
Lecture 10 March 2008

In this �nal lecture we discuss some applications of dynamic choice models with "continu-
ous" choices. There are many useful references to the methodology:

Adda and Cooper, chapters 2, 3, and 6
Daron Acemoglu�s Growth Theory text (in progress) chapter 16
Christopher Carroll. "Lecture Notes on Solution Methods for Microeconomic Dynamic

Stochastic Optimization Problems" (available at his website)
Angus Deaton"Saving and Liquidity Constraints" Econometrica 59 (Sept 1991).

1. A (very) Little Theory (borrowing from Adda-Cooper and Acemoglu)
We will consider stationary discrete time problems with a state variable x(t) 2 X, a

compact subset of Rk. The source of uncertainty is a 1st order Markov process fz(t)g, with
z(t) 2 Z, a discrete set. (The agent observes z(t) at period t, but does not know future
values.) The agent�s �ow payo¤ is

U(x(t); x(t+ 1); z(t)):

The agent chooses x(t+ 1) in period t; subject to the constraint that

x(t+ 1) 2 G(x(t); z(t)):

The so-called "sequence problem" as of time 0 is sometimes written

V �(x(0); z(0)) = maxE0

1X
t=0

�tU(x(t); x(t+ 1); z(t)):

As written the r.h.s. is under-speci�ed. Implicitly, however, what is meant is that at time
t = 0, the agent is trying to �nd an optimal choice x(1) for each value of x(0) and z(0);
and a corresponding plan for future consumption choices, so as to maximize the discounted
future �ow value, subject to the constraints that x(t+1) 2 G(x(t); z(t)); and that in all future
periods, x(t) will be selected according to the plan. In the case where z(t) is a �rst order
process any plan will relate the choice of x(t+ 1) to current and lagged values of z(t), so the
sequence problem can be properly stated in terms of a sequence of such plans. (See Acemoglu
chapter 16 for a clear way to do it).

The Bellman equation is

V (x; z) = max
y2G(x;z)

U(x; y; z) + �E[V (y; z0)jz]

where expectations in the last term are taken with respect to the Markov process that deter-
mines z(t). (Note how much easier it is to write this than to even state the sequence problem).
Under the assumptions that:

U(x; y; z) is a continuous, bounded, concave function
� < 1
G(x; z) is non-empty, compact, continuous, convex

there is a unique real-valued solution function V (x; z); continuous and bounded in x for each
z, that solves both the sequence problem and the Bellman equation (i.e., V �(x; z) = V (x; z)):
V is concave in x for each z. Moreover, there is a stationary policy function y = �(x; z) that
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gives the optimal choice of x(t+1) for each x(t); z(t): The proof of existence and uniqueness
of V uses the fact that the operator

T (V )(x; z) = max
y2G(x;z)

U(x; y; z) + �E[V (y; z0)jz]

is a contraction mapping. Thus, it is possible to calculate V (x; z) by starting from an arbitrary
"guess", and repeatedly applying the operator T until convergence. This is the key idea used
in applications.

2. A simple application to consumption
Consider an agent with an in�nite life who has a �ow utility u(ct) in period t, and a

discount factor � < 1: At the beginning of period t the agent has a stock of assets At
inherited from the previous period, and receives income yt: Future income is uncertain: for
now we assume yt 2 fy1; :::yJg with P (yt = yjg = �j (so there is no serial correlation in the
process). Assuming a real interest rate R, one could write out the problem using At and yt
as the state variables. This would �t nicely into the framework above.

At+1 = R(At + yt � ct);

we could re-write �ow utility as

u(At + yt �At+1=R):

However, Deaton (1991) noted that it was easier to re-frame the problem in terms of the
control variable ct and the state variable xt = At + yt; which he called "cash-on-hand". Note
that

xt+1 = R(xt � ct) + yt+1:
Thus, the Bellman equation for this problem is

V (x) = max
c

u(c) + �E[V (R(x� c) + y0)

= max
c

u(c) + �
X
j

V (R(x� c) + yj)�j :

Note that if we had a solution to the Bellman functional equation, we would be able to �nd
the agent�s "consumption function" c = c�(x): In particular,

c�(x) = argmax u(c) + �
X
j

V (R(x� c) + yj)�j

for each value of x. Note that the problem as stated so far allows the agent�s cash-on-hand
stock to grow in�nitely big or in�nitely small. To prevent problems it is convenient to assume
� = R when studying in�nitely lived consumers.

