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mation techniques inappropriate. This paper proposes a simple two-step e¢ cient semiparametric
procedure to estimate a large class of population parameters when a �nite multi-valued treat-
ment assignment is ignorable. Estimation focuses on a general population parameter, the Dose-
Response Function (DRF), that relates each treatment level to its corresponding outcome e¤ect
and that is de�ned as the solution of a moment equation. We provide a set of su¢ cient condi-
tions that ensure root-N consistency, asymptotic normality and e¢ ciency of this estimator, and
we show that these conditions are satis�ed for two particular cases, the Average Dose-Response
Function and the Quantile Dose-Response Function, under mild assumptions. Using these large
sample results, other important population parameters of interest may be e¢ ciently estimated
by means of continuous transformations of the estimator considered. Using this idea, previous
estimators for average and quantile treatments e¤ect are shown to be particular cases of the
proposed estimation procedure when treatment is assumed to be dichotomous.
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1. Introduction
A large literature on program evaluation concentrates on the estimation of treatment e¤ects un-
der the assumption of unconfoundedness or ignorability and focuses almost exclusively on the
special case of binary treatments. However, in most empirical applications treatments are implic-
itly or explicitly multi-valued in nature. For example, in training programs, participants receive
di¤erent hours of training or, in conditional cash transfer programs, households receive di¤erent
amounts of money. Understanding the e¤ect of multi-valued treatment assignments is crucial from
a policy-making perspective because it provides additional information beyond the standard treat-
ment e¤ects considered in the classical dichotomous treatment literature. For instance, by looking
at the e¤ect of a multi-valued treatment it is possible to identify non-linearities or heterogeneous
treatment impacts, a fact that may provide a better understanding of the speci�c policy.

This paper proposes a simple two-step e¢ cient semiparametric procedure to estimate a large
class of population parameters when a �nite multi-valued treatment assignment is ignorable. We
study the estimation of a general population parameter, labeled the Dose-Response Function
(DRF), that relates each treatment level (dose) to its corresponding outcome e¤ect (response),
and that is de�ned as the solution of a moment condition. We provide a set of su¢ cient conditions
for the estimation of the general DRF, and we show that these conditions are satis�ed by two impor-
tant examples: Average Dose-Response Function (ADRF) and Quantile Dose-Response Function
(QDRF). The �rst population parameter, ADRF, relates each treatment level to its average e¤ect
on the outcome of interest, while the second population parameter, QDRF, estimates for a given
quantile the e¤ect of each treatment level on the outcome of interest. Together, these two examples
alone provide a very rich set of population parameters, allowing not only for comparisons across
and within treatment levels for both means and quantiles, but also for the construction of other
quantities of interest such as pairwise di¤erences, interquantile ranges, or incremental ratios. The
latter measures may be more appropriate from a policy-making perspective because they capture
better notions of inequality and di¤erential treatment e¤ects.

The results presented in this paper are closely related to both the program evaluation literature
in econometrics and the missing data literature in statistics.1 This literature was mainly motivated
by the seminal work of Rubin (1974) and Rosenbaum and Rubin (1983), and often focuses on the
construction of semiparametric (e¢ cient) estimation procedures for di¤erent population parameters
of interest. For the particular case of a binary treatment, great e¤ort is devoted to the estima-
tion of average treatments e¤ects (ATE) and related quantities, using either regression methods
(Hahn (1998), Heckman, Ichimura, and Todd (1998), Imbens, Newey, and Ridder (2006)), matching
(Abadie and Imbens (2006)), procedures based on the propensity score (Hirano, Imbens, and Rid-
der (2003)), or methods involving both regression and the propensity score (Robins, Rotnitzky, and
Zhao (1994), Bang and Robins (2005)). In a very recent contribution, Firpo (2007) has considered
a di¤erent population parameter, focusing on the e¢ cient estimation of quantile treatment e¤ects
for dichotomous treatment assignments using the propensity score.

Surprisingly less work is available in the literature for the case of multi-valued treatment assign-
ments. In a recent paper, Imbens (2000) derives a generalization of the propensity score, termed
the Generalized Propensity Score (GPS), for the context of �nite treatments and shows that the
results of Rosenbaum and Rubin (1983) continue to hold when the treatment is multi-valued. Fur-
ther, Imai and Dyk (2004) obtain a similar result for a general framework that encompasses this
and other extensions available in the literature. Concerning estimation, however, the work in this

1For recent surveys on these topics, usually with a particular emphasis on binary treatment assignments, see
Rosenbaum (2002), Imbens (2004), Lee (2005), or Tsiatis (2006), among others.
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framework is very limited. Recent contributions in the missing data literature in statistics apply
to this problem when considering the special case of ADRF and doubly robust estimators (for a
survey on these results see, e.g., Bang and Robins (2005) and the references therein).

This paper contributes to the literature of program evaluation in several ways. It provides a set
of simple su¢ cient conditions that enable e¢ cient estimation of the DRF and shows, in particular,
how the ADRF and the QDRF can be estimated under mild regularity conditions. This result
builds on the modern theory of empirical processes (see, e.g., van der Vaart and Wellner (1996))
and the modern theory of semiparametric e¢ ciency (see, e.g., Newey (1990) and Bickel, Klaassen,
Ritov, and Wellner (1993)), and proceeds by constructing an observable moment condition using
an inverse probability weighting (IPW) scheme that involves both the population parameter of
interest (DRF) and a nuisance parameter in the estimation (GPS). Interestingly, because of the
way the theory is developed, the general large sample properties of the proposed estimator for the
DRF are derived without formally specifying the structure of the nonparametric estimator of the
GPS, but rather by assuming two well-known high-level conditions. This result not only provides a
better understanding of the set of su¢ cient conditions required for the general procedure to work,
but also allows for di¤erent choices of the nonparametric estimator of the GPS.

After establishing the general asymptotic results for the estimator of the DRF, we consider
the nonparametric estimation of the GPS. Because in this case the in�nite dimensional nuissance
parameter is in fact a conditional probability, we propose a new nonparametric estimator labeled
Multinomial Logistic Series Estimator (MLSE). This estimator has the key advantage of providing
predicted positive probabilities that add up to one and is a generalization of the nonparametric
estimator for the propensity score introduced by Hirano, Imbens, and Ridder (2003). Using this
estimator for the GPS, we provide su¢ cient conditions that guarantees the e¢ cient estimation of
the DRF.

Using the e¢ cient estimation procedure for the general DRF, we show how other important
population parameters of interest can be e¢ ciently estimated by means of continuous transfor-
mations of the estimator considered. It follows that this procedure not only enlarges the class of
parameters covered by our estimation procedure, but it also allows for optimal hypothesis testing.
Moreover, using this methodology it is shown how the results of Hahn (1998), Hirano, Imbens,
and Ridder (2003), and Firpo (2007) may be seen as particular cases of our procedure when the
treatment assignment is binary.

The rest of the paper is organized as follows. Section 2 presents the multi-valued treatment
model, introduces the population parameter of interest, discusses identi�cation and formalizes the
estimation procedure proposed. Section 3 derives the large sample properties of the estimator.
Section 4 discusses how e¢ cient estimation and optimal testing of other interesting population
parameters can be done using the estimator considered in this paper, and also presents straightfor-
ward extensions to our methodology that further enlarges the class of population parameters that
may be covered. Section 5 presents an empirical application, and Section 6 concludes. We relegate
all proofs to the Appendix, which includes some general results that may be of independent interest
for other applications.

2. Statistical Model, Identification and Estimation Procedure

In this Section we introduce the statistical model, the class of population parameters of interest
and the basic assumptions used for identi�cation. Finally, we also present the two-step estimation
procedure considered in this paper.
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2.1. Multi-valued Treatment Model and Dose-Response Functions. The setup consid-
ered here is the natural extension of the well-known model used in the classical binary treatment
literature (Rubin (1974)). We assume that a random sample of size N from a large population is
observed where observational units are indexed by n = 1; 2; :::; N . Each unit receives a treatment
level (dose) denoted by Tn 2 T where T is assumed �nite and, without loss of generality, of the
form f0; 1; 2; � � � ; Jg. Using the potential outcomes notation, let Yn (t) 2 Y be the potential out-
come associated with each J + 1 treatment level for unit n. We also assume that there exists a
vector of pre-intervention covariates denoted Xn 2 X for each unit. Finally, we de�ne the random
variable Dn (t) = 1 fTn = tg, and we note that the observed outcome for each unit is given by
Yn � Yn (Tn) =

P
t2T Dn (t) � Yn (t). Notice that in this general setup, the fundamental problem of

causal inference is exacerbated: for each unit n we only observe one of the J+1 potential outcomes.
The population parameter of interest in this paper is the Dose-Response Function (DRF),

denoted �� = [��0; �
�
1; � � � ; ��J ]

0 2 BJ+1, which is assumed to be implicitly de�ned by the collection
of moment conditions

E [m (Y (t) ;X;��t )] = 0 for all t 2 T , (1)

where m (�; �; �) : Y �X �B ! R is a known, possibly non-smooth function. This description of the
model can be summarized by the following assumption:

Assumption 1. (Model Setup)

(1.1) (Sampling) The (observed) random sample f[Yn; Tn;X0n] : n = 1; 2; � � � ; Ng is i.i.d., where
Dn (t) = 1 fTn = tg and Yn =

P
t2T Dn (t) � Yn (t).

(1.2) (Identification) E [m (Y (t) ;X;�)] = 0 if and only if � = ��t for all t 2 T = f0; 1; 2; � � � ; Jg.

Assumption 1.1 is standard in the literature. It summarizes the cross-sectional random sample
scheme considered in the paper and re�ects the missing data problem underlying this model, i.e.,
that we only observe the potential outcome resulting from the corresponding treatment assignment
for each unit. Assumption 1.2 imposes conventional identi�cation conditions for M -estimation.

