1

dFW |Z(F
−1
W |Z(FWλ|Z(λx+ (1− λ2)1/2w|z)|z)|z)

×
(Z s=∞

s=−∞
g0 (λ; s)dFW,X |Z

Ã
λx+ (1− λ2)1/2w − λs

(1− λ2)1/2
, s|z

!)
· dFW,X,Z (w,x, z),

which, after setting λ = 0, gives γ0 equal to

γ0 =

Z
w

Z
x

Z
z

∂g

∂w
(w,x, z) · 1

dFW |Z (w|z)
×
½Z s=∞

s=−∞
(x − s) dFW,X |Z (w, s|z)

¾
· dFX,W,Z(x,w, z)

=

Z
w

Z
x

Z
z

∂g

∂w
(w,x, z)

½Z s=∞

s=−∞
(x − s) dFX |W,Z (s|w, z)

¾
· dFX,W,Z(x,w, z)

= E
∙
∂g

∂w
(W,X,Z) · (X − E[X|W,Z])

¸
,

as claimed in the statement of the Theorem.
The weighted average derivative representation (5.23) follows by iterated expectations and

Lemma A.17 above. By iterated expectations we have

γ0 = E
∙
∂g

∂w
(W,X,Z) · (X − E[X|W,Z])

¸
= E

∙
E
∙
∂g

∂w
(W,X, Z) · (X − E[X|W,Z]) |W,Z

¸¸
= E

∙
Cov

µ
∂g

∂w
(W,X,Z) ,X|W,Z

¶¸
.

Applying Lemma A.17 with Q = (W,Z0)0 then gives the desired result.
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A.5 Proof to Theorem 5.1

First we establish some preliminary notation. As in the main text we have Kσ (v − Vi) =

σ−K+2K
³
v−Vi
b

´
. We let C be a generic constant which may vary from row-to-row. We define

h1 (w,x, z) = fW,X,Z (w,x, z)E [Y |W = w,X = x,Z = z]

h2 (w,x, z) = fW,X,Z (w,x, z)

h3 (w, z) = fW,Z (w, z)E [X |W = w,Z = z]

h4 (w, z) = fW,Z (w, z)

and their corresponding estimates

bh1 (w,x, z) =
1

N

XN

i=1
YiKσ (w −Wi, x−Xi, z − Zi)

bh2 (w,x, z) =
1

N

XN

i=1
Kσ (w −Wi, x−Xi, z −Zi)

bh3 (w, z) =
1

N

XN

i=1
XiKσ (w −Wi, z −Zi)

bh4 (w, z) =
1

N

XN

i=1
Kσ (w −Wi, z − Zi) .

The two regression functions entering the estimand are ratios of these objects, i.e.,

g (w, x, z) =
h1 (w,x, z)

h2 (w,x, z)
, bg (w, x, z) = bh1 (w,x, z)bh2 (w,x, z)

and

m (w, z) =
h3 (w, z)

h4 (w, z)
, bm (w, z) = bh3 (w, z)bh4 (w, z) .

We seek to characterize the large sample properties of the statistic

bγ = 1

N

XN

i=1

∂bg (Wi, Xi, Zi)

∂w
× (Xi − bm (Wi, Zi)).

In order to derive the large sample properties of bγ we begin by linearizing. Using the identity
babb = ab+ a(bb− b) + b(ba− a) + (ba− a)(bb− b) (1.129)

we have

bγ =
1

N

XN

i=1

∂g (Wi,Xi, Zi)

∂w
× (Xi −m (Wi, Zi)) (1.130)

− 1
N

XN

i=1

∂g (Wi,Xi, Zi)

∂w
× (m (Wi, Zi)− bm (Wi, Zi)) (1.131)

+
1

N

XN

i=1
(Xi −m (Wi, Zi))

µ
∂g (Wi,Xi, Zi)

∂w
− ∂bg (Wi,Xi, Zi)

∂w

¶
(1.132)

− 1
N

XN

i=1

µ
∂g (Wi,Xi, Zi)

∂w
− ∂bg (Wi,Xi, Zi)

∂w

¶
× (m (Wi, Zi)− bm (Wi, Zi)).(1.133)
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Where (1.130) is the main term, (1.131) and (1.132) are correction terms which account for
sampling error in bm (w, z) and bg (w,x, z) respectively and (1.133) is an op (1) remainder term.

