Labor Supply

D. Card, Sept 2008

1. Preliminary issues (compensated, Frisch, Marshallian responses)
2. non-participation in a single-agent setting
3. models with multiple solutions - the "old" view
4. Ransom's model of family labor supply
5. models with multiple solutions - the "new" view

1. Preliminary issues

Consider the canonical consumer choice problem with an interior maximum:
$\operatorname{Max} U(x)$ s.t. $p \cdot x=y$
f.o.c. $D U(x)-\lambda p=0$

$$
p \cdot x-y=0
$$

s.o.c. $v^{\prime} D^{2} U(x) v \leq 0$ for all $v \neq 0$ s.t. $p \cdot v=0$.

Solution functions:

$$
\begin{aligned}
& x=x(p, y) \\
& \lambda=\lambda(p, y)
\end{aligned}
$$

Differentiate the f.o.c., letting $S=D^{2} U(x)$ denote the matrix of $2^{\text {nd }}$ partials:

$$
\begin{array}{rrrrrr}
\text { S } & \text { p } & \partial x / \partial p^{\prime} & \partial x / /^{\prime} \partial y & \lambda I & 0 \\
p^{\prime} & 0 & -\partial \lambda / \partial p^{\prime} & -\partial \lambda / \partial y & -x^{\prime} & 1
\end{array}
$$

Using the partitioned inverse formula: $\partial \lambda / \partial y=\left[p^{\prime} S^{-1} p\right]^{-1}<0$ if U is concave. For simple static choice problems we wouldn't put restrictions on the concavity of U (only quasi-concavity). For intertemporal problems, or problems with uncertainty, we do. Note that $\partial \lambda / \partial y$ is related to the degree of risk aversion, and also to the intertemporal substitution elasticity of consumption demand (Robert Hall, JPE, 1988)

Further application of partitioned inverse formula yields:
$\partial x / \partial y=\partial \lambda / \partial y \cdot S^{-1} p$
$\partial x / \partial p^{\prime}=\lambda S^{-1}-\lambda[\partial \lambda / \partial y]^{-1}\left[\partial x / \partial y \cdot \partial x^{\prime} / \partial y\right]-\partial x / \partial y \cdot x^{\prime}$

The third term of the second line is what we conventionally call the "income effect". The usual "substitution effect" is represented by the first two terms. Specifically, define the Hicksian compensated demand function $x^{c}(p, u) \equiv x(p, e(p, u))$, where $e(p, u)$ is the expenditure function. From the Slutsky equation:
(S) $\quad \partial x^{c}(p, u) / \partial p^{\prime}=\partial x(p, y) / \partial p^{\prime}+\partial x / \partial y \cdot x^{\prime}$,
and hence:

$$
\partial x^{c}(p, u) / \partial p^{\prime}=\lambda S^{-1}-\lambda[\partial \lambda / \partial y]^{-1}\left[\partial x / \partial y \cdot \partial x^{\prime} / \partial y\right]
$$

Looking back at the f.o.c, define the Frisch demands $x^{F}(p, \lambda)$ as the solution functions:
(F) $\quad \operatorname{DU}\left(x^{F}(p, \lambda)\right)=\lambda p$.

This is the set of demands the consumer would have, facing prices p and a given marginal utility of income λ. In simple intertemporal choice problems $U=\sum_{t} \beta^{t} v\left(x_{t}\right)$, where x_{t} is consumption in period t, with discounted price p_{t}, and the Frisch demands satisfy

$$
\beta^{t} v^{\prime}\left(x_{t}^{F}(p, \lambda)\right)=\lambda p_{t},
$$

which is the traditional first order condition for optimal intertemporal consumption with a fixed lifetime budge constraint. Differentiating (F) w.r.t. p^{\prime} and using $S=D^{2} U(x)$,

$$
\begin{aligned}
& S \partial x^{F}(p, \lambda) / \partial p^{\prime}=\lambda, \\
\Rightarrow \quad & \partial x^{F}(p, \lambda) / \partial p^{\prime}=\lambda S^{-1}, \quad \text { and thus we can write } \\
& \partial x^{c}(p, u) / \partial p^{\prime}=\partial x^{F}(p, \lambda) / \partial p^{\prime}-\lambda[\partial \lambda / \partial y]^{-1}\left[\partial x / \partial y \cdot \partial x^{\prime} / \partial y \quad\right]
\end{aligned}
$$

For the i, j element we have
(*) $\quad \partial x_{i}^{c}(p, u) / \partial p_{j}=\partial x_{i}(p, \lambda) / \partial p_{j}-\lambda[\partial \lambda / \partial y]^{-1} \partial x_{i} / \partial y \cdot \partial x_{j} / \partial y$.

