
Economics 250c
Dynamic Discrete Choice, continued

This lecture will continue the presentation of dynamic discrete choice problems with ex-
treme value errors. We will discuss:

1. Ebenstein�s model of sex selection and fertility (a very simple DDC model)
2. a "more structural" variant of Ebenstein
3. In�nite horizon/stationary models

Some references:
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Decision Processes�. In C. Sims, editor. Advances in Econometrics Sixth World Congress,
Volume II. Cambridge University Press, 1994.

John Rust. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold
Zurcher." Econometrica 55 (Sept. 1987): 999-1033.

Avi Ebenstein. "Estimating a Dynamic Model of Sex Selection in China".

Prologue
Often we want to scale the errors in a choice model. If the structural error term is e, a

convenient assumption is e=� = � � EV 1. If we have a random choice setup with uj = vj+ej ;
then we can write uj=� = vj=� + ej=� = vj=� + �j ; where �j � EV 1: Thus

P (dj = 1jv1; ::vJ) =
exp(vj=�)

�k exp(vk=�)

and
E(ej jdj = 1) = �( � log pj)

and
Emax(u1; :::uJ) = �( + log(�k exp(vk=�)))

1.Ebenstein�s model
Ebenstein presents a simple "dynamic" model of fertility and sex selection, designed to

explain how the imposition of �nes for additional children increases the incentive for parents
to use sex-selective abortion. This is an interesting variant of the "quality-quantity" tradeo¤
hypothesis (Becker and Lewis, JPE, 1973). In principle the model can be used to anwer
policy questions, such as "what would happen to the number and gender of births if the �nes
were changed?" We will discuss a stripped down version of his model to illustrate the basic
mechanics of a �nite DDC model. The key assumptions are:

-parents only care about having a boy.
-utility is additive in income and the utility-equivalent of completed fertility
-parents face a �ne of F2 for the second child and F3 for the third
-parents costlessly observe the sex of an unborn child
-for an outlay of A, an unborn female can be converted to a boy birth (we will
show how to replace this with a more structural assumption in section 2).
-families have at most 3 kids.
-the probability of a boy is 0.51 at every conception.
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The state variables in this model are the number and gender distribution of kids. We will
use the notation "GB" to mean a family that has 1 girl (born �rst) and 1 boy (born second).
The notation "GGg" means that the family has 2 girl children and an unborn girl. The
assumptions above mean that once a family has a boy, they stop having additional children.
Thus, the only possible fertility outcomes are: B, G, GB, GG, GGB, GGG. The non-
random components of the money-equivalent utilities assigned to �nal outcomes B, GB, and
GGB are all the same, and equal to �: The non-random components of the utilities assigned
to the �nal outcomes G, GG, and GGG are all 0: As discussed in Lecture 6, however, we will
follow Rust and add a re-scaled EV-1 error at each stage of the process. In part 2 we will
illustrate via an example how this simpli�es the DDC.

The decision tree for this model is shown in Figure 1. There are �ve decision nodes. In
order, these are:

node 1: whether to abort g and convert to B, if �rst conception is female
node 2: whether to continue having another child if state is G
node 3: whether to abort Gg and convert to GB, if 2nd conception is female
node 4:whether to continue having another child if state is GG
node 5: whether to abort GGg and convert to GGB, if 3rd conception is female

Working backward, at node 5 the state is GGg and the choices are:
abort (cost A): V 51 = � �A� F3 + �51
don�t abort: V 50 = �F3 + �50;

where �=� � EV 1. Then

P (GGBjGGg) =
exp((� �A� F3)=�)

exp(�F3=�) + exp((� �A� F3)=�)

=
exp((� �A)=�)

1 + exp((� �A)=�) , and

Emax(GGg) = �( + log(exp(�F3=�) + exp((� �A� F3)=�)
= �F3 + �( + log( 1 + exp(� �A)=� ))

= �F3 + k5(� �A), where k5(�) is increasing.

Note that when � is much bigger than A, the family almost always chooses to abort, and
Emax(GGg)! �F3 + (� �A): The function k5(� �A) is the "option value" of GGg.