The conditions in Assumption 1 allow us to consider a large collection of population parameters
of interest including those de�ned by non-smooth moment functions such as quantiles or other
robust estimands. We provide a set of su¢ cient conditions that enable e¢ cient estimation of the
DRF for the multi-valued treatment model, and we also show that these conditions are satis�ed by
two leading examples that we develop throughout this paper:

Example 1: Average Dose-Response Function. The �rst leading example is the classical
population parameter generally used in the literature of Biostatistics, Public Health or Medicine,
among other �elds. This population parameter captures the mean response for each treatment
level and, in the context of program evaluation, it can be seen as an extension of the ATE as
will be shown in Section 4. We denote �� = [��0; �

�
1; � � � ; ��J ]

0 as the ADRF and by de�ning
m (Y (t) ;X;�t) = Y (t) � �t, for all t 2 T , we obtain the ADRF whose t-th term is given by
��t = E [Y (t)]. In this case Assumption 1.2 follows immediately after assuming �nite �rst moments
of the potential outcomes. �

Example 2: Quantile Dose-Response Function. Characterizing distributional impacts
of a multi-valued treatment is crucial because these e¤ects are closely related to usual inequality
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measures. The second leading example captures this idea by looking at the treatment e¤ect at
di¤erent quantiles of the outcome variable. We denote q� (�) = [q�0 (�) ; q

�
1 (�) ; � � � ; q�J (�)]

0 as the
QDRF for quantile � 2 (0; 1), and by de�ning m (Y (t) ;X; qt (�)) = 1 fY (t) � qt (�)g � � , for all
t 2 T , we obtain the QDRF whose t-th term is given by q�t (�) = inf

�
q : FY (t) (q) � �

	
, where FY (t)

is the c.d.f. of Y (t). In this case, Assumption 1.2 is satis�ed if we assume that Y (t) is a continuous
random variable with density fY (t) (q�t (�)) > 0, which we impose throughout this example. �

2.2. Identi�cation. The identi�cation condition in Assumption 1.2 covers many cases of inter-
est. However, it has the obvious drawback of being based on unobservable random variables, the
potential outcomes, which makes estimation unfeasible. To make progress, we need to impose an
additional identi�cation restriction. Following the program evaluation literature, we make the �se-
lection on observables�assumption which, combined with an inverse probability weighting scheme,
recovers identi�cation of the DRF from an observed moment condition. We summarize the key
identifying assumption:

Assumption 2. (Ignorability)

(2.1) (Weak Unconfoundedness) Y (t) ?? T j X, for all t 2 T .

(2.2) (Common Support) 0 < pmin � p�t (X) � P [T = tjX], for all t 2 T .

Assumption 2.1 assumes that the distribution of each potential outcome and the treatment
status are conditionally independent for all treatment levels and consequently provides identi�cation
by imposing random assignment conditional on observables. Observe that 2.1 is weaker than the
usual unconfoundedness assumption commonly used in the classical binary treatment literature,
since it involves only the marginal distributions of the potential outcomes rather than their joint
distribution. Assumption 2.2 requires that, conditional on the pre-intervention covariates, the
probability of receiving any treatment level be strictly positive and ensures that, at least in large
samples, there will be observations in each treatment category. Finally, note that the conditional
probabilities p�t (X) = P [T = tjX] = E [D (t)jX], for all t 2 T , correspond to the generalized
propensity score in the context of the multi-valued treatment model. See Imbens (2000) for more
details on these assumptions and results regarding the GPS.

Since we are interested not only in mean e¤ects but also in other population parameters, the
general DRF is de�ned as the solution to an implicit moment equation. For this reason, condition-
ing on observed covariates X to remove bias and then averaging out will not, in general, recover
the parameter of interest. An alternative procedure is to use the GPS in an Inverse Probability
Weighting scheme that, under Assumption 1 and Assumption 2, provides identi�cation by trans-
forming the infeasible moment equation (1) into a moment condition that depends only on observed
random variables. It is easy to verify that

E
�
D (t) �m (Y;X;�)

p�t (X)

�
= E [m (Y (t) ;X;�)] = 0 if and only if � = ��t , (2)

for all t 2 T .
Inverse probability weighting schemes have been considered by many authors in di¤erent con-

texts at least since the work of Horvitz and Thompson (1952). This procedure achieves identi�cation
by reweighting the observations to make them representative of the population of interest. This
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idea has been exploited in the context of program evaluation by Imbens (2000), Hirano, Imbens,
and Ridder (2003) and Firpo (2007), and in the context of missing data by Robins, Rotnitzky, and
Zhao (1994) and Robins, Rotnitzky, and Zhao (1995), among others.

Identi�cation of the DRF follows directly from equation (2) together with Assumption 1 and
Assumption 2. This result applies directly to our leading examples:

Example 1 (Continued): ADRF. In this case we obtain

E
�
D (t) � (Y � ��t )

p�t (X)

�
= 0, for all t 2 T . �

Example 2 (Continued): QDRF. Let � 2 (0; 1) and we obtain

E
�
D (t) � (1 fY � q�t (�)g � �)

p�t (X)

�
= 0, for all t 2 T . �

2.3. Two-Step Estimation Procedure. The (feasible) identi�cation condition discussed in
the previous section suggests a simple semi-parametric two-step minimum distance estimator for
the class of DRF considered in this paper. To motivate the procedure we use the analogy principle
(Manski (1988)).

Recall that our goal is to estimate the parameters implicitly de�ned by the moment conditions
E [m (Y (t) ;X;��t )] = 0 for all t 2 T . Had we observed the random variables (Y (0) ; � � � ; Y (J)), a
natural estimator would simply solve the sample analog counterpart of each of these (J + 1) equa-
tions leading to an standardM -estimation procedure. However, due to the fundamental problem of
causal inference, we cannot perform such estimation. Instead, we can use the result in Equation (2)
to obtain (J + 1) equations based only on observed random variables. This alternative, however,
has the drawback that now the estimating equations involve both the �nite dimensional parameter
of interest (DRF) and an in�nite dimensional nuisance parameter (GPS). This line of reasoning
suggests that if we could construct a preliminary estimator for the GPS that converges to the true
GPS su¢ ciently fast, we would still be able to estimate the �nite dimensional parameter of interest.

Using this idea, we consider a simple semi-parametric two-step estimation procedure where each
dose-e¤ect is estimated separately once the nonparametric nuisance parameter using the full data
has been estimated. This procedure involves two steps:

Step 1. Construct a nonparametric estimator of the GPS, denoted p̂ (�) = [p̂0 (�) ; � � � ; p̂J (�)]0.

Step 2. Obtain the e¢ cient estimate of the DRF, �̂, by minimizing the sample analogue of the
observed identi�cation condition; that is, the components of �̂ are given by:

�̂t = argmin
�2B

���� 1N XN

n=1

Dn (t) �m (Yn;Xn;�)
p̂t (Xn)

���� , for all t 2 T .

To �x ideas, we show how this estimation procedure applies to our leading examples:
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Example 1 (Continued): ADRF. In this case, the procedure leads to a closed solution given
by

�̂t =
1

N

XN

n=1

Dn (t) � Yn
p̂t (Xn)

, for all t 2 T . �

Example 2 (Continued): QDRF. In this case, for �xed � 2 (0; 1), the estimator is given by

q̂t (�) = argmin
q2B

���� 1N XN

n=1

Dn (t) � (1 fYn � qg � �)
p̂t (Xn)

���� , for all t 2 T . �

3. Large Sample Properties
In this Section we present the main large sample results of the paper in �ve stages. First, we
establish consistency of the estimator for the DRF. Second, we compute the E¢ cient In�uence
Function and corresponding Semiparamentric E¢ ciency Bound. Third, we present a set of su¢ cient
conditions to obtain asymptotic normality and e¢ ciency of the estimator. Fourth, we introduce a
nonparametric estimator appropriate for the estimation of the GPS. Finally, we construct consistent
uncertainty estimates. The results presented in this Section build on more general results included
in Appendix A and Appendix B, which may be of independent interest.

To reduce the notational burden, we de�ne the augmented moment equation and its sample
analogue, given respectively by

M (�; pt (�)) = E
�
D (t) �m (Y;X;�)

pt (X)

�
, and MN (�; pt (�)) =

1

N

XN

n=1

Dn (t) �m (Yn;Xn;�)
pt (Xn)

,

for t 2 T .

3.1. Consistency. Consistency of the proposed two-step estimator will follow from two mild
conditions imposed on the underlying unfeasible moment identi�cation function m (�;�). Interest-
ingly, to verify consistency we do not need to impose any particular structure on the nonparametric
component or its estimator beyond the model assumptions and a very basic condition on the non-
parametric estimator.

Assumption 3. (Consistency) B is compact, and

(3.1) (Glivenko-Cantelli Property)M = fm (�;�) : � 2 Bg is Glivenko-Cantelli.

(3.2) (Integrable Envelope) E
�
sup�2B jm (Y (t) ;X;�)j

�
<1, for t 2 T .

Assumption 3.1 builds on the modern theory of Empirical Processes (van der Vaart and Wellner
(1996)) and restricts the class of functions m (�;�) characterizing the DRF that we may consider.
This assumption is slightly stronger than required. In fact, inspection of the proof of Theorem 1
reveals that a weaker su¢ cient condition isMN (�; p

�
t (�))

p�!M (�; p�t (�)) uniformly in � 2 B. It is
well-known that uniform laws of large numbers are available when underlying functions are (close
to) continuous (see, e.g., Newey and McFadden (1994)). However, to cover interesting nonsmooth
cases (such as quantiles) we need to rely on slightly stronger results such as those covered by
the empirical process literature. A more primitive condition for Assumption 3.1 would involve a
standard covering number argument such as those employed in Ai and Chen (2003) in the context
of GMM estimation. Assumption 3.2 is close to a regularity condition.
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Theorem 1. (Consistency) Suppose Assumption 1, Assumption 2, Assumption 3 and the fol-
lowing condition hold:

(C.1) (Consistency of Nonparametric Estimator) kp̂ (�)� p� (�)k1 = op (1).

Then, �̂
p�! ��.

Condition (C.1) is weak, requiring only that the nonparametric estimator is uniformly consis-
tent. Moreover, below we will require a stronger assumption to obtain asymptotic normality of the
estimator. Similarly, Assumption 3.1 will be automatically implied by the stronger requirement
that the class of functions m (�;�) is Donsker, which will also be imposed later along with other
conditions when deriving the asymptotic normality of the estimator. It is interesting to note that
the result in Theorem 1 implies that for any consistent nonparametric estimator of the GPS, the
two-step estimator proposed in this paper is consistent for the DRF.