Note that if $D^{2} U$ is diagonal (all second cross-partials=0), as would be true in the case where $U=\sum_{t} \beta^{t} v\left(x_{t}\right)$, then S^{-1} is diagonal, so for $i \neq j$ the compensated derivatives are proportional to the income effects. Also, (${ }^{*}$) implies a nice link between the compensated own elasticity, the Frish elasticity, and a combination of income effects and the elasticity of λ w.r.t. (basically the degree of risk aversion).

Applications to intertemporal labor supply (or, how do we know what we're estimating?) Consider an application of the previous framework to an intertemporal planning problem, when preferences are additively separable across periods. Let c_{t} denote consumption in period t, h_{t} denote hours of work in period $t, w_{t}=$ wage (measured as of period t). Assuming a fixed real interest rate r , the choice problem is
$\operatorname{Max} \quad \sum_{t} \beta^{t} v\left(c_{t}, h_{t}\right) \quad$ s.t.

$$
\left.\sum_{t}(1+r)^{-t}\left[c_{t}-w_{t} h_{t}\right)\right]=A_{0}+\sum_{t}(1+r)^{-t} y_{t} \quad \text { where } y_{t}=\text { nonlabor income. }
$$

f.o.c.

$$
\begin{aligned}
& \beta^{t} v_{c}\left(c_{t}, h_{t}\right)-\lambda(1+r)^{-t}=0 \\
& \beta^{t} v_{h}\left(c_{t}, \ell_{t}\right)+w_{t} \lambda(1+r)^{-t}=0
\end{aligned}
$$

Note we get a "within-period tangency" condition

$$
-v_{\mathrm{h}}\left(\mathrm{c}_{\mathrm{t}}, h_{\mathrm{t}}\right) / v_{\mathrm{c}}\left(\mathrm{c}_{\mathrm{t}}, h_{\mathrm{t}}\right)=\mathrm{w}_{\mathrm{t}}
$$

and an intertemporal allocation condition on the m.u. of consumption:

$$
v_{c}\left(c_{t}, h_{t}\right)=\lambda \beta^{t}(1+r)^{t} \Rightarrow c_{t}=w_{t} h_{t}-s_{t} \text { for some optimal "savings". }
$$

Now, consider the same consumer who has no access to credit markets. This consumer's optimum would be characterized by:

$$
\begin{aligned}
& -v_{h}\left(c_{t}, h_{t}\right) / v_{c}\left(c_{t}, h_{t}\right)=w_{t} \\
& c_{t}=w_{t} h_{t}+y_{t} .
\end{aligned}
$$

The difference is in what level of income is "brought in" or "taken out" of the period. In the perfect foresight intertemporal case the consumer saves or borrows s_{t}, where s_{t} serves to keep the MU of consumption on the "right trajectory". The Frisch supply function incorporates this optimal adjustment. If on the other hand, s_{t} was adjusted to keep $v\left(c_{t}, h_{t}\right)=v^{0}$, we'd be observing a Hicksian labor supply function. Finally, if we compare labor supply choices taking $y_{t}+s_{t}$ as given, we are observing a Marshallian (uncompensated) within-period labor supply function.

For more on the relation between risk aversion and the behavioral responses to labor supply, see R. Chetty, "A New Method for Estimating Risk Aversion", AER, 96 (Dec. 2006): 1821-1834.