In order to obtain an asymptotically linear representation of bγ we express (1.131) and (1.132)
as averages and verify that (1.133) is asymptotically negligible. We analyze each term in the
above expansion separately

A.5.1 Analysis of (1.131) — correction term for nonparametric estimation ofm (w, z)

We first expand (1.131) using the identitybabb − a

b
=

1

b
(ba − a)− a

b2
(bb− b) +

a

b2bb(bb− b)2 − a

bbb(ba − a)(bb− b) (1.134)

=
1

b

³ba − a

b
bb´+ a

b2bb(bb− b)2 − a

bbb(ba− a)(bb− b)

Using the second line of (1.134) we have

m (w, z)− bm (w, z) =
1

h4 (w, z)
(bh3 (w, z)−m (w, z)bh4 (w, z))

+
h3 (w, z)

h4 (w, z)
2 bh4 (w, z)(bh4 (w, z)− h4 (w, z))

2

− 1

h4 (w, z)bh4 (w, z)(bh3 (w, z)− h3 (w, z))(bh4 (w, z)− h4 (w, z)).

Substituting this into (1.131) yields − 1
N

PN
i=1

∂g(Wi,Xi,Zi)
∂w × (m (Wi, Zi)− bm (Wi, Zi)) equal to

− 1
N

XN

i=1

∂g (Wi,Xi, Zi)

∂w
× 1

h4 (Wi, Zi)
(bh3 (Wi, Zi)−m (Wi, Zi)bh4 (Wi, Zi)) (1.135)

− 1
N

XN

i=1

∂g (Wi,Xi, Zi)

∂w
× h3 (Wi, Zi)

h4 (Wi, Zi)
2 bh4 (Wi, Zi)

(bh4 (Wi, Zi)− h4 (Wi, Zi))
2(1.136)

+
1

N

XN

i=1

∂g (Wi,Xi, Zi)

∂w
(1.137)

× 1

h4 (Wi, Zi)bh4 (Wi, Zi)
(bh3 (Wi, Zi)− h3 (Wi, Zi))(bh4 (Wi, Zi)− h4 (Wi, Zi)).

The first term (1.135) can be expressed as an average, while the second and third terms, (1.136)
and (1.137), are op (1) remainder terms.

We first analyze (1.135), substitution of h4 (Wi, Zi) , bh3 (Wi, Zi) and bh4 (Wi, Zi) gives

− 1

N2

XN

i=1

XN

j=1

∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(Xj −m (Wi, Zi))Kσ (Wi −Wj , Zi − Zj) ,

which is a V-statistic of order two with kernel

a (Vi, Vj) = −
∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(Xj −m (Wi, Zi))Kσ (Wi −Wj , Zi − Zj) , (1.138)

where v = (w,x, z 0)0 . For some sequence σN ↓ 0 let aN (Vi, Vj) be equal to (1.138) with σ = σN .
Define

aiN = aiN (Vi) = E[aN (Vi, eVj)], ajN = ajN (Vj) = E[aN(eVi, Vj)],
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where expectations are taken with respect to the marginal distributions of the variables with a
‘~’ above them. Also let aN = E[aiN (Vi)] = E[ajN (Vj)].

If E[a (Vi, Vj)2] <∞ and the data are i.i.d. we can apply the V-statistic Projection Theorem
(e.g., Newey and McFadden 1994, Lemma 8.4, p. 2201) to show that, under appropriate
conditions on the sequence σN ↓ 0,

1

N2

XN

i=1

XN

j=1
aN (Vi, Vj)−

½
1

N

XN

i=1
aiN (Vi)−

1

N

XN

j=1
ajN (Vj)

¾
+aN = op(1/

√
N).

We show below, again under appropriate conditions on the sequence σN ↓ 0, that only thePN
i=1 ajN (Vj) /N term will contribute to the asymptotic distribution of bγ. This means that the

asymptotic sampling distribution of (1.135) depends only upon
PN

i=1 ajN (Vj) /
√
N (the large

sample behavior of which we can be characterized using a central limit theorem).

Verifying E[a (Vi, Vj)2] <∞ (as required for V-statistic projection) In order to apply
the V-statistic Projection Theorem we need to demonstrate that E[a (Vi, Vj)2] < ∞. Since
∂g(Wi,Xi,Zi)

∂w
1

fW,Z (Wi,Zi)
is bounded by the requirement that fW,Z (Wi, Zi) is bounded below by

zero and the boundedness of ∂g(Wi,Xi,Zi)
∂w (Assumptions X and X) we need only show that

E[(Xj −m (Wi, Zi))
2Kσ (Wi −Wj , Zi − Zj)

2 ] <∞.

