
Economics 101A
Section Notes

Bargaining Models
In this handout we will consider bargaining in the context of a labor union (represented by a single

representative worker) bargaining with its employer, a typical firm. These bargaining models apply to many
other contexts other than labor unions. Note that this is just the tip of the iceberg in the bargaining
literature (for instance John Nash developed a very different bargaining model from the ones considered
below).

1 Indifference Curves and Isoprofit Curves Revisited
One way of modelling a union’s preferences is to pretend that it corresponds to the preferences of a repre-
sentative worker. Typically we write a worker’s utility as a function of consumption, C, and leisure, L, say
U (C,L) However it is of interest here to represent utility in terms of the wage w and labor, h. Assuming
that the budget constraint holds, C = wh, (setting non-labor income to zero for simplicity) and because of
the time constraint L = 1− h, when the worker has 1 one unit of time. Therefore we can write the utility
function as Ũ (h,w) = U (wh, 1− h) as function (h,w) rather than (C,L). An indifference curve in
(h,w)−space is defined by setting utility to be a constant, say ū, which defines w implicitly as a function of
h, wIC (h), allowing us to write Ũ

¡
h,wIC (h)

¢
= U

¡
wIC (h) · h, 1− h

¢
= ū. Differentiating implicitly the

last equality with respect to h we can determine the slope of the indifference curve
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This implies that along the labor supply curve, where MRS = w the the indifference curve will have zero
slope. To the left of the labor supply curve, workers would like to work more and so MRS < w and the
indifference curve is downward sloping. Symmetrically, to the right MRS > w and the indifference curve is
upward sloping. In fact we can reinterpret the first order condition for finding labor supply as the worker
finding the highest indifference curve in (w, h) subject to the constraint that w equals the offered wage,
leading to the tangency shown below.
The firm’s "preferences" are derived in a similar fashion as the isocost curve, although it is in fact more

straightforward. We write profits directly as a function of wages and employment E: π (E,w) = f (E)−wE,
setting the price of output to one for simplicity. Along an isoprofit curve we simply set profit equal to some
constant π̄ implying an implicit relationship between w and E, wIP (E), such that f (E)−wIP (E) ·E = π̄.
Differentiating implicitly allows to find the slope of the isoprofit curve.

f 0 (E)− dwIP

dE
·E − w = 0⇒ dwIP

dE
=

f 0 (E)− w

E
=

MPE − w

E

Along the labor demand curve MPE = w, implying that isoprofit curves are flat when they cross the labor
demand curve. To the left of the labor demand curve MPE > w and so the isoprofit curve is upward
sloping, and to the right of the labor demand curve MPE < w and the isoprofit curve is downward sloping.

Example 1 Consider the case where U = C − (1− L)2, V = 0, f (E) = 2E − E2. This results in a
labor supply of hS (w) = w/2, and indifference curves given by wIC (h) = h + ū/h with slope dwIC/dh =
1 − ū/h2. One can see that the indifference curve is flat along the labor supply function by first showing
that ū = V (w) = U

¡
whS (w) , 1− h

¢
= w2/2− w2/4 = w2/4 and so dwIC/dh = 1− ¡w2/4¢ / ¡w2/4¢ = 0 .

Labor demand is given by ED = 1−w/2 and isoprofit curves are given by wIP (E) = 2−E− π̄/E with slope
dwIP/dh = π̄/E2−1. The profit function here is π̄ = π (w) = f

¡
ED

¢−wED = 2 (1− w/2)− (1− w/2)
2−

w (1− w/2) = (1− w/2)2 which can be used to show that the isoprofit curve is flat on the labor demand
curve as dwIP /dh = (1− w/2)2 / (1− w/2)2 − 1 = 0. These are graphed below along with the competitive
equilibrium where w∗ = 1 and E∗ = 1/2 (with just one worker so E = h). The efficiency of the competitive
equilibrium is reflected in the tangency of the indifference and isoprofit curves at the equilibrium point.
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Competitive Equilibrium

2 Monopoly Union Bargaining
In the monopoly union model (aka the "right to manage" model, developed by Leontief in 1946) model the
labor union first sets the wage w and the firm then sets the level of employment E. Since the firm will
maximize profits it will simply set VMPE (E) = w, so that E will lie on the firm’s labor demand curve. The
union foresees this behavior and therefore selects its preferred point along the firm’s labor demand curve. If
we pretend the union is just the worker so that h = E its problem is then

max
E,w

U (wE, 1−E) st.MPE (E) = w

or substituting in the constraint maxE U (f 0 (E) ·E, 1−E), where we maximize with respect to E instead of
w just because it is easier (conceptually it is equivalent since the union knows that setting w will determine
E). Taking the FOC w.r.t E and using the fact that f 0 (E) = w