2. Non-participation - single agent setting

For the remainder of this lecture we will focus on static labor supply models. One interpretation of this approach is that we have in mind comparisons between people who face "permanent" differences in their wages (and non-labor income opportunities). Chetty (2006) has a nice 2-stage budgeting representation. Suppose the agent's problem is
$\max U\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots . \mathrm{c}_{\mathrm{T}}, \mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots . \mathrm{h}_{\mathrm{T}}\right)$
s.t. $p_{1} c_{1}+p_{2} c_{2}+\ldots+p_{T} c_{T}=y+w_{1} h_{1}+w_{2} h_{2}+\ldots+w_{T} h_{T}$

$$
=y+w\left(\theta_{1} h_{1}+\theta_{2} h_{2}+\ldots+\theta_{T} h_{T}\right)
$$

Here, p_{t} is the present value of the price of consumption in period $t\left(e . g . p_{t}=(1+r)^{-t}\right)$ and $\mathrm{w}_{\mathrm{t}}=\mathrm{w} \theta_{\mathrm{t}}$ is the present value of wages in period t (so w is a 'scale factor' that blows up wages at all ages, and θ_{t} represents the combination of the discount factor and any transitory deviation in wages in period t). The problem can be recast as
$\max u(c, h) \quad$ s.t. $\quad c=y+w h$
where $\quad u(c, h) \equiv \max U\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots . \mathrm{c}_{\mathrm{T}}, \mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots . \mathrm{h}_{\mathrm{T}}\right)$

$$
\begin{array}{ll}
\text { s.t. } & c=p_{1} c_{1}+p_{2} c_{2}+\ldots+p_{T} c_{T} \\
& h=\theta_{1} h_{1}+\theta_{2} h_{2}+\ldots+\theta_{T} h_{T}
\end{array}
$$

Here c and h are "lifecycle aggregates" (we can rescale them to represent annualized consumption and hours of work). If the main variation of interest is in y and w , and NOT intertemporal variation in θ_{t}, then it makes sense to think of the analysis as a static model of choice over the lifecycle aggregates. Note (using the envelop property of the value function) that the marginal utility of wealth in the second stage problem is the multiplier on the lifecycle consumption allocation constraint (i.e.
$u_{c}(c, h)=\lambda=\partial U / \partial c_{t} / p_{t}$ for all t.

Ignoring non-participation, the standard way to proceed in static labor supply studies is to adopt a convenient parametric functional form, e.g. my personal favorite:
(1) $\quad h_{i}=X_{i} \beta+\gamma \log w_{i}+\theta y_{i}+\varepsilon_{i}$.

In a stunning feat of reverse engineering (integration) Stern (1985) showed there is a utility function $v(c, h ; \tau)$ that generates a labor supply function $h=\tau+\gamma \log w+\theta y$. Let $T_{i}=X_{i} \beta+\varepsilon_{i}$ be the combination of observed and unobserved heterogeneity. Assuming a distribution for ε_{i}, we have derived a d.g.p. for the data h_{i}, conditional on $\left(X_{i}, \log w_{i}, y_{i}\right)$. We probably don't want to assume that $\log w_{i}$ is orthogonal to ε_{i}, so we might have to augment the model with
(2) $\quad \log w_{i}=Z_{i} \pi+\eta_{i}$.

Combining this with (1), we have

$$
\begin{equation*}
h_{i}=X_{i} \beta+Z_{i} \gamma \pi+\theta y_{i}+\zeta_{i}, \quad \text { where } \zeta_{i}=\varepsilon_{i}+\gamma \eta_{i} . \tag{3}
\end{equation*}
$$

Assuming normal errors gives a likelihood for $\left(h_{i}, \log w_{i}\right)$ conditional on $\left(X_{i}, Z_{i}, y_{i}\right)$.

If there is a significant fraction of non-workers in the sample of interest, the "cheap fix" is to impute a wage (using a selection-corrected regression model fit to the observed wage data to simulate wages for those who don't work, possibly with multiple draws for the error term). and then convert (1) into a Tobit model. A more attractive idea (Heckman, 1974) is to define i's reservation wage r_{i} such that:

$$
0=X_{i} \beta+y \log r_{i}+\theta y_{i}+\varepsilon_{i} \text {, i.e. } \log r_{i}=-X_{i} \beta / \gamma-\theta / Y y_{i}-1 / \gamma \varepsilon_{i} .
$$