This condition is follows from the fact that

E[X2
jKσ (Wi −Wj , Zi − Zj)

2 ]<∞
|E[Xjm (Wi, Zi)Kσ (Wi −Wj , Zi −Zj)

2 ]| <∞
E[m (Wi, Zi)

2Kσ (Wi −Wj , Zi −Zj)
2 ]<∞.

Each of these conditions follows from the assumptions of the theorem. First we have

E[X2
jKσ (Wi −Wj , Zi − Zj)

2 ] = EWi,Zi

∙Z
E
£
X2

j |Wj = w,Zj = z
¤
Kσ (Wi − w,Zi − z)2

¸
×fW,Z (w, z) dwdz

= EWi,Zi

∙Z
E
£
X2

j |Wj =Wi − σr,Zj = Zi − σt
¤
K (r, t)2

¸
×fW,Z (Wi − σr,Zi − σt)drdt

≤ CE[X2
j ] <∞

by boundedness of E
£
X2
¤
and the kernel (Assumptions X and X). The second equality above

follows from a change-of-variables with r = (Wi −w) /σ and t = (Zi − z) /σ and a Jacobian of
σ−(K+1); we make repeated use of this type of change in variables. We also have¯̄̄
E[Xjm (Wi, Zi)Kσ (Wi −Wj , Zi −Zj)

2 ]
¯̄̄
≤ EWi,Zi [|m (Wi, Zi)|

×
Z
|m (w, z)|Kσ (Wi −w,Zi − z)2 fW,Z (w, z)dwdz]

≤ EWi,Zi [|m (Wi, Zi)|]EWj ,Zj [|m (Wj , Zj)|] <∞
by Assumptions X to X. Finally we require that

E[m (Wi, Zi)
2Kσ (Wi −Wj , Zi −Zj)

2 ] <CE[m (Wi, Zi)
2 ] <∞,

which follows by, again, Assumptions X to X.

[59]



V-statistic projection for (1.135) Calculating the V-statistic projection associated with
(1.135) we get:

1

N2

XN

i=1

XN

j=1
aN (Vi, Vj) =

1

N

XN

i=1
aiN (Vi) +

1

N

XN

j=1
ajN (Vj) + op(1/

√
N)

where

aiN (Vi) = −
Z

∂g (Wi, Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(x−m (Wi, Zi))KσN (Wi − w,Zi − z) fW,X,Z (w,x, z)dwdxdz,

and

ajN (Vj) = −
Z

∂g (w, x, z)

∂w

1

fW,Z (w, z)
(Xj −m (w, z))KσN (w −Wj , z − Zj) fW,X,Z (w,x, z)dwdxdz

= −
Z

∂g (w, x, z)

∂w
(Xj −m (w, z))KσN (w −Wj , z − Zj) fX|W,Z (x|w, z) dwdxdz

= −
Z
E
∙
∂g (W,X,Z)

∂w
|W = w, Z = z

¸
(Xj −m (w, z))KσN (w −Wj , z −Zj) dwdz.

Observe that aiN and ajN are triangular arrays. We now demonstrate that only ajN contributes
to the asymptotic sampling distribution of bγ.

First consider ajN , we have
¯̄̄√

NE[ajN ]
¯̄̄
equal to¯̄̄√

NE [ajN (Vj)]
¯̄̄
= |
√
NEWj ,Xj ,Zj [

Z
E
∙
∂g (W,X, Z)

∂w
|W = w,Z = z

¸
×(Xj −m (w, z))KσN (w −Wj , z − Zj)dwdz]|

= |
√
NEWj ,Xj ,Zj [

Z
E
∙
∂g (W,X, Z)

∂w
|W =Wj + rσN , Z = Zj + tσN

¸
×(Xj −m (Wj + rσN , Zj + tσN))K (r, t)drdt]|

= |
√
N

Z
EWj ,Xj ,Zj [E

∙
∂g (W,X,Z)

∂w
|W =Wj + rσN , Z = Zj + tσN

¸
×(Xj −m (Wj + rσN , Zj + tσN))]K (r, t)drdt|

= |
√
N

Z
EWj ,Zj [E

∙
∂g (W,X,Z)

∂w
|W =Wj + rσN , Z = Zj + tσN

¸
×(m (Wj , Zj)−m (Wj + rσN , Zj + tσN ))]K (r, t)drdt|,

where the last line follows from an application of the law of iterated expectations. In order

to calculate the rate of convergence of
¯̄̄√

NE [ajN (Vj)]
¯̄̄
toward zero we replace m (Wj , Zj) −

m (Wj + rσN , Zj + tσN ) with its (S − 1)th order multivariate Taylor expansion in r and t about
zero. This expansion is

m (Wi + rσN , Zi + tσN )−m (Wi, Zi) =
S−1X
s=1

σ
s(K+1)
N

s!