Now go back to node 4. Here the state is GG and the choices are:
stop: V 4stop = �

4
stop;

continue: V 4cont = .49 chance at GGg, payo¤ = Emax(GGg)
.51 chance at GGB, payo¤ = � � F3:

Thus

V 4cont = :49(�F3 + k5) + :51(� � F3) + �4cont
= :51� + 49k5 � F3 + �4cont

and so the probability of continuing fertility, having reached GG is

P (3rdjGG) = exp((:51� + 49k5 � F3)=�)
1 + exp((:51� + 49k5 � F3)=�)
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Note that this is increasing in � and the option value of GGg, and decreasing in F3: Moreover
(in slightly incorrect notation) the expected value from GG forward is

Emax(GG) = �( + log(1 + exp(:51� + 49k5 � F3))):

Now go back to node 3, where the state is Gg. As at node 5, the choices are
abort (cost A): V 31 = � �A� F2 + �31
don�t abort: V 50 = Emax(GG)� F2 + �30:

Thus,

P (GBjGg) = exp((� �A� F2)=�)
exp((Emax(GG)� F2)=�) + exp((� �A� F2)=�)

;

and

Emax(Gg) = �( + log(exp((Emax(GG)� F2)=�) + exp((� �A� F2)=�)
= �F2 + �( + log( exp(Emax(GG)=�) + exp(� �A)=� ))

= �F3 + k3(� �A;Emax(GG)),

where again the function k3(�; �) represents the option value of Gg.

At node 2 the state is G and the choice is whether to continue to have a second conception
or not. Following the same analysis as at node 4, the choices are

stop: V 2stop = �
2
stop;

continue: V 2cont = .49 chance at Gg, payo¤ = Emax(Gg)
.51 chance at GB, payo¤ = � � F2:

Thus

V 2cont = :49(�F2 + k3) + :51(� � F2) + �2cont
= :51� + 49k3 � F2 + �2cont

and the probability of continuing fertility, having reached G is

P (2rdjG) = exp((:51� + 49k3 � F2)=�)
1 + exp((:51� + 49k3 � F2)=�)

;

while the expected value from G forward is

Emax(G) = �( + log(1 + exp(:51� + 49k3 � F2))):

Finally, node 1 is analogous to nodes 3 and 5. The state is g and the choices are:
abort (cost A): V 11 = � �A+ �11
don�t abort: V 10 = Emax(G) + �

1
0:

Therefore

P (Bjg) =
exp((� �A)=�)

exp((Emax(G))=�) + exp((� �A)=�) and

Emax(g) = �( + log(exp((Emax(G))=�) + exp((� �A)=�)
= k1(� �A;Emax(G)),
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where k1(�; �) represents the option value of g.
Note that as F2 and F3 increase, Emax(G) and Emax(GG) decrease, and the family is

more likely to exercise selective abortion on the �rst or second birth. If F2 < F3 (as is true
in the data) families are more likely to exercise selective abortion for the second parity, both
because the �ne is higher for third "try," and because the continuation value after G is larger
than the continuation value after GG.

With these equations we have derived 5 key probabilities, as functions of (�;A; F2; F3; �) :

P (GGBjGGg) = �3

P (GBjGg) = �2

P (Bjg) = �1

P (stopjGG) = 1� P (3rdjGG) = �2
P (stopjG) = 1� P (2ndjG) = �1:

Using these, it is possible to write down the probability for each completed fertility outcome.
These are

P (B) = :51 + :49�1

P (G) = :49(1� �1)�1
P (GB) = :49(1� �1)(1� �1)(:51 + :49�2)
P (GG) = :49(1� �1)(1� �1)(:49)(1� �2)�2

P (GGB) = :49(1� �1)(1� �1)(:49)(1� �2)(1� �2)(:51 + :49�3)
P (GGG) = :49(1� �1)(1� �1)(:49)(1� �2)(1� �2)(:49)(1� �3):

Note that by using a dynamic model, we can write everything in terms of the conditional
probabilities (and the factors .49 and .51). Given (�;A; F2; F3; �) it is therefore possible to
assign a likelihood for an observed fertility outcome. A very useful feature of the additive
EV1 setup is that all the conditional probabilities are strictly between 0 and 1. There is never
a case where the parameters can�t map to a probability for the observed outcome.