The basic approach to solving for V has 2 steps:
1) discretize the state space x into n values x1; x2; :::xn
2) starting from an initial guess for the value of V at each point in the discretized state

space, V 1i iterate the following "inner loop":
a) interpolate between grid points to get V k(x) for the entire range of x
b) update the guess of the value function at each gridpoint using the contraction mapping

iteration:
V k+1i = max

c
u(c) + �

X
j

V k(R(xi � c) + yj)�j :
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There are 2 ways to perform the max at step 2. One is to discretize the possible values for
c into some (relatively �ne) grid, and do a simple search. An alternative is to conduct a
numerical optimization. Note that u(c) is a known function, and at each iteration


k(c) =
X
j

V k(R(xi � c) + yj)�j

is also a known function, so the numerical optimization has to �nd a c to maximize

u(c) + �
k(c)

Assuming u is concave, and V k is concave in x; this is a 1-dimensional concave programming
problem (i.e., very easy).

Some Details.
a) How do we discretize x? With � = R and a stationary i.i.d. income process consumers

will not allow cash on hand to get too large or too small. So the grid of values for x does not
have to be much wider than the range between y1 and yJ : A standard approach is to adopt
a relatively course grid, get the problem working, then narrow the grid and see how much the
answer changes.

b) How do we interpolate V between the grid points? A linear interpolation is not very
good because the f.o.c. for optimum c at grid point i requires

u0(c) = ��j [V
0(R(xi � c) + yj)�j

Linear interpolation implies that the "derivatives" of the interpolated V function are step
functions, so it will not be possible to �nd a unique c that is optimal for xi: Adda and Cooper
)pp. 54-55) recommend cubic splines that are �t so the interpolated V is continuous and has
continuous �rst and second derivatives at the spline points (the x0is). The coe¢ cients of the
cubic for each interval [xi; xi+1] can be solved easily. (Some assumption is needed for the �rst
and last interval.)

3. A consumption problem with serially correlated income shocks.

a) Prologue
Suppose that income in period t is not i.i.d., but follows a correlated process. The standard

approach (introduced by G. Tauchen, 1986 Economics Letters) is to discretize yt (as above)
and assume a 1st order Markov process that "approximates" a serially correlated continuous
process. For example, suppose we want to approximate an AR-1 income process:

yt = a+ �yt�1 + �t

where �t � N(0; �2): Note that for this process E[yt] = �y = a=(1 � �); and var[yt] = �2y =
�2=(1 � �2): To approximate this with a discrete 1st order markov model with N points of
support, �rst �nd N � 1 cut points kj (j = 1; ::N � 1) such that

�[
kj+1 � �y

�y
]� �[

kj � �y
�y

] =
1

N

with k0 = �1; and kN =1: (This de�nes the boundaries so that the probability a N(�y; �2y)
falls in each bin is 1/N). Next, �nd the mean value of a N(�y; �

2
y) within each bin. These
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values will be the points of support for the discrete process. If � = 0 we can stop. Otherwise,
the last step is to de�ne "transition probabilities" �ij such that

�ij = P (ki < yt < ki+1jkj < yt�1 < kj+1)

assuming that �
yt�1
yt

�
� N

��
�y
�y

�
; �2y

�
1 �
� 1

��
This can be computed using the usual formulas (e.g. in Johnson and Kotz).

b) The Consumption Model
With serially correlated incomes, the state space has to include y, the discretized current

value of income. The Bellman equation becomes

V (x; yj) = max
c

u(c) + �E[V (R(x� c) + y0; y0) j yj ]