When $\log w_{i} \leq \log r_{i}$ the person doesn't work (and we observe $h_{i}=0$). When $\log w_{i}>$ $\log r_{i}$ we observe wages and positive hours. The likelihood consists of two parts:

- a probability for nonworking $=p\left(\zeta_{i} \leq-X_{i} \beta-Z_{i} \gamma \pi-\theta y_{i}\right)$
- a density for $\left(\zeta_{i}=h_{i}-X_{i} \beta-Z_{i} \gamma \pi-\theta y_{i} ; \eta_{i}=\log w_{i}-Z_{i} \pi\right)$ conditional on $\zeta_{i}>-X_{i} \beta-Z_{i} \gamma \pi-\theta y_{i}$.

It's a good exercise to work out the correct likelihood.

3. Models with multiple solutions - the "old" view

In the next section we will be discussing Ransom's family labor supply model. A key preliminary issue is the possibility of multiple equilibria that arises in multi-variate discrete choice settings. The simplest model that illustrates the issues is a bivariate probit. Define $y_{1}{ }^{*}$ and $y_{2}{ }^{*}$ as latent random variables and y_{1} and y_{2} as the associated
indicator functions: $y_{1}=1\left(y_{1}{ }^{*} \geq 0\right), y_{2}=1\left(y_{2}{ }^{*} \geq 0\right)$. Think of y_{1} and y_{2} as dummies for whether family members 1 and 2 work. The simplest possible model is

$$
\begin{aligned}
& y_{1}^{*}=\beta_{1} y_{2}+y_{1} x_{1}+v_{1} ; \quad y_{2}^{*}=\beta_{2} y_{1}+y_{2} x_{2}+v_{2} . \\
& P(1,1)=P\left(v_{1}>-\gamma_{1} x_{1}-\beta_{1}, v_{2}>-\gamma_{2} x_{2}-\beta_{2}\right) \\
& P(0,0)=P\left(v_{1} \leq-\gamma_{1} x_{1}, v_{2} \leq-\gamma_{2} x_{2}\right) \\
& P(1,0)=P\left(v_{1}>-\gamma_{1} x_{1}, v_{2} \leq-\gamma_{2} x_{2}-\beta_{2}\right) \\
& P(0,1)=P\left(v_{1} \leq-\gamma_{1} x_{1}-\beta_{1}, v_{2} \leq-\gamma_{2} x_{2}\right)
\end{aligned}
$$

Draw $\left(v_{1}, v_{2}\right)$ space, partitioning the area into the regions that map to the 4 outcomes:

There is a problem: the dark area maps into multiple outcomes so there is not a unique mapping from the v's to the y's. In the old (pre-2000) literature, this was called an "incoherency" problem. We are familiar with this problem from simple 2×2 games, where under some conditions there are 2 equilibria: 1 and 2 both work, or 1 and 2 both do not work (if the β 's are positive). (In other settings where the β 's are negative, there are also 2 equilibria: 1 works and 2 doesn't, or vice versa). Note that the dark area collapses if either $\beta_{1}=0$ or $\beta_{2}=0$. Until recently, it was taken for granted that in a bivariate probit, you had to assume 1-way feedback only (ie, $\beta_{1} \beta_{2}=0$). This is equivalent to assuming one person is the Stackelberg leader - not so attractive in a family labor supply setting. We return to the "modern" approach later in the lecture.

A related case

Consider a mixed 2-equation model of the form:

$$
\begin{aligned}
& y_{1}=\beta_{1} y_{2}+\gamma_{1} x_{1}+v_{1} \\
& y_{2}^{*}=\beta_{2} y_{1}+\gamma_{2} x_{2}+v_{2}, \\
& \left.y_{2}=\max \left(y_{2}^{*}, 0\right) \quad \text { (a Tobit-model }\right)
\end{aligned}
$$

Note

$$
\begin{aligned}
y_{2}^{*} & =\beta_{2}\left(\beta_{1} y_{2}+Y_{1} X_{1}+v_{1}\right)+Y_{2} X_{2}+v_{2} \\
& =\beta_{1} \beta_{2} y_{2}+z, \quad \text { where } z=Y_{2} X_{2}+\beta_{2} Y_{1} X_{1}+\beta_{2} v_{1}+v_{2} .
\end{aligned}
$$

Consider the mapping from z to $\mathrm{y}_{2}{ }^{*}$:

Case 1: $\beta_{1} \beta_{2}>0$.
Case 2: $\beta_{1} \beta_{2}<0$.