µ
r
∂

∂w
+ t0

∂

∂z

¶s

m (Wi, Zi) (1.139)

+σ
S(K+1)
N

1

S!

µ
r
∂

∂w
+ t0

∂

∂z

¶S

m
¡
Wi − rσN , Zi − tσN

¢
,

[60]



where r and t are mean values between zero and r and t (c.f., Serfling 1980, p. 44). Since
by Assumptions X, X and X we have m (·) differentiable with an Sth derivative bounded on
RK+1, g (·) differentiable with an Sth derivative bounded on RK+2 (and hence the Sth derivative

of E
h
∂g(W,X,Z)

∂w |W = w,Z = z
i
bounded on RK+1), and a kernel of order S, we conclude that¯̄̄√

NE [ajN (Vj)]
¯̄̄
≤ C
√
Nσ

S(K+1)
N ,

and hence we conclude that
√
NE [ajN (Vj)] = op (1) for σN ↓ 0 such that

√
Nσ

S(K+1)
N → 0.

In order to apply the Lindeberg-Feller central limit theorem to
PN

i=1 ajN (Vj) /
√
N we need

to verify that the upper bound of ajN (Vj)
2 has a finite expected value. By repeated application

of the triangle inequality (TI) and a change of variables we have

|ajN (Vj)| ≤ C

Z ¯̄̄̄
E
∙
∂g (W,X,Z)

∂w
|W = w,Z = z

¸
(Xj −m (w, z))KσN (w −Wj , z −Zj)

¯̄̄̄
dwdz

≤ C

Z ¯̄̄̄
E
∙
∂g (W,X,Z)

∂w
|W = w,Z = z

¸
XjKσN (w −Wj , z −Zj)

¯̄̄̄
dwdz

+C

Z ¯̄̄̄
E
∙
∂g (W,X,Z)

∂w
|W = w,Z = z

¸
m (w, z)KσN (w −Wj , z −Zj)

¯̄̄̄
dwdz

= C

Z ¯̄̄̄
E
∙
∂g (W,X,Z)

∂w
|W =Wj + rσN , Z = Zj + tσN

¸
XjK (r, t)

¯̄̄̄
drdt

+C

Z ¯̄̄̄
E
∙
∂g (W,X,Z)

∂w
|W =Wj + rσN , Z = Zj + tσN

¸
m (Wj + rσN , Zj + tσN)K (r, t)

¯̄̄̄
drdt

≤ C1

¯̄̄̄
E
∙
∂g (W,X,Z)

∂w
|W =Wj , Z = Zj

¸
Xj

¯̄̄̄
+C2

¯̄̄̄
E
∙
∂g (W,X,Z)

∂w
|W =Wj , Z = Zj

¸
m (Wj , Zj)

¯̄̄̄
,

where the last line follows by the fact that K (r, t) is maximal at r = s = t = 0 and the integral
can be interpreted as an ‘expectation’ where K (r, t) is a ‘density’ Since both of the terms on
the right hand side have finite expected values we have E[ajN (Vj)2] <∞.

Calculating E[a2jN ] we get

E[a2jN ] = EWj ,Xj ,Zj [

Z Z
∂g (w,x, z)

∂w

∂g (w∗, x∗, z∗)

∂w
(Xj −m (w, z))(Xj −m (w∗, z∗))

×KσN (w −Wj , z −Zj)KσN (w
∗ −Wj , z

∗ − Zj)

×fX|W,Z (x|w, z) fX |W,Z (x
∗|w∗, z∗)dwdxdzdw∗dx∗dz∗]

= EWj ,Xj ,Zj [

Z Z
E
∙
∂g (W,X,Z)

∂w
|W = w,Z = z

¸
E
∙
∂g (W,X, Z)

∂w
|W = w∗, Z = z∗

¸
×

(Xj −m (w, z))(Xj −m (w∗, z∗)KσN (w −Wj , z − Zj)KσN (w
∗ −Wj , z

∗ −Zj) dwdzdw
∗dz∗]

= EWj ,Xj ,Zj [

Z Z
E
∙
∂g (W,X,Z)

∂w
|W =Wj + rσN , Z = Zj + tσN

¸
×

E
∙
∂g (W,X,Z)