Implementation
Ebenstein has data on the �nes for di¤erent sizes of family (which vary by region). Also, in

some regions F2 is 0 (or small) if the �rst child is a girl. (This is the so-called 112 child policy).
He also has data on the education (Ed), farm/non-farm status (Farm) of each family, whether
they live in a high-rise (Hirise) and an estimate of the travel time to the nearest fertility clinic
(Clinic). He assumes that

� = �0 + �1Ed+ �2Farm+ �3Hirise

A = �0 + �1Clinic

The model gives a likelihood for the observed completed fertility f of a couple, p(f jF2; F3; Ed; Farm;Hirise; Clinic).
The max. likelihood estimates suggest that farm families and those with less education have
much stronger preferences for boys. He also �nds a positive estimate �1. (The latest version
of E�s paper allows for the family to have �nal payo¤s that depend �exibly on the number and
sex composition of the kids).
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Note that in principle it would be possible to add a random error � to the equation for
�; with some distribution G(�) (for example, a point mass distribution with 2,3... points of sup-
port). Then the likelihood would be maximized over the structural parameters (�0; �1; �2; �3; �0; �1)
and the parameters of G:

2. A "more structural" variant of Ebenstein
It is interesting to look at a slightly di¤erent version of Ebenstein�s model that puts more

structure on the sex-selection process. In particular, suppose the decision process after con-
ception is as follows:

-decide whether to check sex (i.e., have an ultrasound) at cost c
-if check reveals "b", carry to term and receive payo¤ � � F � c+ �bcheck
-if check reveals "g", abort, receive payo¤ �A� c+ �gcheck and return to
pre-conception node

-if no check is made
-with probability .51, outcome is B, payo¤ is � � F + �bnocheck
-with probability .49, outcome is G, payo¤ is �F + �gnocheck

For concreteness, let�s consider the last node in a 3-kid model. The state is GG and the
value V2 represents the Emax of going forward (the subscript 2 stands for "2 girls"). Figure
2 shows the payo¤s. Note that the �gure includes two "new" error terms, "check and "nocheck
that are potentially added to the Emax�s associated with "check" and "no check" decisions.
In the basic Rust setup, there is always a unique additive EV-1 error associated with each
branch of any decision node.

For the check decision, the expected payo¤ is

Vcheck = :51(� � c� F ) + :49(V2 � c�A)

The presence of V2 re�ects the "recursive" structure of this set-up: if the parents check and
decide to abort, they return to the state GG. For the no-check decision the expected payo¤ is

Vnocheck = :51(� � F ) + :49(�F ) = :51� � F:

Lets solve �rst, ignoring "check and "nocheck. If "check" is the optimal choice we have:

V2 = :51(� � c� F ) + :49(V2 � c�A)

) V2 = � � F � c

:51
� :49
:51
A:

This expression can be interpreted as follows. Assuming sex-selection is optimal, V2 is the
sum of ��F , minus the cost of the expected number of ultrasounds (approximately 2) minus
the cost of the expected number of abortions (approximately 1). If "no check" is optimal,

V2 = :51� � F:

The family follows a deterministic policy, choosing to check if

� � F � c

:51
� :49
:51
A > :51� � F

or � >
c

:51� :49 +
1

:51
A:
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Now lets do the calculation, allowing for "check and "nocheck. Assuming these are EV-1,

V2 = Emax(Vcheck + "check; Vnocheck + "nocheck);

V2 =  + log [exp(:51� + :49V2 � c� :51F � :49A) + exp(:51� � F )]
(�) V2 =  + :51� + log [exp(:49V2 � c� :51F � :49A) + exp(�F )]

Also,

P (check) =
exp(:49V2 � c� :51F � :49A)

exp(:49V2 � c� :51F � :49A) + exp(�F )
:

The solution to equation (*) is a simple �xed point calculation in V2. The l.h.s. has slope 1,
the right hand side has slope= .49P (check), which is always less than 1. So there will always
be at most 1 solution. Figure 3 graphs the two sides of (*) for 2 choices of the parameters
(�; F; c; A):