For most applications, the key Assumption 3.1 is either readily available from the literature
or can be veri�ed directly by well-known results (see, e.g., Andrews (1994) or van der Vaart and
Wellner (1996)). For example, it is well-known that continuous functions, Lipschitz functions or
indicator functions enjoy this property, provided some envelop condition holds. For our examples,
given the model assumptions, Assumption 3 is automatically satis�ed:

Example 1 (Continued): ADRF. Assume B is compact and E [jY (t)j] < 1, for t 2 T .
Assumption 3 follows directly because the class of functions M = f(y � �) : � 2 Bg is Glivenko-
Cantelli. Therefore, using Theorem 1 we conclude that �̂

p�! ��. �

Example 2 (Continued): QDRF. Assume B is compact. Assumption 3 follows directly
because the class of functionsM = f(1 fy � qg � �) : q 2 Bg is Glivenko-Cantelli. Therefore, using
Theorem 1 we conclude that q̂ (�)

p�! q� (�). �

3.2. E¢ cient In�uence Function and Semi-Parametric E¢ ciency Bound. Semipare-
metric e¢ ciency theory has received considerable attention in econometrics since the seminal works
of Newey (1990) and Bickel, Klaassen, Ritov, and Wellner (1993). This general theory provides the
necessary ingredients for the construction of e¢ cient estimators of �nite dimensional parameters in
the context of semiparametric models. First, it provides the analogue concept of the Cramer-Rao
Lower Bound for semiparametric models, that is, an e¢ ciency benchmark for regular estimators
of the population parameter of interest. Second, and more importantly, it provides a way of con-
structing e¢ cient estimators using the e¢ cient in�uence function or e¢ cient score of the model. In
the simplest possible case, the construction of an e¢ cient estimator starts by deriving the e¢ cient
in�uence function of the statistical model and then verifying that the proposed estimator admits
an asymptotic linear representation based on this e¢ cient in�uence function. In the next section
we use this idea to derive asymptotic normality and e¢ ciency of the estimator.

In the context of program evaluation with binary treatments, e¢ cient in�uence functions and
e¢ ciency bounds have been computed by Hahn (1998), Hirano, Imbens, and Ridder (2003), and
Firpo (2007) for di¤erent treatment e¤ect parameters using the methodology outlined in Bickel,
Klaassen, Ritov, and Wellner (1993). In the closely related framework of missing data, and under
the assumption of �missing at random�, Robins, Rotnitzky, and Zhao (1994), Robins, Rotnitzky,
and Zhao (1995), and Robins and Rotnitzky (1995) have developed a general methodology to
construct e¢ cient scores and compute the corresponding e¢ ciency bounds.
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To compute the e¢ cient in�uence function of the DRF we impose the following additional
assumption:

Assumption 4. (Semi-parametric Efficiency)

(4.1) (Finite Second Moment) E
h
m (Y (t) ;Xn;�

�
t )
2
i
<1 for all t 2 T .

(4.2) (Implicit Function Theorem) vt (��t ) � @E [m (Y (t) ;X;�)] =@�j��t 6= 0 for all t 2 T .

The main role of Assumption 4 (together with Assumption 1.2) is to ensure that the bound is
�nite. Notice that semiparametric e¢ ciency computations require some additional mild regularity
conditions on the underlying statistical model, which we are not explicitly including in this set of
assumptions. We refer to Newey (1990), Bickel, Klaassen, Ritov, and Wellner (1993) and Newey
(1994) for a discussion of such regularity conditions. A key necessary requirement, however, is that
the population parameter of interest be pathwise di¤erentiable. This result is established in the
Appendix under these assumptions.

Theorem 2. (Efficient Influence Function and SPEB) Suppose that Assumption 1, As-
sumption 2, and Assumption 4 hold, then the e¢ cient in�uence function associated with the DRF
is given by  (Z;��;p� (�)) 2 RJ+1, with typical element t 2 T

 t (Z;�
�;p� (�)) = 1

vt (�
�
t )
�
�
D (t) � (m (Y;X;��t )� Et (X;��i ))

p�t (X)
+ Et (X;��i )

�
,

where Et (X;�) � E [m (Y (t) ;X;�) j X] for all t 2 T . Consequently, the Semiparametric E¢ -
ciency Bound is given by the matrix SPEB (��) 2 R(J+1)�(J+1) with typical (i; j)-th element

SPEBi;j (�
�) = E

"
1 fi = jg � Var [m (Y (i) ;X;�

�
i )jX]

vi (�
�
i )
2 � p�i (X)

+
Ei (X;��i ) � Ej

�
X;��j

�
vi (�

�
i ) � vj

�
��j
� #

.

Observe that Theorem 2 provides the general form of the e¢ cient in�uence function and the
SPEB for any DRF covered by the model considered in this paper. Our derivation follows the work
of Newey (1990), Bickel, Klaassen, Ritov, and Wellner (1993) and Newey (1994). Alternatively,
this result can be obtained by means of the high-level methodology introduced in the context of
missing data by Robins, Rotnitzky, and Zhao (1994) as mentioned before.

Following Newey (1994), we may provide additional intuition for the in�uence function derived
in Theorem 2 by considering the typical t-th element of  (Z;��;p� (�)) and rearranging terms to
obtain

 t (Z;�
�;p� (�)) = 1

vt (�
�
t )
�
�
D (t) �m (Y;X;��t )

p�t (X)
+ �t (T;X; p

�
t (�))

�
,

where

�t (T;X; p
�
t (�)) = �

Et (Xn)
p�t (Xn)

� (Dn (t)� p�t (Xn)) .

Thus, the vector-valued function � (�) = [�0 (�) ; �1 (�) ; � � � ; �J (�)]0 corresponds to the adjust-
ment term due to the fact that we need to estimate the nuisance parameter (GPS). This decom-
position will prove useful when deriving the asymptotic normality and constructing a consistent
estimator for the asymptotic matrix of variances and covariances.
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Finally, we apply the results of Theorem 2 to the examples under study:

Example 1 (Continued): ADRF. Assume E
h
Y (t)2

i
< 1 and note that vt (��t ) = 1 for all

t 2 T in this case. Thus, Assumption 4 is satis�ed and Theorem 2 implies that the SPEB for the
ADRF is given by SPEB (��) with typical (i; j)-th element

SPEBi;j (�
�) = E

�
1 fi = jg � �

2
i (X)

p�i (X)
+ (�i (X)� ��i ) �

�
�j (X)� ��j

��
,

where �2i (X) = Var [Y (i)jX], �i (X) = E [Y (i)jX], for all i 2 T . �

Example 2 (Continued): QDRF. Using Leibniz�s rule we have vt (��t (�)) = fY (t) (�
�
t (�))

for t 2 T , which was assumed strictly positive. Thus, Assumption 4 is satis�ed and Theorem 2
implies that the SPEB for the QDRF is given by SPEB (q� (�)) with typical (i; j)-th element

SPEBi;j (q
� (�)) = E

241 fi = jg � �2t (X; �)

fY (i) (�
�
i (�))

2 � p�i (X)
+

�t (X; �) � �t (X; �)
fY (i) (�

�
i (�)) � fY (j)

�
��j (�)

�
35 ,

where �2i (X; �) = Var [1 fY (i) � ��i (�)gjX], �i (X; �) = E [1 fY (i) � ��i (�)g � � jX], for all i 2
T . �

3.3. Asymptotic Normality and E¢ ciency. We may now derive an asymptotic linear repre-
sentation based on the e¢ cient in�uence function that will not only provide asymptotic normality of
the estimator, but will also establish its asymptotic e¢ ciency. The following conditions are needed:

Assumption 5. (Asymptotic Normality) Suppose B is compact, �� 2 int (B), and

(5.1) (Donsker Property)M = fm (�;�) : j� � ��t j < �g is Donsker, for some � > 0.

(5.2) (Square-Integrable Envelope) E
h
sup�2B jm (Y;X;�)j2

i
<1

(5.3) (Smoothness) E [jm (Y (t) ;X;�)�m (Y (t) ;X;��t )j] � C � j� � ��t j for all t 2 T , for some
positive constant C, and for all � such that j� � ��t j < �, for some � > 0.

(5.4) (L2 Continuity) E
h
jm (Y (t) ;X;�)�m (Y (t) ;X;��t )j

2
i
! 0 as j� � ��t j ! 0.

Assumption 5.1 and Assumption 5.2 are standard su¢ cient conditions for weak convergence in
the literature of empirical processes. These conditions can be relaxed either by directly proving
weak convergence or by restricting the class of functions using a covering number argument. For
most applications, Assumption 5.1 is already established or can be easily established by some �per-
manence theorem�(see, e.g. Andrews (1994) or van der Vaart and Wellner (1996)). Assumption
5.3 and Assumption 5.4 are key assumptions that allow us to derive the asymptotic normality result
without specifying a nonparametric estimator for the GPS.

Theorem 3. (Asymptotic Normality and Efficiency) Suppose Assumption 1, Assumption
2, and Assumption 4 hold. Further, assume the following conditions hold:
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(AN.1) (Nonparametric Estimator Rate) N
1
4 � kp̂ (�)� p� (�)k1 = op (1).

(AN.2) (Asymptotic Linear Expansion) For all t 2 T ,
p
N �MN (�

�
t ; p̂t (�)) =

p
N �MN (�

�
t ; p

�
t (�)) +

1p
N

XN

n=1
�t (Tn; Xn; p

�
t (�)) + op (1) .

Then the asymptotic linear representation of the DRF is given by

p
N
�
�̂ � ��

�
=

1p
N

XN

n=1
 (Yn; Tn;Xn;�

�;p� (�)) + op (1) ,

and consequently
p
N
�
�̂ � ��

�
d�! N (0; SPEB (��)).

