
Economics 250c Fall 2008

This lecture will cover four topics:
1. Application of the BLP framework with micro-level choice data (BLP, 2004) and A.

Langer�s model of gender-based price discrimination in the retail auto sector.
2. Aside: sorting e¤ects in hedonic models
3. Neighborhood choice problems - Bayer Ferreira and McMillan
4. Nested logit and other extensions of MNL
1. Applications of the BLP two-stage procedure with micro-level data
As noted in the previous lecture, the BLP approach can be adapted to situations where

the researcher has access to a micro sample. In the 2004 "microBLP" paper, and in Langer�s
setting, the micro sample is based on a survey of recent car buyers: buyers are asked which
model they purchased, how much they paid for the car, the model that was their "second"
choice, and a variety of demographic information. A di¢ culty is that the sample excludes
information on people who did not buy cars. We will present a likelihood-based approach to
addressing this problem (following Langer) after we decribe the easier case of seeing all choices.

Assume that the indirect utility that agent i obtains from buying product j is

uij = xj(� + �
0zi + �

��i) + �j + �ij ;

where xj is a set of observed characteristics of product j (including price), zi is a vector of
observed characteristics of agent i (normalized to have mean 0), �i is a random unobserved
taste shifter (possibly vector-valued) for agent i (assumed to follow some standard distribution,
like a normal), �j represents an unobserved attribute of product j (note that this has the same
e¤ect on all i0s �an assumption that might be problematic in some settings) and �ij is our
old friend, the EV1 error. As usual in logit settings, assume that the indirect utility of not
buying is

ui0 = �i0;

i.e., that x0 = �j = 0: In some cases this is highly restrictive. In the new car purchase case,
for example, each consumer presumably has a di¤erent "default" associated with not buying.
Some will have no car, some will have a relatively old used car, etc. Ideally we�d like to get
person-speci�c characteristics for the default and use these to describe ui0; then deviate all
other choices from this baseline.

As in Berry (1994), de�ne
�j = xj� + �j :

The probability that agent i chooses product j is

pij(zi; xj ; �j) =

Z
�

exp(�j + xj(�
0zi + �

��))P
k exp(�k + xk(�

0zi + �
��))

f(�)d�

i.e., a mixed logit. Note that the model includes a complete set of product �xed e¤ects �j ,
which absorb the "main e¤ects" of the product characteristics, xj�, as well as the common
unobserved "product e¤ects", �j . Note too that if we knew (�; �0; ��) and had a random
sample of potential buyers then we could use the estimates to predict responses to new product
introductions, and to characterize the responsiveness of demand to variation in the price of
product j.
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A simple and appealing approach to this type of model is a two-step estimation strategy.
In the �rst step, estimate the mixed logit model by simulated ML, including unrestricted
product e¤ects. This "�rst step" yields estimates of (�0; ��), as well as the J product �xed
e¤ects fb�1;b�2; :::b�Jg. In the second step, �t the relationb�j = xj� + �j + (b�j � �j)
by IV (or a "gls" variant of IV) using instruments for price that are orthogonal to unobserved
tastes for a particular brand. This identi�es �, so all elasticities are known. Note that
this setup easily extends to the situation where we know the �rst choice and the second best
alternative (as in Hastings, Kane and Staiger), provided that "not buying" is included as an
option to list as the second best. (If it�s not, we have to assume that the second best is always
better than not buying).

Computationally, there are some di¢ culties in the �rst stage if the number of choices is
large and the number of random e¤ects is also large. One important "trick" is to concentrate
the �0js out of the likelihood, and maximize over (�

0; ��):Recall from introductory econometrics
class that if you have a log likelihood `(�1; �2) that depends on two subsets of coe¢ cients, �1
and �2, then the concentrated log likelihood is

`c(�1) = max
�2
`(�1; �2) = `(�1; �

�
2(�1));

where ��2(�1) is the choice for �2 that is likelihood maximizing, given a particular value of �1:
In our context �1 = (�0; ��) and �1 = (�1; �2; :::�J): We can use BLP�s "contraction mapping"
to get the likelihood maximizing choices for the �0s at each (�0; ��). In the actual computation
it helps a lot to save the choices for the �0s at each evaluation of the likelihood, and use these
as "starting values" for the contraction mapping in the next evaluation. The advantage of the
concentrated likelihood is that it has relatively few parameters �getting a lower-dimensional
numerical optimization problem to converge is usually much easier than working with a high-
dimensional problem, even if each function evaluation is more time consuming.