Note that in general

log(a+ b) = log(a)� log( a

a+ b
);

) log(ea + eb) = a� log( ea

ea + eb
):

Using this, we have that

log [exp(:49V2 � c� :51F � :49A) + exp(�F )] = :49V2 � c� :51F � :49A� log(P (check)):

So for parameters such that P (check) � 1;

V2 �  + :51� + :49V2 � c� :51F � :49A

giving the same expression as we had in the deterministic case when "check" is optimal.
Likewise if P (check) � 0

V2 �  + :51� � F

which is the same as in the deterministic case when "no check" is optimal. The presence of
"check and "nocheck "smooths" out the shape of the max function. Compare

max(a; b) vs. Emax(a; b) = log(exp(a) + exp(b)):

Note that to solve the entire model with this "new" way of looking at the sex selection
choice we�d have to perform a �xed point exercise for the choices at nodes 5, 3, and 1. After
we�ve solved for V2, we can work backward and solve the �xed points at node 3 (for V1) and at
node 1 (for V0): Rust�s bus engine paper can be seen as a version of this problem with many
"recusive" nodes (one for each of the intervals of engine mileage that he includes in the state
space.

3. In�nite horizon/stationary models
Rust (1987) setup.
Consider an in�nite horizon discrete time model. The state in period t is (xt; �t). The

control variable is a vector dt 2 D(xt); a discrete set. Flow utility in period t is

u(xt; dt) + �(dt):
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For example, if D(xt) = f1; 2; :::Jg the �ow utilities are

u(xt; 1) + �1;

u(xt; 2) + �2; :::

u(xt; J) + �J :

Intertemporal utility is discounted at rate � < 1: The tansition equation is

p(xt+1; �t+1jxt; �t; dt) = q(�t+1jxt+1)�(xt+1jxt; dt):

This rules out serial correlation in the �0ts, and any feedback from �t to xt+1. The �0ts are
assumed to have support over the entire real line. For this class of problems the Bellman
equation for a stationary solution is

(�) V (x; �) = max
d2D(x)

u(x; d) + �(d) + �

Z
x0

Z
�0
V (x0; �0)q(�0jx0)�(x0jx; d)

= max
d2D(x)

u(x; d) + �(d) + �

Z
E�0V (x

0; �0)�(x0jx; d)

Now de�ne
V (x) = E�V (x; �):

Using (�)

(��) V (x) = E�

�
max
d2D(x)

u(x; d) + �(d) + �

Z
x0
V (x0)�(x0jx; d)

�
:

Note that V (x) is the Emax function for a one-period choice problem in which the payo¤ to
choice d is

v(x; d) = u(x; d) + �

Z
x0
V (x0)�(x0jx; d):

That is:

V (x) = E�

�
max
d2D(x)

v(x; d) + �(d)

�
:

Moreover, assuming that agents see the vector �(d) in period t when they make their choice,
but we as econometricians do not, the probability of choice d in period t is just

P (v(x; dj) + �(j) � v(x; dk) + �(k) for all k 6= j) :

Equation (��) is a contraction mapping, so it has a �xed point which is the stationary integrated
value function. With a �nite state space, the value function is just a list of numbers, of length
equal to the dimension of the state space, so the �nding a solution to the contraction mapping
is feasible. In the case of EV-1 errors

E�

�
max
d2D(x)

v(x; d) + �(d)

�
= log

"X
d

exp(v(x; d))

#

so equation (��) becomes

V (x) = log

"X
d

�
exp(u(x; d) + �

Z
x0
V (x0)�(x0jx; d)

�#
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and the probability of the jth choice is

P (djt = 1jxt) =
exp(v(xt; djt))P
k exp(v(xt; dkt))

:

For given parameters, and a given �(x0jx; d) we can �nd the solution function V (x) at each
value of the state space, and derive an expression for P (dtjxt): The method is to posit a guess
V
0
(x) then apply sequentially

V
k+1
(x) = log

"X
d

�
exp(u(x; d) + �

Z
x0
V
k
(x0)�(x0jx; d)

�#

until V
k+1
(x) � V k(x).
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