Economics 101A – Spring 2005

A Revised Version of the Slutsky Equation Using the Expenditure Function or, the expenditure function is our friend!

Brief review...

 $e(p_1, p_2, u^0) = \min p_1 x_1 + p_2 x_2 \text{ s.t. } U(x_1, x_2) = u^0$ $= p_1 x^{C_1} (p_1, p_2, u^0) + p_2 x^{C_2} (p_1, p_2, u^0)$

where $x_1^{C_1}$ and $x_2^{C_2}$ are the "compensated demands": the choices you would make to get utility level u^0 as cheaply as possible at prices (p_1 , p_2).

Remember that the Lagrangean for the exp-min problem is:

$$L(x_1, x_2, \mu) = p_1 x_1 + p_2 x_2 - \mu (U(x_1, x_2) - u^0)$$

The foc are:

a) $p_1 - \mu U_1(x_1, x_2) = 0$ b) $p_2 - \mu U_2(x_1, x_2) = 0$ c) $U(x_1, x_2) = u^0$

What are the derivatives of the expenditure function w.r.t. (p_1, p_2) ?

From the definition

$$e(p_1, p_2, u^0) = p_1 x^C_1 (p_1, p_2, u^0) + p_2 x^C_2 (p_1, p_2, u^0), \text{ and so:}$$

$$(\dagger) \quad \partial e(p_1, p_2, u^0) / \partial p_1 = x^C_1 (p_1, p_2, u^0) + p_1 \partial x^C_1 (p_1, p_2, u^0) / \partial p_1 + p_2 \partial x^C_2 (p_1, p_2, u^0) / \partial p_1.$$

In tutorial we discussed the "envelope theorem" which says that the 2nd and 3rd terms cancel out. A quick way to prove that:

Use the constraint: U($x_1^{C}(p_1, p_2, u^0)$, $x_2^{C}(p_1, p_2, u^0) = u^0$, and differentiate w.r.t. p_1 to get

$$U_{1} \partial x_{1}^{C}(p_{1}, p_{2}, u^{0}) / \partial p_{1} + U_{2} \partial x_{2}^{C}(p_{1}, p_{2}, u^{0}) / \partial p_{1} = 0$$

But $U_1(x_1, x_2) = p_1/\mu$ and $U_2(x_1, x_2) = p_2/\mu$ from the f.o.c. Substituting we get

 $p_{1}/\mu \quad \partial x^{\mathrm{C}}_{1} \, \left(p_{1}, \, p_{2}, \, u^{0}\right) / \, \partial p_{1} \ \ + \ \ p_{2}/\mu \ \ \partial x^{\mathrm{C}}_{2} \, \left(p_{1}, \, p_{2}, \, u^{0}\right) / \, \partial p_{1} = 0$

which means that $p_1 \partial x_1^{C}(p_1, p_2, u^0) / \partial p_1 + p_2 \partial x_2^{C}(p_1, p_2, u^0) / \partial p_1 = 0.$

Thus we have:

 $\partial e(p_1, p_2, u^0) / \partial p_1 = x_1^C(p_1, p_2, u^0).$

There is a story we tell to go along with this. If you are initially minimizing expenditure, and the price of good 1 goes up, what do you do? Your "first order" adjustment is to simply continue buying the old bundle – that will increase your spending by $x_1^{c_1} \times \Delta p_1$. That is the first term in (†). But then you would like to re-adjust your choices of goods 1 and 2 to reflect the new prices. Those adjustments are the second and third terms in (†). But because your initial choice was optimal (satisfying the f.o.c) when you try and re-adjust x_1 and x_2 you don't save any more.

Now we are ready to analyze what happens to the **uncompensated or regular** demand when prices rise. Suppose we start at an intial situation with prices (p_1^0, p_2^0) and income I⁰. The initial choices are $x_1^0 = x_1 (p_1^0, p_2^0, I^0)$, $x_2^0 = x_2 (p_1^0, p_2^0, I^0)$ where the $x_1 ()$ and $x_2 ()$ functions *without superscripts* are the regular demand functions

We decompose the effect of a change in price $\Delta p_1 = p_1' - p_1^0$ as follows:

a) starting from x_1^0 , x_2^0 , think of the adjustment you would make if you could keep utility constant (remain on the old indifference curve). This gets you to a new position x_1^* , x_2^* . Since prices have risen this position costs more than you were initially spending. This move is called the "substitution effect" of the price increase.

b) then from x_1^* , x_2^* think of the adjustment you make to get back to spending only the amount of income that you actually have. This is a movement inward along an income expansion path (IEP). You end up at x_1' , x_2' . This move is called the "income effect" of the price increase.

Note that the total change in x_1 is

 $\Delta x_{1} = x_{1}{'} - x_{1}{}^{0}$

$$= (x_{1}' - x_{1}^{*}) + (x_{1}^{*} - x_{1}^{0})$$
$$= \Delta x_{1}^{1} + \Delta x_{1}^{S}.$$

How big are these two parts? To begin, notice that (x_1^0, x_2^0) and (x_1^*, x_2^*) are on the u^0 indifference curve.

$$\mathbf{x}_{1}^{0} = \mathbf{x}_{1} (\mathbf{p}_{1}^{0}, \mathbf{p}_{2}^{0}, \mathbf{I}^{0})$$

But it is also true that

$$x_1^0 = x_1^C (p_1^0, p_2^0, u^0).$$

Also,

Thus

$$x_1^* = x_1^C(p_1', p_2^0, u^0)$$

So
$$\Delta x_1^{S} = x_1^{*} - x_1^{0} = x_1^{C} (p_1', p_2^{0}, u^{0}) - x_1^{C} (p_1^{0}, p_2^{0}, u^{0})$$

 $\approx \partial x_1^{C} (p_1^{0}, p_2^{0}, u^{0}) / \partial p_1 \times \Delta p_1$

The substitution effect depends on the rate at which compensated demands change: this is purely a function of the curvature of the indifference curve.