What do we do if we don�t observe the non-buyers (as happens in applications where
the product choice information comes from a survey of buyers)? In the current version of
her paper, Langer is proposing an "augmented sample" approach, which essentially involves
adding "fake" observations for the non-buyers. Make the following assumptions: (1) the overall
fraction of non-buyers in the population, q0 is known; (2) the observed demographic variables
have a discrete distribution � i.e., zi 2 fz1; :::zP g (for example, age/race/income cells); (3)
the population distribution of zi is known (i.e., the numbers �p = p(zi = zp) are known); (4)
non-buyers all receive utility ui0 = �ij . Under these assumptions, it is possible to augment
the sample with data for the missing non-buyers. These assumptions ensure that there is no
"information loss" in the augmented observations.

The method is as follows. For each "cell" of the observed z0s (zp) begin by calculating the
fraction of the cell who are non-buyers. (This is a straighforward calculation that depends on
the relative number of observations in the sample in cell p, the relative number of observations
in the population in cell p, and the overall fraction of the population who are non-buyers).
Based on this fraction, calculate the number of "missing" non-buyers in the cell, and augment
the sample with an appropriate number of observations, all assumed to have actually chosen
not to buy. Then �t the choice model to the augmented sample by simulated ML.

In BLP (2004), a full ML approach to the "�rst stage" is too computationally burdensome
(they have around 200 choices, allow random coe¢ cients on a relatively large number of
attributes, and relax the assumption that ui0 = �ij). They instead use a method of moments
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approach, matching 3 sets of moments: (i) the product shares (ii) the covariances between
consumer characteristics zi and the characteristics xj of their �rst choice (iii) the covariances
between the characteristics xj of each consumers �rst and second choices.

2. Aside: Sorting E¤ects in Hedonic Models
In a well-known paper, Sandra Black (QJE, 1999) compared house prices on opposite sides

of school attendance zone boundaries and argued that the di¤erence in prices revealed the
willingness to pay for school quality. Assuming that houses on opposite sides of the boundary
share the same neighborhood characteristics, this "boundary design" di¤erences out shared
neighborhood characteristics that typically confound a standard hedonic regression model.
For concreteness, consider a simple reduced-form model like

ph = a+ f(Xh) + cQs(h) + e

where ph is the price (or annual user cost) of house h, Xh is a vector of characteristics of
the neighborhood (e.g., the crime rate, mean income, and racial composition of neighboring
families), and Qs(h) is a measure of quality for the school district s(h) that house h is assigned
to. By assumption, houses on opposite sides of the boundary have the same Xh and di¤er
only in whether the children can attend school system 1 with quality Q1, or system 2 with
quality Q2: Thus, we can estimate

bc = 1
N1

P
h2s1 ph �

1
N2

P
h2s2 ph

Q1 �Q2
:

Note that this approach is easily extended to allow for observable di¤erences in house charac-
teristics like size or state-of-repair.

While this is a de�nite improvement over a simple regression approach, one may be con-
cerned that the estimate of c su¤ers from what could be called "sorting bias": the observed
gap in prices overstates the willingness to pay for some families, and overstates it for others.
Consider family k with income yk and utility function Uk(yk � p;X;Q) de�ned over other
goods, characteristics X, and school quality Q: Assuming Q1 > Q2; de�ne:

Uk(yk � p�1; X;Q1) = Uk(yk � p2; X;Q2)

By construction, p�1 � p2 is family k�s willingness to pay, given X and their income. Taking a
�rst order expansion and letting mrsk = Uk3 (yk � p2; X;Q2)=Uk1 (yk � p2; X;Q2), note that

p�1 � p2
Q1 �Q2

= mrsk:

For a family that lives on the S1 side:

Uk(yk � p1; X;Q1) > Uk(yk � p2; X;Q2))
p1 � p2
Q1 �Q2

< mrsk;

while for a family that lives on the S2 side:

Uk(yk � p1; X;Q1) < Uk(yk � p2; X;Q2))
p1 � p2
Q1 �Q2

> mrsk:

In the special case where everyone has the same preferences, Black�s procedure estimates the
willingness to pay (of everyone). Otherwise, the observed price di¤erential is set to equilibrate
supply and demand for school quality.
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Another problem for a simple hedonic approach is that estimates of the willingness to pay
for a particular amenity represent "local average treatment e¤ects." When there is heterogene-
ity in mrsk, driven for example by variation in income levels across consumers, and the supply
of the attribute in question in limited, one can recover estimates of willingness to pay from
simple hedonic models that are very far from the mean willingness to pay in the population.
For example (as pointed out by BFM), the variation in house prices in Paci�c Heights with
respect to view of the GG bridge does not reveal the mean (or even the 90th percentile) of the
distribution of willingnesses to pay for a good view among all residents of San Francisco.