The �rst condition of the theorem is standard in the literature and, of course, implies condi-
tion (C.1) in Theorem 1, and will be satis�ed for most reasonable nonparametric estimators. On
the other hand, condition (AN.2) turns out to be crucial. This condition involves only the non-
parametric estimator (at the true DRF) and requires a linear expansion to hold. Newey (1994)
provides a general discussion of high-level conditions, involving stochastic equicontinuity and mean-
square continuity, that ensure that this condition holds. In the next section we verify these two
conditions directly for the particular nonparametric estimator considered in this paper. For other
standard nonparametric estimators, conditions in Newey (1994) or Newey and McFadden (1994)
apply directly provided some additional regularity conditions are assumed.

Now we consider our leading examples:

Example 1 (Continued): ADRF. The class of functionsM = f(y � �) : � 2 Bg is Donsker
and

E [jm (Y (t) ;X;�t)�m (Y (t) ;X;��t )j] =
Z
j(y � �t)� (y � ��t )j � dFY (t) (y) = j�t � ��t j ,

giving Assumption 5.3 and Assumption 5.4. Thus, using Theorem 3 we conclude that
p
N (�̂� ��) d�!

N (0; SPEB (��)). �

Example 2 (Continued): QDRF. For �xed � 2 (0; 1), the class of functions
M = f(1 fy � � (�)g � �) : � (�) 2 Bg is Donsker and

E [jm (Y (t) ;X; qt (�))�m (Y (t) ;X; q�t (�))j]

=

Z
j1 fy � qt (�)g � 1 fy � q�t (�)gj � dFY (t) (y)

= FY (t) (max fqt (�) ; q�t (�)g)� FY (t) (min fqt (�) ; q�t (�)g)
� C � jqt (�)� q�t (�)j ,

for all qt (�) such that jqt (�)� q�t (�)j < �, for some � > 0, under the assumptions imposed at
the beginning of this example. This veri�es Assumption 5.3, while Assumption 5.4 follows by

using the same argument. Thus, using Theorem 3 we conclude that
p
N (q̂ (�)� q� (�)) d�!

N (0; SPEB (q� (�))). �
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3.4. Nonparametric Estimator. Theorem 1 and Theorem 3 establish consistency, asymptotic
normality and e¢ ciency of the estimator considered in this paper. These results have been obtained
without formally specifying the nonparametric estimator used for the GPS, but rather by imposing
high-level assumptions concerning the behavior of such estimator. In this Section we present a
new nonparametric estimator appropriate for the estimation of the GPS and we show that the
conditions required in these theorems are met.

Recall we only need to verify conditions (AN.1) and (AN.2) in Theorem 3. Since the GPS is a
conditional expectation, many standard nonparametric estimators are available. In particular, the
arguments in Newey (1994) or Newey and McFadden (1994) can be used to verify that Conditions
(AN.1) and (AN.2) are met when series or kernels are used to estimate nonparametrically the
nuisance parameter.

However, the GPS is not only a conditional expectation but also a conditional probability
(i.e., all elements are positive and add up to one), which imposes additional restrictions that
cannot be captured by standard nonparametric estimators. Thus, in this section we present a new
nonparametric estimator consistent with this additional requirements. In particular, we consider a
generalization of the estimator introduced by Hirano, Imbens, and Ridder (2003) for the particular
context of binary treatment, labeled Multinomial Logistic Series Estimator. This estimator can be
interpreted as a non-linear sieve (see Chen (2005)) and works as follows.

Recall that our goal is to nonparametrically estimate the GPS, that is, the (J + 1) vector-valued
function given by p� (�) = [p�0 (�) ; p�1 (�) ; � � � ; p�J (�)]

0 with p�t (�) : X ! (0; 1) for all t 2 T . We con-
sider a sequence of approximating functions of the form rK (x) = [r1K (x) ; r2K (x) ; � � � ; rKK (x)]0,
where for simplicity the basis is restricted to be either power series or splines and are assumed
to be the same for all (J + 1) probabilities. See Appendix B for details and more general results.
The construction of this K-dimensional vector of functions is standard and a full description can

be found in, for example, Newey (1997). Let 
K =
h

 0K;0;


0
K;1; � � � ;
 0K;J

i0
be a vector of approx-

imating coe¢ cients for each of the (J + 1) conditional expectations. To construct the MLSE we
consider the (MLE) problem


̂K = arg max

K :


0
K;0=0

`N (
K) =
1

N

XN

n=1

XJ

t=0
Dn (t) � log

 
exp

�
rK (Xn)

0 
K;t
	PJ

j=0 exp
�
rK (Xn)

0 
K;j
	! ,

where we have imposed the usual normalization 
 0K;0 = 0. Then the MLSE is de�ned as p̂ (Xn)
with typical element given by

p̂t (Xn) =
exp

�
rK (Xn)

0 
̂K;t
	PJ

j=0 exp
�
rK (Xn)

0 
̂K;j
	 .

It is straightforward to verify that this nonparametric estimator satis�es the additional restric-
tions underlying the GPS. To derive the asymptotic properties of this estimator, the following
assumptions are required:

Assumption 6. (MLSE with Power Series and Splines)

(6.1) (Covariates Distribution)Xn 2 X � Rr compact and its density is bounded and bounded
away from zero on X .

(6.2) (Smoothness) For all t 2 T , the functions p�t (�) and Et (�;��i ) are s times di¤erentiable with
s=r > 3:5.
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Theorem 4. (Conditions (AN.1) and (AN.2)) Suppose Assumption 1, Assumption 2, As-
sumption 4, and Assumption 6 hold. Then, Conditions (AN.1) and (AN.2) are satis�ed by the
MLSE if K = N� with

1

4 (s=r � 2�) < � <
1

2 (2� + 1)

where � = 1 or � = 1=2 depending on whether power series or splines are used as basis functions,
respectively.

3.5. Uncertainty Estimation. TO BE COMPLETED. The theorem is:

Theorem 5. (Consistent Estimation of Covariance Matrix) Under assumptions,

V̂ =
1

N

XN

n=1
 
�
Zn; �̂; p̂ (Xn)

�
 
�
Zn; �̂; p̂ (Xn)

�0 p�! V = SPEB (�) .

4. Recovering Other Population Parameters, Optimal Testing and Extensions

In this Section we discuss how other population parameters of interest based on DRF can be
estimated e¢ ciently, which leads to optimal hypothesis testing. Then we introduce other population
parameters already covered by our methodology as well as some natural extensions.

4.1. E¢ cient Estimation and Optimal Testing of Continuous Functions of DRF. Con-
tinuous functions of Euclidean e¢ cient estimators are e¢ cient. Thus, any population parameter of
interest that can be written as a function of the DRF can be estimated e¢ ciently by a standard
delta-method argument. For example, pairwise comparisons (in the spirit of ATE), di¤erences
between pairwise comparisons or incremental ratios can be estimated e¢ ciently. Furthermore,
because tests based on asymptotically e¢ cient estimators are asymptotically optimal, the usual
testing strategies apply directly to this problem and deliver asymptotically optimal tests. Thus, we
can test for di¤erential e¤ects along treatment levels in an straightforward manner.

We exploit these ideas further in Section 5 when we present the empirical application. Finally,
to �x ideas, we show how the papers of Hahn (1998), Hirano, Imbens, and Ridder (2003) and Firpo
(2007) can be thought as particular cases of the method discuss here:

Example 1 (Continued): ADRF. Let T = f0; 1g and observe that the ATE can be written
as �ATE � E [Y (1)]� E [Y (0)] = v0��, where v = [�1; 1]0. Using Theorem 2, we conclude that

SPEB (��) = E

24 �20(X)
p(0;X) + (�0 (X)� �

�
0)
2 (�0 (X)� ��0) � (�1 (X)� ��1)

(�0 (X)� ��0) � (�1 (X)� ��1)
�21(X)
p(1;X) + (�1 (X)� �

�
1)
2

35 ,
where �2t (X) = Var [Y (t)jX], �t (X) = E [Y (t)jX], for t 2 T . Using Theorem 3 and the trans-
formation g (z) = v0z, we conclude that

p
N �

�
�̂ATE ��ATE

�
d�! N

�
0;v0SPEB (��)v

�
,

where

v0SPEB (��)v = E
�
�20 (X)

p (0;X)
+

�21 (X)

p (1;X)
+
�
�ATE (X)��ATE

�2�
.
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Observe that the asymptotic variance is the SPEB found by Hahn (1998) and the resulting
estimator is the one considered in Hirano, Imbens, and Ridder (2003). �

Example 2 (Continued): QDRF. Let T = f0; 1g and observe that the QTE can be written
as �QTE � q�1 (�)� q�0 (�) = v0q� (�), where v = [�1; 1]

0 and q�1 (�) = inf fq : E [1 fY (t) � qg � � ]g
for t 2 T . Using Theorem 3 and the transformation g (z) = v0z, we conclude that

p
N �

�
�̂QTE ��QTE

�
d�! N

�
0;v0SPEB (q� (�))v

�
.

Observe that the asymptotic variance is the SPEB found by Firpo (2007) and the resulting
estimator coincides with Firpo�s estimator for the QTE. �

4.2. Other Population Parameters and Extensions. Other population parameters that
may be easily included in our methodology are: Robust ADRF (RADRF) in the spirit of Hu-
ber�s robust location estimator, regression based estimators widely considered in the literature of
missing data, and weighted average treatment e¤ects (such as treatment e¤ects conditional on a
subpopulation) as discussed in Hirano, Imbens, and Ridder (2003).

TO BE COMPLETED.

5. Empirical Application.
TO BE COMPLETED.

6. Conclusions
TO BE COMPLETED.
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A. Appendix A: M-Estimation
This Appendix develops two general M-estimation results appropriate for the problem studied in this paper. Recall
that the model discussed here involves both a parametric (�nite dimensional) and a nonparametric (in�nite dimen-
sional) component that enter a criterion (loss) function, where the former is the population parameter of interest
and the latter is simply a nuisance parameter in the estimation procedure. We propose an estimation procedure very
popular for this class of models: a two-step procedure where �rst we construct a nonparametric estimator of the
in�nite dimensional component, and then we plug in this preliminary estimate in the criterion function and optimize
to obtain an estimate of the �nite dimensional parameter of interest.