If $\beta_{1} \beta_{2}<0$ there are multiple solutions for $z<0$ and no solution for $z>0$.

4. Ransom's model of family labor supply

Ransom considers a "unitary" model of family decision-making:

$$
\max U\left(T_{1}-h_{1}, T_{2}-h_{2}, x\right) \quad \text { s.t. } \quad x=w_{1} h_{1}+w_{2} h_{2}+y .
$$

Define $m_{1}\left(h_{1}, h_{2}\right)=-U_{1}(\quad)+w_{1} U_{3}, m_{2}\left(h_{1}, h_{2}\right)=-U_{2}(\quad)+w_{2} U_{3}$.
Two cases considered:
$\begin{array}{lll}\text { both work: } & m_{1}\left(h_{1}, h_{2}\right)=0, & m_{2}\left(h_{1}, h_{2}\right)=0 \\ 1 \text { works, 2 doesn't: } & m_{1}\left(h_{1}, 0\right)=0, & m_{2}\left(h_{1}, 0\right)<0 .\end{array}$

Ransom assumes U is quadratic in the 3 arguments $=>U_{1}, U_{2}, U_{3}$ are linear in the arguments. Thus m_{1} include a constant, linear terms in h_{1}, h_{2}, and x, and interactions of w_{1} with $\mathrm{h}_{1}, \mathrm{~h}_{2}$, and x . In addition, he assumes the constant contains an additive normal error component ε_{1}. Thus

$$
\mathrm{m}_{1}=\mathrm{S}_{1}\left(\mathrm{~h}_{1}, \mathrm{~h}_{2} ; \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{y}\right)+\varepsilon_{1}
$$

for some function S_{1} that is linear in h_{1} and h_{2} (though the coefficients depend on $\mathrm{w}_{1}, \mathrm{w}_{2}$ and $y-$ see his equation (5a)). Likewise

$$
\mathrm{m}_{2}=\mathrm{S}_{2}\left(\mathrm{~h}_{1}, \mathrm{~h}_{2} ; \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{y}\right)+\varepsilon_{2} .
$$

Write $S_{1}\left(h_{1}, h_{2}\right)=a_{10}+a_{11} h_{1}+a_{12} h_{2}$, and $S_{2}\left(h_{1}, h_{2}\right)=a_{20}+a_{21} h_{1}+a_{22} h_{2}$. In the bothwork regime we have $m_{1}=0$ and $m_{2}=0$, which can be re-cast as

$$
\begin{aligned}
& h_{1}=-a_{10} / a_{11}-a_{12} / a_{11} h_{2}+-\varepsilon_{1} / a_{11}, \\
& h_{2}=-a_{20} / a_{22}-a_{21} / a_{22} h_{1}+-\varepsilon_{2} / a_{22},
\end{aligned}
$$

whereas in the case that 1 works and 2 doesn't we have

$$
\begin{aligned}
& h_{1}=-a_{10} / a_{11}-a_{12} / a_{11} h_{2}+-\varepsilon_{1} / a_{11} \\
& h_{2}^{*}=-a_{20} / a_{22}-a_{21} / a_{22} h_{1}+-\varepsilon_{2} / a_{22}<0 .
\end{aligned}
$$

This has the same structure as we discussed above, so for a unique solution we need that $1-\left(a_{12} / a_{11}\right)\left(a_{21} / a_{22}\right)>0$. Ransom shows that this is satisfied if U is concave. In his related paper in the J. Econometrics he presents a generic proof, based on a result due to Amemiya. There is no "coherency" problem in a unitary decision maker model with well behaved preferences.

Ransom does not try to econometrically address the problem that when 2 doesn't work, w_{2} is unobserved - instead he uses the "cheap fix" of imputing a wage for non-workers. He also ignores any measurement error or endogeneity in observed wages. In principle it is possible to expand his model to include 2 additional equations for wages, with a stochastic component that incorporates measurement error. A serious issue, however,
is that the first order conditions from his specification are NOT very convenient to work with when observed wages include an error component.

