
Economics 250c
Fall 2008, Lecture 6
This lecture will discuss two topics:
1. The mapping between choice probabilities and conditional valuations
2. Introduction to dynamic discrete choice problems

1. Choice probabilities and conditional valuations

a. Prologue
Consider the familiar two-sector choice model. Individual i can choose a job in one of two

sectors, j = 1; 2, with
uj = Xj�j + �j = vj + �j

A canonical example (from the ice age of labor economics) would be choosing a union or non-
union job. In that case, the so-called "conditional valuation" vj could represent the expected
wage in sector j. The probability that i chooses sector 1 (denoted by d1 = 1) is:

P (d1 = 1jv1; v2) = P (v1 + �1 > v2 + �2)

= P (�1 � �2 > v2 � v1)
= P (� > v2 � v1); where � � �1 � �2:

In the standard bivarate-normal case: (�1; �2)0 � N(0;�), the di¤erence � is also normally
distributed with mean 0 and variance �2� . Thus

p1 = P (� > v2 � v1) = �
�
v1 � v2
��

�
:

Moreover, �1 and � are jointly normally distributed, so

E[�1jd1 = 1; v1; v2] = r�1;� � E[�j� > v2 � v1] (r�1;� � cov[�1; �]=var[�])

= r�1;� � �� � E[zjz >
v2 � v1
��

] (for z � N(0; 1))

= ��1;���1

�
�
v2�v1
��

�
1� �

�
v2�v1
��

� = ��1;���1

�
�
v1�v2
��

�
�
�
v1�v2
��

� = ��1;���1
�(��1(p1))

p1
;

using the result that for a standard normal variate, E(zjz>a)=�(a)=[1��(a)]. This says that
in the standard bivariate normal selection model, we can write

E[�1jd1 = 1; v1; v2] = E[�1jd1 = 1; p1]

In other words, p1 incorporates all the relevant information about v1; v2 that is needed to
evaluate the selectivity bias in the stochastic component of the payo¤ to choice j when choice
j is taken

b. More general models

In fact, for the standard random-utility setup with any distribution for the �j�s, there is a
mapping between the vj�s (or, more precisely, the di¤erences v1 � vj , v2 � vj ,...vJ � vj , for an
arbitrary choice of the base j) and the choice probabilities. This result was noted by Hotz and
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Miller (ReStud, 1993), and forms the basis for their "CCP" (conditional choice probability)
approach to estimating dynamic choice models.

Assume we have J choices, with uj = vj + �j , with vj a set of functions whose form is
known (up to a vector of unknown parameters), and (�1; �2; :::�J) � F (�1; �2; :::�J): Choice 1 is
selected when v1+ �1 > vk + �k , or �k < v1� vk + �1 (for all k = 2; ::J), which has probability

p1 =

Z 1

�1

Z v1�v2+�1

�1
:::

Z v1�vJ+�1

�1
f(�1; �2; :::�J)d�2:::d�J d�1;

= �1(v1 � v2; v1 � v3; :::v1 � vJ ; F ):

Similarly for choices 2; 3; :::J , we can write

pj = �j(vj � v1; vj � v3; :::vj � vJ ; F ):

(From now on I will drop the dependence on F but that is implicit, and quite important, since
the choice of F dictates the functional form of the �0js: Note that the functions �j have the
property that

�j(r1; r2; :::rJ) = �j(r1 ��; r2 ��; :::rJ ��) for any �:

They also sum to 1. Now consider the system of J-1 equations:

p2 = �2(0; v1 � v2; :::v1 � vJ)
p3 = �3(0; v1 � v2; :::v1 � vJ)

:::

pJ = �J(0; v1 � v2; :::v1 � vJ):

Hotz and Miller apply the inverse function theorem to this system and obtain J-1 solution
functions

v1 � vk =  1k(p2; :::pJ):

Once you have the J-1 solution functions for any base choice (e.g., the �rst), you can easily
translate to another (e.g., the second) by subtracting the appropriate row from all the others.
E.g.:

v2 � vk = (v1 � vk)� (v1 � v2) =  1k(p2; :::pJ)�  12(p2; :::pJ):

Keeping in mind there are only J-1 underlying functions, we can write

vj � vk =  jk(p); where p = (p1; :::pJ):

This shows that in general the choice probabilities can be mapped into the di¤erences in the
conditional valuations, relative to an arbitrary base.

Now lets consider the "selectivity bias" expressions:

E[�1jd1 = 1; v1::vJ ] =

R1
�1

R v1�v2+�1
�1 :::

R v1�vJ+�1
�1 �1f(�1; �2; :::�J)d�2:::d�Jd�1

P (d1 = 1jv1::vJ)

=

R1
�1

R  12(p)+�1
�1 :::

R  1J (p)+�1
�1 �1f(�1; �2; :::�J)d�2:::d�Jd�1

p1
= wj(p):
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Note that in case there are only 2 choices, this says that regardless of the distribution of
(�1; �2); one can write

E[�1jd1 = 1; v1; v2] = w1(p1):

This forms the basis for "semi-parametric" approaches to estimating the conditional valuation
function in a selected sample. If we observe a noisy version of the payo¤ for choice 1 among
those who choose 1, say y = u1 + & where & is an independent measurement error, and we
assume v1 = f(X;�) then we know

E[yjX; d1 = 1; p1] = f(X;�) + w1(p1)

One can approximate w1(p1) by some �exible functional form, or one can �nd a way to "match"
observations with nearly the same values of p1. Obviously, there has to be variation in p1 for
observations with the same value of X.