Originally, this class of models and their asymptotic properties have been studied by Andrews (1994), Bickel,
Klaassen, Ritov, and Wellner (1993), Newey (1994), and Newey and McFadden (1994), among others, under the
assumption that the criterion function is smooth in both the �nite and the in�nite dimensional parameters. Recently,
Chen, Linton, and Keilegom (2003) have relaxed the smoothness assumption and have provided quite general su¢ cient
conditions under which the large sample properties of this class of models can be derived when neither the parametric
nor the nonparametric components enter in an smooth fashion in the criterion function.

The model studied in this paper implies that the criterion function is smooth in the nonparametric component,
while it imposes no assumptions on the �nite dimensional parameter of interest. Consequently, although the general
M-estimation framework of Chen, Linton, and Keilegom (2003) can be applied to our problem, relatively simpler
conditions that exploit the additional smoothness assumption can be derived. The large sample theory presented
in this Appendix follows the original style of proof from Pakes and Pollard (1989) and the recent extension due to
Chen, Linton, and Keilegom (2003). The key di¤erence in the results presented here is that by imposing stronger
assumptions (i.e., smoothness in the non-parametric component of the criterion function) we derive easy to check
su¢ cient conditions as well as some stronger results than those available in the literature.

We brie�y outline the general setup (for a more complete description see Chen, Linton, and Keilegom (2003)).
Let fZngNn=1 be a random sample of size N from a distribution P with support Z � Rd. The statistical model of
interest is a two-step semiparametric minimum distance procedure, which is based on a preliminary nonparametric
estimator of the in�nite dimensional component. The parameters of the model are given by (�; h (�; �)) 2 � � H,
where � � Rk is a compact �nite dimensional parameter set and H is an in�nite dimensional parameter set, which
can in principle depend on �. We assume that � and H are normed vector spaces and we denote their norms k�k
and k�kH, respectively. The norm k�k is set to kAk =

p
trace (A0WA) for any matrix A. The norm k�kH is set to be

a sup-norm metric with respect to the �-argument and any pseudo-metric with respect to the remaining arguments.
We assume there exists a nonrandom vector-valued measurable function M : ��H ! Rl, k � l, with the property
that M (�; h0 (�; �)) = 0 if and only if � = �0, where (�0; h0 (�; �0)) 2 ��H are the true �nite and in�nite dimensional
parameters. Observe that we suppress the arguments of the nonparametric component to notational ease.

Given a preliminary nonparametric estimator, we are interested in the estimator of the �nite dimensional para-
meter de�ned as the (approximate) solution of the distance minimization problem:

min
�2�




MN

�
�; ĥ (�)

�


 = min
�2�

h
MN

�
�; ĥ (�)

�i0
W
h
MN

�
�; ĥ (�)

�i
,

whereMN : ��H ! Rl is a random vector-valued measurable function that depends on the random sample fZngNn=1
and that is assumed to be close in norm to the function M (�; h0 (�; �)) at � = �0. To simplify the notation, in the
sequel we assume k = l and W = I, the identity matrix, since for our purpose this assumption covers our problem.
The results below extend naturally to the GMM context.

The next Theorem provides a set of su¢ cient conditions for consistency of the �nite dimensional estimator.

Theorem 6. (Consistency) Suppose that �0 2 � satis�es M (�0; h0) = 0, and the following conditions hold:

(C1) (Estimator)



MN

�
�̂; ĥ
�


 � inf�2� 


MN

�
�; ĥ
�


+ op (1),

(C2) (Identi�cation) for all " > 0, there exists � (") > 0 such that infk���0k>" kM (�; h0)k � � (") > 0,
(C3) (Smoothness of Nonparametric Component)

sup
�2�




MN

�
�; ĥ
�
�MN (�; h0)




 = Op �


ĥ� h0



H

�
,

(C4) (Consistency of Nonparametric Estimator)



ĥ� h0




H
= op (1), and

(C5) (Stochastic Equicontinuity of Parametric Component at h = h0)

sup
�2�

kMN (�; h0)�M (�; h0)k
1 + kMN (�; h0)k+ kM (�; h0)k

= op (1) .
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Then �̂
p�! �0.

Proof of Theorem 6:
By condition (C2) we have P

h


�̂ � �0


 > �i � P
h


M �

�̂; h0
�


 � " (�)i and hence it is su¢ cient to show that


M �

�̂; h0
�


 = op (1). Next, observe that by conditions (C3), (C4) and (C5) we have


M �
�̂; h0

�


 �



M �

�̂; h0
�
�MN

�
�̂; h0

�


+ 


MN

�
�̂; h0

�
�MN

�
�̂; ĥ
�


+ 


MN

�
�̂; ĥ
�




� op (1) �
h
1 +




MN

�
�̂; h0

�


+ 


M �
�̂; h0

�


i+ op (1) + 


MN

�
�̂; ĥ
�


 .

Now, rearranging and using conditions (C1), (C3) and (C4) we have


M �
�̂; h0

�


 � [1� op (1)] � op (1) � 


MN

�
�̂; h0

�
�MN

�
�̂; ĥ
�


+ [1 + op (1)] � 


MN

�
�̂; ĥ
�


+ op (1)

� [1 + op (1)] �



MN

�
�0; ĥ

�


+ op (1)
� [1 + op (1)] �




MN

�
�0; ĥ

�
�MN (�0; h0)




+ [1 + op (1)] � kMN (�0; h0)k+ op (1)

� [1 + op (1)] � kMN (�0; h0)k+ op (1) ,

and �nally by (C5) and the fact thatM (�0; h0) = 0, we obtain kMN (�0; h0)k = op (1) and the result follows. Q.E.D.

Remark 1. (Sufficient Condition of (C5)) Similarly as in Pakes and Pollard (1989) and Chen, Linton, and
Keilegom (2003), condition C5 is implied by

(C5�) (Uniform Consistency at h = h0)

sup
�2�

kMN (�; h0)�M (�; h0)k = op (1) .

Let �� = f� 2 � : k� � �0k � �g and H� = fh 2 H : kh� h0k � �g for some � > 0. The next theorem derives
an asymptotic linear representation and provides a set of su¢ cient conditions for asymptotic normality of the �nite
dimensional estimator.

Theorem 7. (Asymptotic Normality) Suppose there exists a unique �0 2 int (�) that satis�es M (�0; h0) = 0
and �̂ � �0 = op (1), and the following conditions hold:

(AN1) (Estimator)



MN

�
�̂; ĥ
�


 = inf�2�� 


MN

�
�; ĥ
�


+ op �N�1=2

�
,

(AN2) (Di¤erentiability of Parametric Component) the ordinary derivative w.r.t. � of M (�; h0), denoted � (�; h0),
exists for � 2 �� and the matrix �0 � � (�0; h0) is full rank,

(AN3) (Smooth Linearization of Nonparametric Component) there exists a function �N (�; h) linear in h such that
(i)

sup
�2��




MN

�
�; ĥ
�
�MN (�; h0)��N

�
�; ĥ� h0

�


 = Op�


ĥ� h0


2
H

�
,

and (ii)



�N

�
�̂; ĥ� h0

�
��N

�
�0; ĥ� h0

�


 = Op �


�̂ � �0


 � 


ĥ� h0



H

�
,

(AN4) (Nonparametric Estimator Rate) P
h
ĥ 2 H

i
�! 1 and




ĥ� h0



H
= op

�
N�1=4

�
,

(AN5) (Stochastic Equicontinuity of Parametric Component) for all sequences of positive numbers f�ng with �n =
o (1),

sup
k���0k<�n

p
N � kMN (�; h0)�M (�; h0)�MN (�0; h0)k
1 +

p
N � kMN (�; h0)k+

p
N � kM (�; h0)k

= op (1) ,

and

(AN6) (Asymptotic Normality at � = �0)
p
N �MN

�
�0; ĥ

�
d�! N [0;
].
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Then
p
N �
�
�̂ � �0

�
=
h
� (�00�0)�1 �00

i
�
p
N �MN

�
�0; ĥ

�
+op (1)

d�! N [0; V ], where V = (�00�0)
�1
�00
�0 (�

0
0�0)

�1.

Proof of Theorem 7:
The proof of this theorem is done in two parts. First we establish

p
N -consistency of the estimator �̂ and then

we use this result to derive an asymptotic linear representation to obtain the desired result.
p
N-consistency. Because both the parametric and nonparametric estimators are consistent, we can choose a

positive sequence �N = o (1) slow enough such that P
h


�̂ � �0


 > �N ; 


ĥ� h0


 > �Ni ! 0, which implies that we

only need to work with (�; h) 2 �� �H�. By condition (AN3) (i), (AN4), and (AN6) we have
p
N �




MN

�
�0; ĥ

�


 = pN �



MN (�0; h0) + �N

�
�0; ĥ� h0

�


+ op (1) = Op (1) .
By condition (AN1), and the previous result we have
p
N �




MN

�
�̂; ĥ
�


 � pN �




MN

�
�0; ĥ

�


+ op (1) = Op (1) .
By the previous results and condition (AN5)
p
N �




M �
�̂; h0

�



�
p
N �




MN

�
�̂; h0

�
�M

�
�̂; h0

�
�MN (�0; h0)




+pN �



MN

�
�̂; h0

�


+pN � kMN (�0; h0)k

= op (1) �
h
1 +

p
N �




MN

�
�̂; h0

�


+pN �



M �

�̂; h0
�


i+pN �




MN

�
�̂; h0

�


+Op (1)
= [1 + op (1)] �

p
N �




MN

�
�̂; h0

�


+ op (1) � pN �



M �

�̂; h0
�


+Op (1) ,

and therefore
p
N �




M �
�̂; h0

�


 = Op �pN �



MN

�
�̂; h0

�


�+Op (1) .
By the previous results and conditions (AN3), (AN4) and (AN5)
p
N �




MN

�
�̂; h0

�



�
p
N �




MN

�
�̂; ĥ
�
�MN

�
�̂; h0

�
��N

�
�̂; ĥ� h0

�


+pN �



�N

�
�̂; ĥ� h0

�
��N

�
�0; ĥ� h0

�



+
p
N �




�N

�
�0; ĥ� h0

�


+pN �



MN

�
�̂; ĥ
�




= op (1) �
h
1 +

p
N �




MN

�
�̂; h0

�


+pN �



M �

�̂; h0
�


i+Op �


ĥ� h0




H

�
+Op (1) ,

and therefore
p
N �




MN

�
�̂; h0

�


 = Op �pN �



�̂ � �0


 � 


ĥ� h0




H

�
+Op (1) .