Conditioning on wages and nonlabor income, in the "both work" regime we know $\mathrm{m}_{1}=\mathrm{S}_{1}+\varepsilon_{1}=0$ and $\mathrm{m}_{2}=\mathrm{S}_{2}+\varepsilon_{2}=0$. If $\mathrm{f}\left(\varepsilon_{1}, \varepsilon_{2} ; \Sigma\right)$ is the bivariate normal density (conditional on cov. Σ) the likelihood is $f\left(-S_{1},-S_{2} ; \Sigma\right) \cdot|J|$ where $J_{\mathrm{ij}}=\partial S_{i} / \partial h_{j}=a_{i j}(J=$ the Jacobian $)$. In the other regime we have $\varepsilon_{1}=-S_{1}\left(h_{1}, 0\right)$ and $\varepsilon_{2}<-S_{2}\left(h_{1}, 0\right)$, so the likelihood is

$$
\varphi\left(-\mathrm{S}_{1} ; \sigma_{1}\right) \cdot\left|\mathrm{a}_{11}\right| \cdot \Phi\left[\left(-\mathrm{S}_{2}-\rho \sigma_{2} / \sigma_{1} \mathrm{~S}_{1}\right) / \sigma_{2}\left(1-\rho^{2}\right)^{1 / 2}\right]
$$

Extensions

Consider a two-person household where each person has a labor supply equation based on (1), and takes total non-labor income and the other's earnings as given (noncooperative household decision making):

$$
\begin{aligned}
& h_{1 i}=y_{1} \log w_{1 i}+\theta_{1}\left[y_{i}+w_{2 i} h_{2 i}\right]+\varepsilon_{1 i} \\
& h_{2 i}^{*}=Y_{2} \log w_{2 i}+\theta_{2}\left[y_{i}+w_{2 i} h_{2 i}\right]+\varepsilon_{2 i} \quad \text { with } h_{2 i}=\max \left[0, h_{2 i}^{*}\right]
\end{aligned}
$$

We can rewrite the first two as

$$
\begin{aligned}
& h_{1 i}=Y_{1} \log w_{1 i}+\theta_{1} y_{i}+\theta_{1} w_{2 i} h_{2 i}+\varepsilon_{1 i} \\
& h_{2 i}^{*}=Y_{2} \log w_{2 i}+\theta_{2} y_{i}+\theta_{2} w_{2 i} h_{2 i}+\varepsilon_{2 i}
\end{aligned}
$$

From the general discussion above, this system will be "coherent" if $1-\theta_{1} \theta_{2} w_{2 i} w_{1 i}>0$. Note that $\partial h_{1} / \partial y=\theta_{1}$, so $w_{1} \partial h_{1} / \partial y=w_{1} \theta_{1}$ and likewise, $w_{2} \partial h_{2} / \partial y=w_{2} \theta_{2}$. So the coherency condition is $w_{1} \partial h_{1} / \partial y \times w_{2} \partial h_{2} / \partial y<1 . w_{1} \partial h_{1} / \partial y$ is amount that \#1's earnings will fall if the family gets $\$ 1$ of non-labor income. For men this is thought to be very small ($0.05-0.15$). For women it may be bigger but is probably less than 1 . So the condition is probably OK. There could be a problem if there are minimum hours constraints (or fixed cost of working) so 2 has to work at least 20 hours/week, or not at all.

The Modern Approach

A number of recent papers have considered estimation of models with non-unique equilibria - Imbens and Wooldridge (Chapter 9) provide an overview. The canonical model in the new literature is an entry game with 2 players. The underlying equations are expressions for the profits of firms 1 and 2 if the other is present or absent:

$$
\begin{aligned}
& \pi_{1}=a_{1}+b_{1} d_{2}+\varepsilon_{1} \\
& \pi_{2}=a_{2}+b_{2} d_{1}+\varepsilon_{2} \\
& d_{j}=1\left(\pi_{j}>0\right)
\end{aligned}
$$