∂w
|W =Wj + r∗σN , Z = Zj + t∗σN

¸
×

(Xj −m (Wj + rσN , Zj + tσN ))(Xj −m (Wj + r∗σN , Zj + t∗σN )K (r, t)K (r
∗, t∗)drdtdr∗dt∗],
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where the double integral inside the expectation converges to

E
∙
∂g (W,X,Z)

∂w
|W =Wj , Z = Zj

¸2
(Xj −m (Wj , Zj))

2

for σN ↓ 0 (since gN (x0) =
R
K (r) g (w − rσN )dr→ g (w)

R
K (r)dr and the kernel integrates

to one. Therefore by Lebesgue’s Dominated Convergence Theorem we have that

lim
N→∞

E[a2jN ] = EWj ,Xj ,Zj

"
E
∙
∂g (W,X, Z)

∂w
|W =Wj , Z = Zj

¸2
(Xj −m (Wj , Zj))

2

#
= AV ar(a2jN ).

Combining our results we have, for any sequence σN such that
√
Nσ

S(K+1)
N ↓ 0,

1√
N

NX
j=1

[ajN (Vj)− E [ajN (Vj)]] =
1√
N

NX
j=1

ajN (Vj) + op (1) ,

and hence by the Lindeberg-Feller central limit theorem (c.f., van der Vaart 1998, p. 20) that

1√
N

NX
j=1

ajN (Vj)→ N(0, AV ar(a2jN )). (1.140)

We now demonstrate that
PN

i=1 aiN (Vi) /
√
N is op (1) for

√
Nσ

S(K+1)
N ↓ 0 with a negligible

variance and hence does not contribute to the asymptotic sampling distribution of (1.135). We
have, using iterated expectations, change of variables and the Taylor expansion given in (1.139)
above,

aiN (Vi) = −
Z

∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(x−m (Wi, Zi))KσN (Wi − w,Zi − z)

×fW,X,Z (w,x, z)dwdxdz

= −∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
EfW, eX, eZ [( eX −m (Wi, Zi))KσN (Wi −fW,Zi − eZ)]

= −∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
EfW, eZ [(m(fW, eZ)−m (Wi, Zi))×KσN (Wi −fW,Zi − eZ)]

= −
Z

∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(m(Wi − rσN , Zi − tσN)−m (Wi, Zi))×

K(r, t)fW,Z (Wi − rσN , Zi − tσN )drdt

= −[
Z

∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(
S−1X
s=1

σs(K+1)N

s!

µ
r
∂

∂w
+ t0

∂

∂z

¶s

m (Wi, Zi)

+σ
S(K+1)
N

1

S!

µ
r
∂

∂w
+ t0

∂

∂z

¶S

m
¡
Wi − rσN , Zi − tσN

¢
)×K(r, t)

×fW,Z (Wi − rσN , Zi − tσN) drdt].
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By the repeated application of triangle inequality (TI) we get

|aiN (Vi)| ≤ C

Z
|∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(
S−1X
s=1

σ
s(K+1)
N

s!

µ
r
∂

∂w
+ t0

∂

∂z

¶s

m (Wi, Zi)

+σ
S(K+1)
N

1

S!

µ
r
∂

∂w
+ t0

∂

∂z

¶S

m
¡
Wi − rσN , Zi − tσN

¢
)

×K(r, t)fW,Z (Wi − rσN , Zi − tσN ) |drdt

≤ C1

Z
|∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)
(
S−1X
s=1

σ
s(K+1)
N

s!

µ
r
∂

∂w
+ t0

∂

∂z

¶s

m (Wi, Zi)×

K(r, t)fW,Z (Wi − rσN , Zi − tσN ) |drdt

+C2σ
S(K+1)
N

Z
|∂g (Wi,Xi, Zi)

∂w

1

fW,Z (Wi, Zi)

1

S!

µ
r
∂

∂w
+ t0

∂

∂z

¶S

m
¡
Wi − rσN , Zi − tσN

¢
×

K(r, t)fW,Z (Wi − rσN , Zi − tσN ) |drdt.

By virtue of the kernel being of order S and boundedness of fW,X,Z (Wi, Xi, Zi) , g (Wi, Xi, Zi) ,
m (Wi, Zi) and their respective derivatives to order S (Assumptions X, X and X) we therefore
have

|aiN (Vi)| ≤ Cσ
S(K+1)
N .

Therefore the contribution of aiN (Vi) to the asymptotic variance of bγ will be negligible for
bandwidth sequences such that

√
Nσ

S(K+1)
N ↓ 0 as claimed.

[REMAINDER TO BE COMPLETED]
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