∂U

∂C
(f 00 (E) ·E + f 0 (E))− ∂U

∂L
= 0⇒ f 00 (E) =

1

E

µ
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=
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E
=
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As the inverse demand curve is given by wD (E) = f 0 (E), the slope of the inverse demand is dwD

dE = f 00 (E)
and so this expression says that the demand curve and the indifference curve will be tangent at the resulting
contract, call it

¡
wMU , EMU

¢
. However this means that the indifference curve will have a negative slope

while the isoprofit curve has zero slope (because MPE (E) = w, dwIP/dE = 0) and so the two curves
cross, implying an inefficiency. Workers would be willing to work more at a slightly lower wage and firms
would make profits hiring them. However even if unions do function this way, that does not mean they
are necessarily bad - workers are made better off (they could pick the competitive wage but do not), but
these gains are smaller than the losses to firms and consumers. If the value of the redistribution to workers
(suppose they are very needy) is considered more important than the loss to the other parties then the union
may still be a "good" thing. However it would be better for everyone if the union and firm could find a
more efficient way of bargaining. 1

1This problem is very similar to the monopoly problem where a firm moves first and sets a price for a good and a buyer

moves second by deciding how much of the good to buy. In this way the "revenue" corresponds to wE = f 0 (E)E while the
"cost" is the disutility of labor (measured in consumption) so that the "marginal cost" is given by the MRSLC . The marginal
revenue equals marginal cost equation is given by the condition

”MR” = f 00 (E)E − f 0 (E) =MRSLC = ”MC”

Interestingly, if the employer moves first the "monopsony" wage and employment will be chosen. The firm takes its
constrain that employees will be on their supply curve, so w = MRSLC . Writing this out as the inverse supply curve
we get wS (E) =MRSLC , and differentiating dwS/dE = dMRSLC/dE. The firm maximizes profits

π = f (E)− wE = f (E)−MRSLC · E
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3 Efficient Contracts
Another model of unions assumes that union and firm will bargain in a way which will leads to an efficient
outcome (without mentioning any specifics). Conceptually, any Pareto efficient outcome between two parties
can be found by guaranteeing some level of profits to the firm, π̄ (how high will determine the exact solution)
and maximizing the union’s (i.e. worker’s) utility.

max
E,w

U (wE, 1−E) st. f (E)− wE = π̄

Using the constraint to solve for w = (f (E)− π̄) /E and substituting into the original utility function this
problem simplifies to finding maxE U ((f (E)− π̄) , 1−E). The first order condition is then

∂U

∂C
· f 0 (E)− ∂U

∂L
= 0⇒ f 0 (E) =

∂U/∂L

∂U/∂C
⇐⇒MPE =MRSLC

Subtracting w and dividing by E on both sides this implies that VMPE−w
E = MRSLC−w

E or that the isoprofit
and indifference curves are tangent. In general it cannot be resolved which (E,w) combination will be
chosen as there are several points - the locus of all of these points is the contract curve. The amount of
profit given to the firm π̄ will determine the exact solution E (π̄) and w (π̄). Some information on profit and
utility functions is necessary to determine whether the contract curve of the efficient contracts is downward
or upward sloping, or vertical (the strongly efficient case).

Example 2 A little calculation showsMRSLC = 2 (1− L) = 2h andMPE = 2−2E and f 00 (E) = −2. The
monopoly solution is found by setting dwIC/dE = f 00 (E) or (2E − w) /E = −2 where w =MPE = 2− 2E
which implies 2 − 4E = 2E. Solving gives the solution is wMU = 4/3 and EMU = 1/3. The efficient
solution is found by setting MPE = MRSLC ⇒ 2 − 2E = 2E so E∗ (π̄) = 1/2. The efficient wage can
be found from the constraint π̄ = 2 (1/2) − (1/2)2 − w (1/2) ⇒ w∗ (π̄) = 3/2 − 2π̄. Assuming the firm
can shutdown if it makes negative profits and that workers can find other jobs at the competitive wage, this
solution can vary from w = 1 (the competitive case, when π̄ = 1/4) to w = 3/2 (π̄ = 0). Note that because
E∗ (π̄) does not depend on the profits, and hence the wage, the contract curve will be upward sloping and
contracts are said to be "strongly efficient."
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4 Rubinstein’s Sequential Bargaining Model
This model considers the simple problem of how a union and a firm (e.g. the shareholders) can split a fixed
amount of profits, which we set to one (π̄ = 1) for simplicity. More generally this can be thought of a

which gives an FOC which imples both a tangency condition between the isoprofit curve and labor supply curve as well as the
interesection of MPE and MCE (the marginal cost of employment)

f 0 (E)−w − dMRSLC

dE
E = 0⇒ dwIP

dE
=

f 0 (E)−w

E
=

dMRSLC

dE
and MPE = f 0 (E) = w +

dwS (E)