A �nal (and potentially very di¢ cult) problem arises when one (or more) of the important
amenities of a neighborhood depend on the characteristics of the people who live there (like
race, income, or cognitive ability). In this case, the characteristics of the population who
choose a neighborhood are endogenous. For example, consider a city with a range of eleva-
tions and assume that higher income people have a higher willingness to pay for elevation.
In equilibrium, higher elevation neighborhoods will have richer families who supply higher-
scoring children to local schools. This endogenous strati�cation can substantially magnify the
observed sorting by income, race, etc., along relatively minor (or even arbitrary) dimensions
like elevation. In the limit (described by theoretical models like the one in Epple and Romano,
AER, March 1998) strati�cation is complete and there is no overlap in the characteristics of
families who live in di¤erent school districts. Some evidence of this problem is apparent in
the comparisons reported in BFM of the families that live on either side of a school boundary.

3. Neighborhood choice
Reference: Patrick Bayer, Fernando Ferreira, and Robert McMillan. "A Uni�ed Frame-

work for Measuring Preferences for Schools and Neighborhoods." Journal of Political Economy
(2007) 115(4). (BFM)

BFM present an interesting application of logit demand models to the problem of neigh-
borhood equilibrium. They are particularly concerned with trying to derive willingness to pay
for "school quality" and "neighborhood quality" in the presence of heterogeneous preferences.
They consider a MNL model in which household i gets utility uih from house h:

uih = �iXh � �iph � idih + �bz(h) + �h + �ih;

where Xh is a vector of characteristics of the house and the area (including things like the
number of rooms as well as neighborhood characteristics like mean income), ph is the price of
house h (or log price), dih is a measure of the distance from house h to the head of household
i�s place of work, �bz(h) represents a �xed e¤ect for the "school boundary zone" that house
h is located in, �h represents the unobserved "quality" of house h, and �ih is a EV-I error.
BFM assume that the coe¢ cients (�i; �i; i) vary with some observed characteristics of the
household (Zi):

�i = � + �xZi ; �i = �+ �pZi ; i =  + �dZi:

(This is not exactly their notation - apologies for the confusion). Note that they do not have
a real mixed logit �all heterogeneity is assumed to be captured by the interactions with Zi.
Collecting terms as in Berry and BLP, we have

uih = �h + �ih + �ih; where

�h = �bz(h) + �Xh � �ph + �h
�ih = �xZiXh + �pZi ph � dih � �dZidih:
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The probability that household i chooses house h is

pih =
exp(�h + �ih)P
k exp(�k + �ik)

;

where the "choice set" in the denonimator includes all the other houses in the local market
(in their case, the 6 counties of the SF Bay area).

They follow the two-step estimation procedure described above. In the �rst step they
estimate the parameters (�x; �p; ; �d), and a full set of �h�s (the �xed e¤ects for each house).
This is pretty computer intensive because their sample includes 27,500 houses. In the second
step they estimate the mean parameters (�; �) by applying IV to:

b�h = �bz(h) + �Xh � �ph + �h + (b�h � �h);
using characteristics of houses in neighborhoods some distance from the each house as instru-
ments for price. (In a third step they re�ne the instruments �see their paper for details).

There are several aspects of this paper that could be expanded, and de�nitely warrant
further thinking:

(a) it is unclear how the instruments can work if the boundary zones are de�ned precisely,
because houses in given boundary zone but opposite sides of the border are almost equidistant
to other neighborhoods.

(b) estimating a �xed e¤ect for each house leads to a potential consistency problem for the
�rst stage estimates. Under conventional asymptotics, the number of �0s increases 1:1 with
the sample size. Generally, in nonlinear models there is an "incidental parameters" problem
in having the number of parameters increase with the sample size. Berry, Linton, and Pakes
(ReStud, 2004) present the required conditions for BLP-related procedures to yield consistent
second-stage estimates. In the BFM framework, these include a condition that the number of
families increase at a certain rate relative to the number of houses that are assigned a separate
�xed e¤ect.

(c) BFM ignore the fact that many households have no children, and therefore receive no
direct value from local schools. Note that the co-existence of families with and without kids
in the same neighborhood requires heterogeneity in tastes to make sense!

(d) If neighborhood characteristics like racial composition are endogenously determined, it
is possible that we need instruments for them. (In other words, if �h is correlated with ph, it
is arguably correlated with the mean income of the neighborhood and the fraction of minority
residents).

(e) BFM�s speci�cation, like the baseline BLP speci�cation, ignores any heterogeneity in
the valuation of unobserved neighborhood attributes.

Extensions
It would be extremely useful to endogenize neighborhood composition. Imagine there are

2 groups (g=1, 2) and the valuation that person i in group c places on neighborhood j has the
form:

uicj = �icXj � �icpj + cYcj + �j + �cij ;

where pj represents a standardized price for a unit of housing in neighborhood j, and Ycj
represents the fraction of housing units held by people of group c in neighborhood j. It might
be possible to use this as a "microfoundation" for a tipping model. Note the problem: this is
very similar to a peer-e¤ects model, so the usual "re�ection problem" is present.