c. Logit-based applications
As shown in Arcidiacono and Miller (2007), the form of the  jk(p) and wj(p) functions

can be simpli�ed a lot if F has a MNL, nested logit or GEV form. They consider a nested
logit with J choices in R nests, (where the rth nest has Kr choices):

F (�11; :::�1K1 ; �21; :::�2K2 ; �R1 :::�RKR
) = exp[�H(e��11 ; ::e��RKR )];

H(y11; ::; yRKR
) =

RX
r=1

"
KrX
k=1

y�rrk

#1=�r
:

(Note they parameterize the "CES-like" part with �r = 1=�r relative to our earlier presenta-
tion). For this model they show that

E[�sj jdsj=1] = 
 � 1

�s
log psj � (1�

1

�s
) log ps + log

0@ RX
r=1

p1�1=�rr

"
KrX
k=1

p
�s=�r
rk

#1=�s1A ;

where 
 = 0:577 is Euler�s constant, psj is the probability of choice j in nest s; and ps is the
overall probability of any choice in nest s. For the "easy" case where �s = � for all s, the sum
inside the log( ) for the last term equals 1, and the expression simpli�es to

E[�sj jdsj=1] = 
 � 1
�
log psj � (1�

1

�
) log ps ,

which expresses the selection bias in terms of the overall probability of a choice in nest s and
the speci�c probability of choice j in nest s: Finally, if � = 1 we get the simple MNL, and

E[�sj jdsj=1] = 
 � log psj

These are remarkably simple formulas that could be useful in forming "�rst pass" selection
corrections in settings with multiple choices. For a very di¤erent derivation of a selection
correction for inter-state migration that looks a lot like the simple nested logit correction, see
G. Dahl, Econometrica, Nov. 2002. A question for further thinking: would it be possible to
derive a correction for a mixed logit choice model?

2. Introduction to Dynamic Discrete Choice
a. Prologue
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Consider an agent who faces a discrete choice problem, with the payo¤ to choice j:

uj = vj + �j

where the �j are random variables, unknown at the present time to the agent. (This is di¤erent
from the way we have been thinking about the ��s up to now). Suppose the agent can make a
choice of j once the ��s are realized. In this case, her expected utility is:

E[max
j
(u1; :::uJ)];

a construct which is abbreviated as "Emax" in the literature. Emax is closely related to the
concept of option value. In particular, suppose the agent had to choose before she could see
the ��s. Then she would select j to

max
j
(E(u1); E(u2):::E(uJ))

a construct which we could call maxE. The option value of being able to select j after see the
��s is:

E[max(u1; :::uJ)]�max(E(u1); E(u2):::E(uJ)) � 0:

The key idea in dynamic discrete choice problems with uncertainty is that an agent has to plan
ahead, knowing that when the next period comes around she will have additional information
and will be able to make an Emax decision.

For the case where �j � EV 1, we can use the expression for E[�j jdj=1] presented above to
derive a simple expression for Emax. In particular

E[max(u1; :::uJ)] = �j pj(vj + E[�j jdj=1])
= �j pj(vj + 
 � log pj)

= 
 +�j pj(vj � log
�

exp vj
�k exp vk

�
)

= 
 +�j pj log(�k exp vk)

= 
 + log(�k exp vk):

b. A basic example
Let�s consider a T-period problem where there is state variable Xt 2 fX1; :::XNg; a choice

vector in each period dt = (d1t; d2t; ::::dJt)
0, (where djt = 1 means choice j was selected in

period t), a "�ow payo¤" if choice j is made in period t:

vjt(Xt) + �jt

and a transition equation relating the state and choice in period t to the state (or the p.d.f.
over possible states) in period t+ 1:

P (Xt+1jXt; dt):

In some simple examples, such as Ebenstein�s fertility model that we�ll consider next lecture,
the evolution of states is non-stochastic. In that example, the state is represented by the
number and gender of children, and the choices in each stage are whether to conceive, whether
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to administer an ultrasound (if pregnant), and whether to abort the fetus (if the ultrasound
reveals a girl). It is assumed that P (Xt+1jXt; dt) is known.

In the last period (T ), the state is XT , and the agent has to solve

max
j
vjT (XT ) + �jT .

Looking forward from period T � 1, the expected utility associated with a particular value for
XT is

Emax[vjT (XT ) + �jT ] = 
 + log�j exp(vjT (XT )):

In period T � 1 the agent has to solve

max
j
vjT�1(XT�1) + �jT�1 + �

NX
n=1

[log �j exp(vjT (Xn))]P (XnjXT�1; djT�1 = 1):

(Note that we can drop the constant 
). Now pull together the non-random parts by de�ning

 jT�1(XT�1) = vjT�1(XT�1) + �
NX
n=1

[log �j exp(vjT (Xn))]P (XnjXT�1; djT�1 = 1)

and write the T � 1 problem as

max
j
 jT�1(XT�1) + �jT�1

Using the Emax formula, the expected utility from T-1 forward is (ignoring the constant):

log �j exp( jT�1(XT�1)):

So, in period T � 2 the agent has to solve

max
j
vjT�2(XT�2) + �jT�2 + �

NX
n=1

�
log �j exp( jT�1(Xn))

�
P (XnjXT�2; djT�2 = 1):

Again, collecting the non-random parts:

 jT�2(XT�2) = vjT�2(XT�1) + �
NX
n=1

�
log �j exp( jT�1(Xn))

�
P (XnjXT�2; djT�2 = 1)

the problem at T-2 can be written as

max
j
 jT�2(XT�2) + �jT�2

Preceding backward in the same manner it is possible to de�ne the objective function at t=1.
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