Finally, by condition (AN2) and the previous results,
p
N � k�0k �




�̂ � �0


 = pN �



M �

�̂; h0
�


+ op �pN �




�̂ � �0


� = Op (1) ,
i.e., �̂ is

p
N -consistent.

Asymptotic Normality. Let ~� = �0 �
h
(�00�0)

�1
�00

i
MN

�
�0; ĥ

�
and observe that ~� is also

p
N -consistent by

construction. Then, by condition (AN2) wpa1
p
N �




M �
~�; h0

�


 = pN �



��~� � �0�


+ op �pN �




~� � �0


� = Op (1) .
and also by triangular inequality, the previous results and condition (AN5)

p
N �




MN

�
~�; h0

�


�pN �



M �

~�; h0
�


�pN � kMN (�0; h0)k

�
p
N �




MN

�
~�; h0

�
�M

�
~�; h0

�
�MN (�0; h0)





= op (1) + op

�p
N �




M �
~�; h0

�


�+ op �pN � kMN (�0; h0)k
�
,
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which implies that
p
N �




MN

�
~�; h0

�


 = Op (1) .
Next, by

p
N -consistency, conditions (AN2), (AN3), (AN4), (AN5) and (AN6), and the previous results we have

p
N �




MN

�
�̂; ĥ
�


�pN �




MN

�
�0; ĥ

�
+ �

�
�̂ � �0

�



�
p
N �




MN

�
�̂; ĥ
�
�MN

�
�0; ĥ

�
� �

�
�̂ � �0

�



�
p
N �




MN

�
�̂; ĥ
�
�MN

�
�̂; h0

�
��N

�
�̂; ĥ� h0

�



+
p
N �




MN

�
�0; ĥ

�
�MN

�
�0; ĥ

�
�DN

�
�0; ĥ� h0

�



+
p
N �




�N

�
�̂; ĥ� h0

�
��N

�
�0; ĥ� h0

�



+
p
N �




MN

�
�̂; h0

�
�M

�
�̂; h0

�
�MN

�
�0; ĥ

�



+
p
N �




M �
�̂; h0

�
� �0

�
�̂ � �0

�



= op (1) ,

and observe that the same result holds for �̂ replaced by ~� wpa1. Putting these results together and using condition
(AN1) we have wpa1

p
N �




MN

�
�0; ĥ

�
+ �0

�
�̂ � �0

�


 =
p
N �




MN

�
�̂; ĥ
�


+ op (1)

�
p
N �




MN

�
~�; ĥ
�


+ op (1)

=
p
N �




MN

�
�0; ĥ

�
+ �0

�
~� � �0

�


+ op (1) ,
and this result implies that

p
N �




MN

�
�0; ĥ

�
+ �0

�
�̂ � �0

�


�pN �



MN

�
�0; ĥ

�
+ �0

�
~� � �0

�


 = op (1) .
Finally, observe that by the de�nition of ~� � �0 (i.e., a projection onto the column space of �0) we have


MN

�
�0; ĥ

�
+ �0

�
�̂ � �0

�


2 = 


MN

�
�0; ĥ

�
+ �0

�
~� � �0

�


2 + 


�0 ��̂ � ~��


2
and using the previous results and the fact that (a� b)2 = (a� b) � (a+ b),

N �



�̂ � ~�


2 � 

��10 

2 �N �




�0 ��̂ � ~��


2
� N �




MN

�
�0; ĥ

�
+ �0

�
�̂ � �0

�


2 �N �



MN

�
�0; ĥ

�
+ �0

�
~� � �0

�


2
=
�p
N �




MN

�
�0; ĥ

�
+ �0

�
�̂ � �0

�


�pN �



MN

�
�0; ĥ

�
+ �0

�
~� � �0

�


� �Op (1)
= op (1) ,

which in turn implies
p
N �

�
�̂ � ~�

�
=
p
N �

�
�̂ � �0

�
�
h
�
�
�00�0

��1
�00

i
�
p
N �MN

�
�0; ĥ

�
= op (1) ,

since the matrix �0 is full rank. Q.E.D.

B. Appendix B: Multinomial Logistic Series Estimator
In this appendix we derive uniform rates of convergence for the non-linear sieve estimator proposed in Section 3.4,
labeled Multinomial Logistic Series Estimator (MLSE). Recall that our goal is to estimate nonparametrically the GPS,
which has the additional property that the sum of its positive elements should add up to one. These restrictions
imply that standard nonparametric procedures may seem less appropriate for this case. Recently, Hirano, Imbens,
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and Ridder (2003) proposed a solution to this problem for the particular case J = 1 by considering a non-linear
sieve estimation procedure where the conditional probability is estimated within a Logistic model, labeled Logistic
Series Estimation. In this appendix we generalized this procedure in three ways: (i) we allow for arbitrary number
of outcomes, (ii) we allow for an arbitrary choice of approximating basis, and (iii) we derive the approximation rates
using only the approximating sequence. The results presented here not only encompass those in Hirano, Imbens,
and Ridder (2003), but also allow for di¤erent nonparametric procedures as well as a wider class of problems since
we reduce the requirement on smoothness of the underlying conditional expectation by speeding up the rates of
convergence.

We consider the nonparametric estimation of the generalized propensity score, that is, the vector-valued function
given by p� (�) = [p�0 (�) ; p�1 (�) ; � � � ; p�J (�)]0 with p�t (�) : Xt ! Pt for all t 2 T . For simplicity we assume that
Xt = X and Pt = P for all t 2 T , and that the true functions p�t (�) enjoy the same degree of smoothness. These
restrictions can be weaken without altering the conclusion in this Appendix, provided the notation is modi�ed
accordingly. The proposed estimator works as follows. Let K denote the number of basis functions in the series and
de�ne vector rK (x) = [r1K (x) ; � � � ; rKK (x)]0 of approximating functions. It is customary to use the matrix norm
kAk =

p
trace (A0A), whose properties are well-known. Under some conditions imposed below and by choosing an

appropriate non-singular linear transformation we can assumed without loss of generality that E [rK (X) r0K (X)] = IK ,
where IK is the (K �K) identity matrix (see Newey (1997) for details). Let � (K) = supx2X krK (x)k, and observe
that in general this bound will depend on the approximating functions chosen. To reduce notational burden we use
the same number of approximating functions for each conditional probability, a feature that can be easily relaxed.

To deal with all the relevant probabilities simultaneously we de�ne p�0 (Xn) = [p1 (Xn) ; � � � ; pJ (Xn)]
0 2 RJ ,


�0;K =
�

0K;1; � � � ;
0K;J

�0 2 RJK , and R�0 (Xn;
K) =
�
rK (Xn)

0 
K;1; � � � ; rK (Xn)
0 
K;J

�0 2 RJ . Recall that
p�0 (Xn) = 1�

PJ
j=1 p

�
j (Xn).

De�ne for a vector z 2 RJ , z = [z1; � � � ; zJ ]0, the functions Lt : RJ ! R and L�1t : RJ ! R, for all t = 1; 2; � � � ; J ,

Lt (z) =
exp fztg

1 +
PJ

j=1 exp fzjg
, and L�1t (z) = log

(
zt

1�
PJ

j=1 zt

)
.

and set L0 (z) = 1�
PJ

j=1 Lt (z). The gradient of Lt : R
J ! R is given by

_Lt (z) = [�Lt (z) � L1 (z) ; � � � ; � Lt (z) � Lt�1 (z) ; Lt (z) � (1� Lt (z)) ; � Lt (z) � Lt+1 (z) ; � Lt (z) � LJ (z)]0

and observe that supz
��� _Lt (z)��� < C (J) since jLt (z) � L1 (z)j < 1 and Lt (z) � (1� Lt (z)) < 1=4. Also de�ne the vector

valued functions L (z) = [L1 (z) ; � � � ; LJ (z)]0 and L�1 (z) =
�
L�11 (z) ; � � � ; L�1J (z)

�0
and observe that the function

L (�) is di¤erentiable with gradient (matrix) _L (z) =
h
_L1 (z) ; � � � ; _LJ (z)

i
2 RJ�J and notice that supz

��� _L (z)��� <
C (J), for some constant C (J) that only depends on J .

We consider the model

pt (Xn) = P [T = tjXn] =
exp

�
rK (Xn)

0 
K;t
	

1 +
PJ

j=1 exp
�
rK (Xn)

0 
K;j
	 = Lt (R�0 (Xn;
K))

for t = 1; 2; � � � ; J and we set p0 (Xn) = P [T = 0jXn] = L0 (R�0 (Xn;
K)) to gain identi�cation (i.e., we set

K;0 = 0).

The multinomial logistic log-likelihood is given by

`N (
K) =
1

N

XN

n=1

XJ

t=0
Dn (t) � log (Lt (R�0 (Xn;
K))) ,

with solution 
̂K = argmax
K `N (
K) and estimated probabilities given by p̂t (Xn) = Lt (R�0 (Xn; 
̂K)) for all
t 2 T . Verify that

@

@
K;t
`N (
K) =

1

N

XN

n=1
[Dn (t)� Lt (R�0 (Xn;
K))] � rK (Xn) , for t = 1; 2; :::; J ,

@2

@
K;i@

0
K;j

`N (
K) = � 1

N

XN

n=1
Lj (R�0 (Xn;
K)) � [1 fi = jg � Li (R�0 (Xn;
K))] � rK (Xn) rK (Xn)

0 ,

and in matrix notation we have
@

@
K
`N (
K) =

1

N

XN

n=1
[Dn � L (R�0 (Xn;
K))]
 rK (Xn) ,

@2

@
K@

0
K

`N (
K) = � 1

N

XN

n=1
H (Xn;
K)
 rK (Xn) rK (Xn)

0 ,



Efficient Estimation of Dose-Response Functions 22

where Dn = [Dn (t) : t = 1; 2; � � � J ]0 and

H (Xn;
K) = [Li (R�0 (Xn;
K)) � (1 fi = jg � Lj (R�0 (Xn;
K))) : i = 1; 2; � � � J; j = 1; 2; � � � J ]
= diag (L (R�0 (Xn;
K)))� L (R�0 (Xn;
K))L (R�0 (Xn;
K))

0 .