E
=MCE
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"pie-splitting" model between 2 pie-lovers who want as much of the pie as possible (feel free to imagine other
contexts). In the first round, player 1 proposes a split (s1, 1− s1) with s1 going to player 1 and 1 − s1 to
player 2. Player 2 then decides whether to accept or refuse this offer. If she accepts, bargaining stops each
gets their share. If she refuses, bargaining continues for a second round with the player 2 getting to propose
a new split (s2, 1− s2), with share s2 going to player 1, and 1 − s2 going to player 2, except that now the
whole pie is now only of size δ < 1 (which can be thought of as the time-costs of bargaining)2 so that each
player gets only δs2 or δ (1− s2). Player 1 can then accept or refuse this offer.

4.1 Three Round Model

In this model bargaining can only proceed for 2 rounds as described above. If player 1 refuses the split
proposed by player 2 in round 2, then each player gets a default "status-quo" share of the pie in round 3
(s̄, 1− s̄). However because two round have elapsed the pie is now of size δ2, so each player gets only δ2s̄
or δ2 (1− s̄).
The three round model has four decisions (1) player 1’s split, s1, (2) player 2’s decision to accept or

refuse, (3) player 2’s split, s2 and (4) player 1’s decision to accept or refuse
which can be solved for by backward induction, starting with the last move first and going backwards.

(4) Player 1 in round 2 should clearly refuse if he gets more in round 3 than with player 2’s split, so he
refuses if δs2 < δ2s̄ or s2 < δs̄.

(3) Knowing what player 1 will refuse, player 2 in round 2, will propose a split which player 1 can accept,
but maximizes his own slice of the pie so he proposes s∗2 = δs̄, (we assume a player will accept if he is
indifferent), and so player 2 gets 1−s∗2 = 1−δs̄. If bargaining proceeds this far then player 2 will propose
this split and player 1 will accept it, resulting in payoffs

¡
δ2s̄, δ (1− δs̄)

¢
which is just as good as the

"status-quo" for player 1 and clearly better for player 2 as δ (1− δs̄) = δ− δ2s̄ > δ2− δ2s̄ = δ2 (1− s̄).

(2) In round 1, player 2 knows that he can get a payoff of δ (1− δs̄) if he refuses and therefore will not
accept a split which will not give him at least as much. Therefore player 2 refuses if 1−s1 < δ (1− δs̄)
or s1 > 1− δ (1− δs̄).

(1) Knowing what player 2 will refuse, player 1 in round 1 will pick s∗1 = 1 − δ
¡
1− δ̄s

¢
so player 2 gets

1 − s∗1 = δ (1− δs̄). Player 2 will accept this offer (he is indifferent) and so payoffs are given by
(1− δ (1− δs̄) , δ (1− δs̄)). This is the ultimate outcome of the game. Both players are better off
relative to the "status-quo" as you can check for yourself.

4.2 Infinite Round Model

Now consider the situation where bargaining in round 3 repeats itself as in round 1 with player 1 proposing a
split and player 2 getting a chance to accept or refuse. Each round this happens with the player 1 proposing
in odd rounds and player 2 in even rounds, with the pie diminishing by a factor δ each round. Backward
induction cannot be used to solve this model as there is no final round. However because the game repeats
itself essentially every 2 round with the pie being δ2 times smaller we can take a short-cut (not fully justified
here). As in the three round model, bargaining will end in the first round with a split s∗1, 1−s∗1. Now imagine
bargaining were to start (say "by accident") in the third round - since the game is essentially identically
with just a smaller pie, the same split s∗1, 1− s∗1 would succeed in ending the bargaining. Therefore we can
see s∗1,1− s∗1 to be the same as the "status-quo" split considered in the three round model, and so we can set
s̄ = s∗1. Using this condition with the three round solution we can find the solution for the infinite-round
model

s∗1 = 1− δ (1− δs∗1)⇒ s∗1 =
1

1 + δ
, 1− s∗1 =

δ

1 + δ

From this model we can see that player 1 gets more of the pie the higher is the time-cost of bargaining. In
fact player 1 gets the whole pie if δ = 0. On the other-hand if the time-cost of bargaining is essentially zero,
then as δ → 1 we get a 50-50 split of s∗1 = 1/2 = 1− s∗1.

2For instance the time-cost of bargaining could be the loss in foregone interest in investing these profits, so δ = 1/ (1 + r)
where r is the interest rate. It could also represent some other kind of loss, like the costs of a strike.
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