Prob. of $(0,0)=p(0,0)=P\left(\varepsilon_{1} \leq-a_{1}, \varepsilon_{2} \leq-a_{2}\right)$
Prob. of $(1,0)=p(1,0)=P\left(\varepsilon_{1}>-a_{1}, \varepsilon_{2} \leq-a_{2}-b_{2}\right)$

Prob. of $(0,1)=p(0,1)=P\left(\varepsilon_{1} \leq-a_{1}-b_{1}, \quad \varepsilon_{2}>-a_{2}\right)$

Prob. of $(1,1)=p(1,1)=P\left(\varepsilon_{1}>-a_{1}-b_{1}, \quad \varepsilon_{2}>-a_{2}-b_{2}\right)$

Assuming $b_{1}<0$ and $b_{2}<0$ the mapping from $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ space to $\left(d_{1}, d_{2}\right)$ space is:

These 4 areas add up to more than 1. The problem is the dark shaded area, which contributes to both $p(0,1)$ and $p(1,0)$. When d_{1} and d_{2} are negative, we can have a situation where either 1 enters and 2 does not, or 2 enters, and 1 does not. In the modern literature multiple equilibria is treated as a problem of "partial identification".

A very closely related application to labor economics is to retirement of older couples (Nicole Maestas, Rand Working Paper). In this case we might have d_{1} and d_{2} both positive (assuming spouses want to spend time together), which gives a slightly different picture.

To proceed, note that we can get expressions for $p(0,0)$ and $p(1,1)$. We can only get expressions for the bounds on $p(0,1)$ and $p(1,0)$, depending on how we allocate the dark area:

$$
\begin{aligned}
& \mathrm{p}(0,0)=P\left(\varepsilon_{1} \leq-a_{1}, \quad \varepsilon_{2} \leq-a_{2}\right) \\
& \mathrm{p}(1,1)=P\left(\varepsilon_{1}>-a_{1}-b_{1}, \quad \varepsilon_{2}>-a_{2}-b_{2}\right) \\
& P\left(\varepsilon_{1}>-a_{1}, \quad \varepsilon_{2} \leq-a_{2}-b_{2}\right)-D \leq p(1,0) \leq P\left(\varepsilon_{1}>-a_{1}, \quad \varepsilon_{2} \leq-a_{2}-b_{2}\right) \\
& P\left(\varepsilon_{1} \leq-a_{1}-b_{1}, \quad \varepsilon_{2}>-a_{2}\right)-D \leq p(0,1) \leq P\left(\varepsilon_{1} \leq-a_{1}-b_{1}, \quad \varepsilon_{2}>-a_{2}\right)
\end{aligned}
$$

where

$$
D=P\left(-a_{1}<\varepsilon_{1} \leq-a_{1}-b_{1}, \quad-a_{2}<\varepsilon_{2} \leq-a_{2}-b_{2}\right) \quad<\text { the dark area in the graph }>
$$

In general notation:

$$
\begin{aligned}
& p(0,0)=\Pi_{00} \\
& p(1,1)=\Pi_{11} \\
& L_{10} \leq p(1,0) \leq U_{10} \\
& L_{01} \leq p(0,1) \leq U_{01}
\end{aligned}
$$

Consider the moment conditions formed from the data for each market (in which we observe the outcomes $\left(d_{1}, d_{2}\right)$:

$$
\begin{aligned}
& m_{1}=\Pi_{11}-d_{1} d_{2} \\
& m_{2}=\Pi_{00}-\left(1-d_{1}\right)\left(1-d_{2}\right) \\
& m_{3}=U_{10}-d_{1}\left(1-d_{2}\right) \\
& m_{4}=d_{1}\left(1-d_{2}\right)-L_{10} \\
& m_{5}=U_{01}-d_{2}\left(1-d_{1}\right) \\
& m_{6}=d_{2}\left(1-d_{1}\right)-L_{01}
\end{aligned}
$$

We have the restriction from the model that $E\left[m\left(d_{1}, d_{2}\right) \mid\right.$ parms $] \geq 0$. So we want to find a set of parameter estimates such that the observed mean vector of moments satisfies the inequality restriction. This is a potentially solvable estimation problem (see WNiE, chapter 9).