To derive the uniform rates of convergence, we impose the followings conditions:

Assumption 7. (7.1) (Random Variables) f(Tn;Xn)gNn=1 are i.i.d. with Tn 2 T , Xn 2 X r and p�t 2 P =
�
p
¯
; �p
�

(0 <p
¯
< �p < 1).

(7.2) (Nonsingular Second Moment Matrix) The smallest eigenvalue of E [rK (X) r0K (X)] is bounded away
from zero uniformly in K.

(7.3) (Series Bound) There is a sequence of constants � (K) satisfying supx2X krK (x)k � � (K), for K = K (N)!
1 and �2 (K)KN�1 ! 0, as N !1.

(7.4) (Log-Odds Smoothness) For all t 2 T there exists 
0K;t 2 RK and � > 0 such that

sup
x2X

����log�p�tp�0
�
(x)� rK (x)0 
0K;t

���� = O �K��� , and � (K)2K�� ! 0:

Before stating the main result, we need the following Lemma that allows us to control the matrix H (X;
K).

Lemma 1. (Uniform Lower Bound for H (X;
K))

inf
x2X

H (x;
) � inf
x2X

YJ

t=0
Lt (R�0 (x;
)) � IJ .

Proof of Lemma 1 (Uniform Lower Bound for H (X;
K)):
Recall that L (R�0 (Xn;
)) = [L1 (R�0 (Xn;
)) ; � � � ; LJ (R�0 (Xn;
))]

0, with Lt (R�0 (Xn;
)) > 0, for all
t = 1; 2; � � � ; J , and

PJ
t=1 Lt (R�0 (Xn;
)) < 1. Using the same reasoning as in Watson (1996), it is seen that 0 <

�min (H (x;
)) � �max (H (x;
)) � maxt Lt (R�0 (Xn;
)) < 1, which implies that �min (H (x;
)) � det (H (Xn;
)).
Next, using the exact choleskey decomposition derived by Tanabe and Sagae (1992) and the properties of the deter-
minant we conclude that

�min (H (x;
)) � det (H (Xn;
)) =
YJ

t=0
Lt (R�0 (Xn;
)) .

Finally, since H (Xn;
) is a symmetric positive de�nite matrix, an orthogonal decomposition gives H (Xn;
) =
O�O0 � �min (H (Xn;
)) � IJ and the result follows. Q.E.D.

The following theorem provides the uniform rate of convergence for the MLSE.

Theorem 8. (Uniform Rate of Convergence) Under Assumption 7,

(i) : sup
x2X

��p0K (x)� p� (x)�� = O �K��� .
(ii) :

��
̂K � 
0K�� = Op �K1=2N�1=2 + � (K)K��
�
.

Conclude that

sup
x2X

jp̂ (x)� p� (x)j = Op
�
� (K)K1=2N�1=2 + � (K)2K��

�
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Proof of Lemma 1 (Uniform Rate of Convergence): Assumption (7.4) implies that supx2X
��L�1 (p��0) (x)� r �x;
0K��� =

O
�
K���. Since the mapping L (�) is di¤erentiable with supz ��� _L (z)��� < C (J), an application of the mean value theorem

gives

sup
x2X

��p��0 (x)� L �R�0
�
x;
0K

���� = sup
x2X

��L �L�1 (p��0)� (x)� L �R�0
�
x;
0K

���� � C (J)�sup
x2X

��L�1 (p��0) (x)�R�0
�
x;
0K

��� ,
giving (i). (Extending the previous result to all (J + 1) probabilities follows directly since p�0 (x) = 1�

PJ
j=1 p

�
j (Xn)

and L0
�
R�0

�
x;
0K

��
= 1�

PJ
j=1 Lj

�
R�0

�
x;
0K

��
.)

Next we establish (ii). Let 
̂K = N�1PN
n=1 rK (Xn) rK (Xn)

0, and observed that according to Newey (1997)���
̂K � IK��� = Op �� (K)K1=2N�1=2
�
. de�ne the event AN =

n
�min

�

̂K
�
> 1=2

o
and note that under Assumption

7.3 Op
�
� (K)K1=2N�1=2

�
= op (1), which implies P [AN ]! 1.

Now, note that

E
����� @@
 `N �
0K�

�����
= E

����� 1N XN

n=1

�
Dn � L

�
R�0

�
Xn;


0
K

���

 rK (Xn)

�����

�
 
E

"���� 1N XN

n=1
[Dn � p� (Xn)]
 rK (Xn)

����2
#!1=2

+ E
����� 1N XN

n=1

�
p� (Xn)� L

�
R�0

�
Xn;


0
K

���

 rK (Xn)

�����

� C �
�
1

N
� E
h
j[Dn � p� (Xn)]
 rK (Xn)j2

i�1=2
+ C � sup

x2X

��p� (x)� L �R�0
�
x;
0K

���� � sup
x2X

jrK (Xn)j

= O
�
K1=2N�1=2 + � (K)K��

�
,

under Assumption 7.4 and by the Markov�s Inequality we conclude���� @@
 `N �
0K�
���� = Op �K1=2N�1=2 + � (K)K��

�
,

which implies that for any �xed constant & > 0 the probability of the event

BN (&) =
����� @@
 `N �
0K�

���� < & � �K1=2N�1=2 + � (K)K��
��

goes to one, i.e., P [BN (&)]! 1.
Next, let � = infx2X

QJ
t=0 Lt

�
R�0

�
x;
0K

��
and observe that for K large enough � > 0 by (i) and the assumption

that the true probabilities are exactly between zero and one. De�ne the sets ��K =
n

K 2 RJK : infx2X

QJ
t=0 Lt (R�0 (x;
)) > �=2

o
and �0K (%) =

n

K 2 RJK :

��
K � 
0K�� � % � �K1=2N�1=2 + � (K)K��
�o

for any % > 0, and because

sup
x2X ;
2�0

K
(%)

��L (r (x;
K))� L �r �x;
0K���� � sup
x2X ;
2�0

K
(%);~
K

��� _L (r (x; ~
K))
 rK (x)0��� � ��
K � 
0K��
� C � � (K) � sup


2�0
K
(%)

��
K � 
0K�� = O �� (K)K1=2N�1=2 + � (K)2K��
�

and O
�
� (K)K1=2N�1=2 + � (K)2K��

�
= o (1) by Assumptions 7.3 and 7.4, we conclude that for K for large enough

��K � �0K (%).
To �nish the argument, choose N large enough so that ��K � �0K (C), P [AN ] � 1�"=2 and P [BN (�C=8)] � 1�"=2,

for any C > 0. Then for any 
K 2 �0K we have

� @

@
@
0
`N (
K) =
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N

XN

n=1
H (Xn;
K)
 rK (Xn) rK (Xn)

0

� 1
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XN
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�
inf
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IJ 
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,
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which implies that with probability at least (1� "),

�min

�
� @

@
@
0
`N (
K)

�
� �

4
.

Moreover, under the same conditions (i.e., also with probability at least (1� ")) we verify that for any 
K 2
�0K �

�

0K
	
we have
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�
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�0 �� @

@
@
0
`N (~
K)

� �

K � 


0
K

�
�

���� @@
 `N �
0K�
���� � ��
K � 
0K��� �

8
�
���
K � 
0K���2

�
����� @@
 `N �
0K�

����� �

8
� C �

�
K1=2N�1=2 + � (K)K��

��
�
��
K � 
0K�� < 0,

for some ~
K such that
��~
K � 
0K�� � ��
K � 
0K��. Since `N (
K) is continuous and concave, it follows that 
̂K

maximizes `N (
K) and 
̂K satis�es the �rst order condition wpa1. Now the result follows directly. Q.E.D.

C. Appendix C: Proofs of Theorems
This appendix provides proofs for the theorems in the paper and uses the results in Appendix A and Appendix B.
Let C denote a generic constant that may be di¤erent depending on the context.

Proof of Theorem 1 (Consistency):
This result follows directly by an application of Theorem 6 in Appendix A, after we verify the required su¢ cient

conditions. First, observe that Condition (C1) is automatically veri�ed by the (two-step) estimator considered.
Condition (C2) follows directly from the identi�cation Condition (??). Next, note that for N large enough,

sup
�2B

kMN (�t; p̂t (�))�MN (�t; p
�
t (�))k = sup

�2B





 1N XN

n=1

Dn (t) �m (Yn;Xn;�t)

p̂t (Xn) � p�t (Xn)
� (p̂t (Xn)� p�t (Xn))






� C � kpt (�)� p�t (�)k1 � 1

N

XN

n=1
sup
�2B

jm (Yn (t) ;Xn;�)j

= Op
�
kpt (�)� p�t (�)k1

�
,

where the second line uses Assumption 2.2 and the third line uses Assumption 3.2, establishing condition (C3).
Condition (C4) is assumed by the theorem. Finally, to verify Condition (C5) simply note that by Assumption 2.2
and an application of Theorem 2.10.6 of van der Vaart and Wellner (1996) we conclude that the class of functions (for
any �xed j 2 T ) Fj = f1 f� = jg �m (�;�) =p�t (�) : m (�;�) 2Mg is Glivenko-Cantelli with �nite integrable envelop
by Assumptions 3.1 and 3.2. Q.E.D.

Proof of Theorem 2 (Efficient Influence Function and SPEB):
The proof given here follows the theoretical approach in Bickel, Klaassen, Ritov, and Wellner (1993), and Newey

(1990). The derivation involves three main steps: tangent space characterization, pathwise di¤erentiability of the
parameter of interest, and SPEB computation. Let L20 (FW ) be the usual Hilbert space of zero mean squared integrable
functions with respect to the distribution function FW .