= max
c

u(c) + �
X
`

V (R(x� c) + y`; y`)�`j ;

where �`j(y) = P (yt+1 = y`jyt = yj): The agent�s consumption function is c = c�(x; y): As
in the uncorrelated income case, we discretize x into a set of points fxig: Now the discretized
value function includes a second dimension, over the (discrete) values for yj . At the kth

iteration of the contraction mapping the value function at x = xi; y = yj is V ki;j : Updating
proceeds as before:

a) interpolate between grid points xi to get V k:;j(x) at all x
b) update the guess of the value function

V k+1i;j = max
c

u(c) + �
X
`

V k:;j(R(xi � c) + y`)�`j :

4. Borrowing constraints.
Let�s return to the case of i.i.d income and assume now that the agent can never have

ct > xt: Deaton (1991) discusses this case at some length (see also A-C, pp. 156-159).
Formally, this means we impose the condition 0 � c � x in the de�nition of the Bellman
equation:

V (x) = max
0�c�x

u(c) + �E[V (R(x� c) + y0)

= max
0�c�x

u(c) + �
X
j

V (R(x� c) + yj)�j :

The solution for V can be approached as above using contraction-mapping iterations on
V . The wrinkle is that the search for the optimal c at each discretized value xi has to impose
the restriction c � xi: With this restriction in place, for low values of x, c = x. The grid for
x has to be relatively �ne in the lower tail in order to capture the critical value at which this
occurs.

Deaton actually solves the problem a di¤erent way, looking for a contraction mapping
that de�nes the marginal utility of income with di¤erent levels of cash-on-hand. De�ne
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�(c) = u0(c): From the envelope theorem, if ct = c�(xt) is the optimal consumption choice
given cash-on-hand xt; then

V 0(xt) = u
0(c�(xt)) = �(c

�(xt)):

Moreover, if the condition ct � xt is not binding then ct satis�es the intertemporal �rst order
condition (Euler condition):

u0(ct) = �R E[V
0(xt+1)] = �R Et[u

0(ct+1)]

But if the constraint is binding,c�(xt) = xt and

u0(ct) = u
0(xt) > �R Et[u

0(ct+1)]

Therefore
�(c�(xt)) = max[ �(xt); �R Et[�(c

�(xt+1)] ]:

Deaton looks for a stationary "marginal utility of money" function p(x) = �(c�(x)) that
has this property, i.e.

p(x) = max[ �(x) , �R
X
j

V 0(R(x� c�(x)) + yj)�j ]

= max[ �(x) , �R
X
j

p(R(x� ��1(p(x)) + yj)�j ]

Deaton argues that this functional equation is a contraction mapping, and iterates on successive
values of p(x):

5. Other Income Processes
Simple i.i.d or AR-1 income processes are not very good descriptions of individual income

generating functions. One standard extension (introduced by Zeldes, 1989) is the following.
Let Yt represent income in period t. Assume

Yt = PtUt;

Pt = GtPt�1Nt;

where Pt represents "permanent income", which has a non-stochastic growth rate logGt; and
an innovation Nt (which is usually assumed to be i.i.d. normal), and Ut represents a transitory
shock. In the literature there are two processes that have been explored for Ut: Carroll (1999)
considers the case where logUt is normal and E Ut = 1: Carroll (1992) considered the case
where Ut = 0 with probability p, and Ut � logNormal; with probability 1� p:

As before, cash on hand evolves as

Xt+1 = R(Xt � Ct) + Yt+1;

where Ct is consumption in period t. In this model there are 2 state variables, Pt and Xt:
However, note that if we divide everything by Pt things work out pretty nicely. In particular

Xt
Pt

=
R(Xt�1 � Ct�1)

Pt
+
Yt
Pt

= R

�
Xt�1
Pt�1

� Ct�1
Pt�1

�
Pt�1
Pt

+
Yt
Pt

=
R

GtNt

�
Xt�1
Pt�1

� Ct�1
Pt�1

�
+
Yt
Pt

xt = rt(xt�1 � ct�1) + yt
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where small letters denote values divided by permanent income at time t. Note that cash
on hand per unit of permanent income depends on lagged cash on hand per unit of permanent
income, the realization of current income per unit of permanent income, and the "interest
rate" rt: This transformation gets everything in terms of ratios, and eliminates the inherent
non-stationarity of a lifecycle growth model, for example.
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