5



4. Nested logit and other extensions of MNL
The alternative to a mixed logit approach is to relax the independent EV-I speci�cation

for the error terms in the random utility model. Return to the baseline case (suppressing
subscripts for individuals):

uj = vj + �j ; j = 1:::J:

Note that the 1st option is chosen if v1 + �1 > vk + �k, for all k 6= 1, or alternatively if
�k < v1 � vk + �1 for all k 6= 1: For a general joint distribution function F (�1; �2; :::�J), we
can write

p1 =

Z 1

�1

Z v1�v2+�1

�1
:::

Z v1�vJ+�1

�1
f(�1; �2; :::�J)d�J :::d�2d�1

=

Z 1

�1
F1(�1; v1 � v2 + �1; ::::v1 � vJ + �1)d�1:

The basic idea is to �nd a functional form for F such that this integral can be solved easily.
McFadden showed that a very convenient assumption is

F (�1; �2; :::�J) = exp[�H(e��1 ; e��2 ; ::::e��J )];

where H is a member of the class of functions from <J+ !<+ with 3 properties: (i) homogeneous
of degree 1; (ii) limrj!1H(r1; ::rj ; ::rJ) =1, (iii) the �rst partial derivatives of H are positive,
and all the distinct cross-partials of order k (e.g., @kH=@ri:::@rl for i:::l all distinct) are non-
positive if k is even and non-negative if k is odd. This is called the class of "generalized
extreme value" distributions (GEV). Taking the partial derivative F1, then using the facts
that H is homogeneous of degree 1 and H1 is homogeneous of degree 0, it is not too hard to
establish that

p1 = e
v1H1(e

v1 ; ev2 ; :::evJ )=H(ev1 ; ev2 ; :::evJ ):

(See the appendix to the paper by Arcidiacono and Miller (2007) on the reading list).
Note that if H(r1; ::rj ; ::rJ) =

PJ
j=1 rj then H1 = 1; and

p1 = e
v1=

JX
j=1

evj

which is the basic MNL.
The "nested logit" is obtained by partitioning �1; �2; :::�J into K clusters or "nests", B1; B2; :::BK

and assuming

H(r1; :::rJ) =
KX
k=1

24X
j2Bk

r
1=�k
j

35�k ; 0 < �k < 1

(analogous to a sum of CES functions. Some authors make the inner superscript �k and the
outer 1=�k). In this case, the probability of choice i in nest k(i) is:

pi =
exp(vi=�k(i))

hP
j2Bk(i) exp(vj=�k(i))

i�k(i)�1PK
k=1[

P
j2Bk exp(vj=�k)]

�k
:

Note that the denominator is the same for all choices, and that the second term in the numer-
ator is the same for any choices in the same nest. Thus, if choices a and b are in the same
nest have:

pa=pb =
exp(va)

exp(vb)
;
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as in the ordinary logit. This means that conditional on being in a nest, the choices are MNL
(or conditional logit). It can also be shown the choice across nests has a logit form, where
the value associated with a given nest �called the "inclusive value", depends on the vj�s for
all the choices in the nest in a very simple way.

An alternative derivation of the nested logit is presented by Cardell (1997). Cardell shows
that there is a family of distribution functions C(�) with support over the real line, indexed by
��[0; 1], such that if v � C(�) and � � EV 1, with v and � independent, then ! � v+�� � EV 1:
(In fact, Cardell shows that the relation is i¤). Note that the coe¢ cient � goes in front of
the EV-1 component of the composite random variable !. Since both � and ! are EV-1,
var(!) = var(�) = �2=6: Using the fact that v and � are independent, we have

var(!) = var(v) + �2var(�) = var(�)

implying that var(v) = (1� �2)�2=6; which is decreasing in �: A very convenient property of
the C-family is that if v1 � C(�1) and v2 � C(�2); v1 independent of v2,

v1 + �1v2 � C(�1 � �2)

(the proof uses the only-if part of the previous result). Finally, note that if we start from J+1
independent r.v.�s: v1 � C(�1); �j � EV 1; j=1...J, we have that

!j = v1 + �1 �j � EV 1:

This gives us a set of J EV1�s, each with variance �2=6 and with cov[!i; !j ] = (1 � �2)�2=6,
implying a correlation between any pair of (1� �2): Cardell shows the d.f. for (!1; ::: !J) is

F (!1; ::: !J) = exp[�
JX
j=1

e�!j=�]�;

which is the d.f. of the nested logit.

N. Scott Cardell. "Variance Components Structures for the Extreme-Value and Logistic
Distributions, with Application to Models of Heterogeneity." Econometric Theory, 13 (April
1997): 185-213.
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