Step 1: Tangent Space Characterization. For a (regular) parametric submodel (see, e.g., Appendix A in
Newey (1990) for de�nitions and regularity conditions) of the distribution of Z = (Y; T;X), the observed data model,
the log-likelihood is given by is given by

log f (y; � ;x; �) =
X

t2T
1 ft = �g �

�
log ft (y j x; �) + log pt (x;�)

�
+ log fX (x; �) ,

which equals log f (y; � ;x) when � = �0, and where we have used the de�nition f� (y j x) �
R
���
R
fY�jX (y j x)�dy��

with y�� � [y (t) : t 2 T � f�g]0 and Assumption 2.2. The corresponding score is given by

S (y; � ;x; �0) =
d

d�
log f (y; � ;x; �)

����
�0

=
X

t2T
1 ft = �g � st (y j x) + 
 (� ;x) + sx (x) ,
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where st (y j x) � d
d�
log ft (y j x; �)

��
�0
, 
 (� ;x) �

P
t2T 1 ft = �g �

_pt(x;�0)
pt(x)

where _pt (x; �0) = d
d�
pt (x;�)

��
�0
, and

sx (x) � d
d�
log fX (x; �)

��
�0
. Therefore, the tangent space of this statistical model is characterized by the set of

functions T � Ty + Tp + Tx, where

Ty �
n
fst (Y (t) j X)gt2T : st (Y (t) j X) 2 L

2
0

�
FY (t)jX

�
, 8t
o
,

Tp �
n

 (T;X) : 
 (T;X) 2 L20

�
FT jX

�o
, and

Tx �
n
sx (X) : sx (X) 2 L20 (FX)

o
.

In particular, observe that

E [
 (T;X)jX] = E
�X

t2T
D (t) � _pt (X; �0)

pt (X)

���� X� =Xt2T
_pt (X; �0) ,

and

E
�
(
 (T;X))2

��X� = E �X
i2T

X
j2T

D (i) � _pi (X; �0)
pi (X)

�D (j) � _pj (X; �0)
pj (X)

���� X� =Xt2T

( _pt (X; �0))
2

pt (X)
,

and hence it is required that pt (x) and _pt (x; �0) are any measurable functions such that
P

t2T _pt (X; �0) = 0

and
P

t2T
( _pt(X;�0))

2

pt(X)
< 1, almost surely. Notice that the �rst condition implies that by varying the model, the

probabilities should change in such a way that they still add up to one. This is guaranteed in the model since, by
assumption,

P
t2T pt (x; �0) = 1. The second condition is automatically satis�ed by Assumption 2.2 and the fact

that T is �nite.

Step 2: Pathwise Di¤erentiability of the Parameter of Interest. Observe that using the implicit function
theorem,"

@

@�
�t (�)

����
�=�0

: t 2 T
#0
= �

�
@

@�t
E
�
[m (Y (t) ;X;�t) : t 2 T ]

0���1 " @
@�
E�
�
[m (Y (t) ;X;�t) : t 2 T ]

0�����
�=�0

#
.

In this case, we have�
@

@�t
E
�
[m (Y (t) ;X;�t) : t 2 T ]

0�� = diag [vt (�t) : t 2 T ]
and hence for the t-th coordinate

@

@�
�t (�)

����
�=�0

=
1

vt (�t)
�
 
@

@�

ZZ
m (y;x;�t) � ft (yjx; �) � fX (x; �) � dy � dx

����
�=�0

!

=
1

vt (�t)
�
�
E
h
m (Y (t) ;X;�t) � st (Y (t)jX)

i
+ E

h
Et (X;�t) � sx (X)

i�
,

where Et (X;�t) = E [m (Y (t) ;X;�t)jX], for all t 2 T . To show that the parameter is pathwise di¤erentiable, a
function d� (y; t;x) 2 RJ+1 is needed such that for all regular parametric submodels"

@

@�
�t (�)

����
�=�0

: t 2 T
#0
= E

h
d� (Y; T;X) � S (Y; T;X; �0)

i
.

It is an standard exercise to verify that the function d� (Y; T;X) is given by

d� (Y; T;X) � [d�t (Y; T;X) : t 2 T ]
0 �

�
1

vt (�t)
�
�
D (t)

pt (X)
�
�
m (Y;X;�t)� Et (X;�t)

�
+ Et (X;�t)

�
: t 2 T

�0
,

and therefore the population parameter of interest is pathwise di¤erentiable.

Step 3: SPEB Computation. Since d�t (Y; T;X) 2 T, it follows that Proj (d�t (Y; T;X)jT) = d�t (Y; T;X),
for all t 2 T , and therefore the variance bound is given by SPEB (�) = E

�
d� (Y; T;X)d

0
� (Y; T;X)

�
. Q.E.D.

Proof of Theorem 3 (Asymptotic Linear Representation and Asymptotic Normality):
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This result follows directly by an application of Theorem 7 in Appendix A, after we verify the required su¢ cient
conditions. First, set the sequence �N = o (1) accordingly. Condition (AN1) follows directly from the de�nition
of the estimator and the identifying condition, while Condition (AN2) holds by Assumption 4 since M (�; p�t (�)) =
E [m (Y (t) ;X;�)].

Next, de�ne

�N (�t; pt (�)� p
�
t (�)) =

1

N

XN

n=1

Dn (t) �m (Yn;Xn;�t)

p�t (Xn)
2 � (pt (Xn)� p�t (Xn)) ,

and observe that for N large enough

sup
�2B�N

jMN (�; p̂t (�))�MN (�; p
�
t (�))��N (�; p̂t (�)� p�t (�))j

� C � kp̂t (�)� p�t (�)k21 � 1
N

XN

n=1
sup
�2B

jm (Yn (t) ;Xn;�)j = Op
�
kp̂t (�)� p�t (�)k21

�
,

where the result uses Assumption 2.2 and Assumption 5.2. This gives the �rst part of condition (AN3). To verify
the second part, de�ne the empirical process

�N (�) =
1p
N

XN

n=1

�
Dn (t)

p�t (Xn)
� jm (Yn;Xn;�)�m (Yn;Xn;�

�
t )j � E [jm (Y (t) ;X;�)�m (Y (t) ;X;�

�
t )j]
�
,

and observe that �N (��t ) = 0. Also, notice that the parametrization is L
2-continuous by Assumption 5.4 and by an

application of Theorem 2.10.6 of van der Vaart and Wellner (1996) we conclude that the class of functions (for any �xed
j 2 T ) Fj = f1 f� = jg � jm (�;�)�m (�;��t )j =p�t (�) : m (�;�) 2Mg is Donsker with �nite square-integrable envelop by
Assumptions 5.1 and 5.2. Hence, Lemma 3.3.5 of van der Vaart and Wellner (1996) gives sup�2B�N

j�N (�)j = op (1).
Using this result, letting �(�) = E [jm (Y (t) ;X;�)�m (Y (t) ;X;��t )j] and by Assumption 5.3 we obtain for N large
enough���DN

�
�̂t; pt (�)� p

�
t (�)

�
�DN (�

�
t ; pt (�)� p

�
t (�))

���
=

���� 1N XN

n=1

Dn (t)

p�t (Xn)
2 �
�
m
�
Yn;Xn; �̂t

�
�m (Yn;Xn;�

�
t )
�
� (pt (Xn)� p�t (Xn))

����
� C1 � kpt (�)� p�t (�)k1 �N�1=2 � sup

�2B�N
j�n (�)j+ C2 � kpt (�)� p�t (�)k1 ��

�
�̂t

�
= Op

�
kpt (�)� p�t (�)k1 �

����̂t � ��t ���� ,
which veri�es condition (AN3). Finally, Condition (AN4) is assumed, Condition (AN5) follows directly by an appli-
cation of Theorem 2.10.6 of van der Vaart and Wellner (1996) to conclude that the class of functions (for all �xed
j 2 T ) Fj = f1 f� = jg �m (�;�) =p�t (�) : m (�;�) 2Mg is Donsker with �nite integrable envelop by Assumption 4.2,
and Condition (AN6) is also assumed directly in the theorem at this point.

As a consequence we conclude that
p
N �
�
�̂t � ��t

�
= �

p
N �MN (�

�; p̂ (�)) =vt (��t ) + op (1), giving the result of
the theorem after applying the second condition. The asymptotic normality and e¢ ciency of the estimator follows
directly. Q.E.D.

Proof of Theorem 4 (Conditions (AN.1) and (AN.2)):
First, observe that for power series and splines, we have � (K) = K�, with � = 1 and � = 1=2 respectively,

and using Assumption 6 (which implies Assumption 7 in this cases), have � = s=r (see, e.g., Newey (1997)). Now
Theorem 8 implies

N1=4 � sup
x2X

jp̂ (x)� p� (x)j = N1=4 �Op
�
K�K1=2N�1=2 +K2�K�s=r

�
= op (1) ,

under the assumptions of the Theorem and therefore Condition (AN.1) holds.
Next, we consider condition (AN.2). Observe that it is enough to show the result for a typical t-th component of
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the vector. Thus,����MN (�
�
t ; p̂t (�))�MN (�

�
t ; p

�
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1p
N

XN

n=1
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+
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�
t )

p�t (Xn)
2 � (p̂t (Xn)� p�t (X))
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+
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�
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2 � (p̂t (Xn)� p�t (Xn)) +

Et (Xn;�
�
t )

p�t (Xn)
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�
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�
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� (Dn (t)� p�t (Xn))
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The bound of term (3) is given by���� 1pN XN
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+
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,

for N large enough.
The bound of term (4) is given by���� 1pN XN

n=1

�
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p�t (Xn)
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Now, to obtain a bound on the term (6), �rst notice that by a second order Taylor expansion and using the
results in Appendix B we obtain
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where the bound follows because the random variables inside the sums are mean zero and variance bounded by K.
Now, to obtain a bound on the term (7), observe that using a similar reasoning, we obtain���� 1pN XN
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Finally, the bound of term (5) is given by���� 1pN XN
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using the �rst order condition for MLSE, which implies that

PN
n=1 (Dn (t)� p̂t (Xn)) rK (Xn) = 0, and where � 2 RK

is any vector. Now, by choosing � appropriately, we conclude by standard series estimation results (see, e.g., Newey
(1997) or Imbens, Newey, and Ridder (2006)) that���� 1pN XN
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Using the bounds derived, it is easily veri�ed that under the assumptions of Theorem 4, we obtain����MN (�
�
t ; p̂t (�))�MN (�
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t (�)) +

1p
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XN
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�
t (�))

���� = op (1) ,
which veri�es condition (AN.2) as desired. Q.E.D.