How about the income effect?

$$\Delta x_1^{I} = x_1' - x_1^{*}$$

First note that $x_1' = x_1 (p_1', p_2^0, I^0)$: its just your regular demand choice at (p_1', p_2^0, I^0) .

But what is x_1^* ? It is the choice when you have enough income to get to the old indifference curve at the new prices. How much money do you need to get there? That's just $e(p_1', p_2^0, u^0)$! So

 $x_1^* = x_1 (p_1', p_2^0, e(p_1', p_2^0, u^0))$ Make sure this makes sense to you!

$$\Delta x_1^{I} = x_1 (p_1', p_2^0, I^0) - x_1 (p_1', p_2^0, e(p_1', p_2^0, u^0))$$

$$\approx \partial x_1 (p_1^0, p_2^0, I^0) / \partial I \times (I^0 - e(p_1', p_2^0, u^0))$$

So the income effect depends on the income derivative of demand *times* the size of the income change $\Delta I = I^0 - e(p_1', p_2^0, u^0)$. Note that $\Delta I < 0$, since you need more than I^0 to get to the u^0 indifference curve when prices are (p_1', p_2^0) .

But how big is ΔI ? We have to use one last trick.

We know that $I^0 = e(p_1^0, p_2^0, u^0)$.

So we can write

$$\Delta I = I^{0} - e(p_{1}', p_{2}^{0}, u^{0}) .$$

$$= e(p_{1}^{0}, p_{2}^{0}, u^{0}) - e(p_{1}', p_{2}^{0}, u^{0})$$

$$\approx \partial e(p_{1}^{0}, p_{2}^{0}, u^{0}) / \partial p_{1} \times (p_{1}^{0} - p_{1}')$$

$$= \partial e(p_{1}^{0}, p_{2}^{0}, u^{0}) / \partial p_{1} \times (-\Delta p_{1})$$

$$= - \partial e(p_{1}^{0}, p_{2}^{0}, u^{0}) / \partial p_{1} \times \Delta p_{1}$$

Note that this is negative for a rise in the price of good 1. Finally (almost done) we have

$$\partial e(p_1^0, p_2^0, u^0) / \partial p_1 = x_1^C(p_1^0, p_2^0, u^0)$$
 from the first page of this lecture note
= x_1^0 because x_1^0 is also the compensated demand choice

All this together means that

$$\Delta I \approx - x_1^0 \Delta p_1$$
.

Note that the size of the income effect depends on how much x_1 you were buying.

Pulling it all together,

$$\begin{split} \Delta x_1^{I} &= \partial x_1 \left(p_1, p_2, I^0 \right) / \partial I \times \Delta I \\ &= - \partial x_1 \left(p_1, p_2, I^0 \right) / \partial I \times x_1^{0} \Delta p_1 \end{split}$$

Thus $\Delta x_1 = \Delta x_1^{I} + \Delta x_1^{S}$

$$= - \partial x_{1} (p_{1}, p_{2}, I^{0}) / \partial I \times x_{1}^{0} \Delta p_{1} + \partial x^{C}_{1} (p_{1}^{0}, p_{2}^{0}, u^{0}) / \partial p_{1} \times \Delta p_{1}$$

or $\Delta x_1 / \Delta p_1 = -x_1^0 \partial x_1 (p_1^0, p_2^0, I^0) / \partial I + \partial x_1^C (p_1^0, p_2^0, u^0) / \partial p_1$.

Now take the limit as Δp_1 gets small and the ratio $\Delta x_1 / \Delta p_1$ tells us the derivative of the regular demand function. We have established:

$$\partial x_1 (p_1^0, p_2^0, I^0) / \partial p_1 = -x_1^0 \partial x_1 (p_1^0, p_2^0, I^0) / \partial I + \partial x_1^C (p_1^0, p_2^0, u^0) / \partial p_1$$

This is called Slutsky's equation, after the Russian economist who first proved it about 100 years ago. Slutsky's equation says that the derivative of the regular demand with respect to p_1 is a combination of the income and substitution effects. The income effect depends on the derivative of demand w.r.t income, *times* the amount of x_1 you initially consume. The substitution effect depends on the derivative of the compensated demand for good 1.

A neat thing about the Slutsky equation is that it gives us a way to recover information about indifference curves from the derivatives of demand w.r.t. prices and incomes. In principle, we can observe $\partial x_1 (p_1^0, p_2^0, I^0) / \partial p_1$ and $\partial x_1 (p_1^0, p_2^0, I^0) / \partial I$. So we can infer:

 $\partial x_{1}^{c}\left(p_{1}^{\ 0}, \, p_{2}^{\ 0}, \, u^{0}\right) / \partial p_{1} \ = \ \partial x_{1}\left(p_{1}^{\ 0}, \, p_{2}^{\ 0}, \, I^{0}\right) / \partial p_{1} \ + \ x_{1}^{\ 0} \ \partial x_{1}\left(p_{1}^{\ 0}, \, p_{2}^{\ 0}, \, I^{0}\right) / \partial I$

Suppose we get an estimate of $\partial x_1^{C_1}(p_1^{0}, p_2^{0}, u^0) / \partial p_1$ that is close to 0. That means indifference curves must be almost like "right angles".