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We continue a presentation of dynamic discrete choice problems with extreme value errors.
We will cover

1. Stange�s model of college progression (another simple DDC model)
Kevin Stange. "An Empirical Examination of the Option Value of College Enrollent"

Unpublished paper.
2. The Hotz-Miller approach

Prologue - Learning (Bayesian updating)
In many applications a decision maker is uncertain about the true value of some key

parameter, and receives new information over time about the value of the parameter. In
Stange�s case the key parameter is A, which re�ects the "di¢ culty" of college-level work. The
natural way to model this class of problems is using Bayesian updating with conjugate priors.
The classic reference is de Groot, 1970.

Normal learning.
True state variable is �; with -1 < � < 1: Prior on � is N(m0; 1=H0). The observed

signal is s = �+ �, with � � N(0; 1=h); independent of �: It can be shown that posterior for
� is

N

�
H0m0 + hs

H0 + h
;

1

H0 + h

�
:

With a sequence of observations st = � + �t, with �t � N(0; 1=h), the posterior after the 1st
observation has mean m1 and precision H1 given by these formulas. Preceding sequentially,
the posterior after the tth observation, conditional on the mean and precision after the (t�1)st;
is normal with mean and precision

mt =
Ht�1mt�1 + hst

Ht�1 + h
=
H0m0 + h

Pt
k=1 sk

H0 + th

Ht = Ht�1 + h = H0 + th

Note that

mt ! 1

t

tX
k=1

sk the mean of the signals up to period t

Ht ! th so
1

Ht
! 1

t
var[�t] the variance of the mean of the signals up to t

This formula has had many applications in labor economics, e.g. models of learning about
match quality.

Beta-Bernoulli
Suppose yt is distributed as a Bernoulli with P (yt = 1) = p: The conjugate prior for p is

Beta(�; �). For p � Beta(�; �) :

E[p] =
�

�+ �
;

var[p] =
��

(�+ �)2(1 + �+ �)
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The density is f(p) = �(�)
�(�)�(�)p

��1(1� p)��1: Note that Beta(1; 1) = U(0; 1): The posterior
for p, given a draw y1 is Beta(y1 + �; 1 � y1 + �): Applying this sequentially, the posterior
after t realizations with St successes is Beta(St + �; t� St + �); implying the posterior mean
and variance are

E[pjSt] =
St + �

t+ �+ �
! 1

t
St

var[p] =
(St + �)(t� St + �)

(t+ �+ �)2(1 + �+ � + t)
!

1
tSt � (1�

1
tSt)

t

A nice application of this class of learning models is to problems of the form "waiting for a
prize that will arrive with probability p." If the model is formulated so the agent "opts out"
of the wait when p is low, then optimal behavior is to wait until n unsuccessful draws, then
opt out. In his thesis, L. Katz applied this idea to the behavior of workers on temporary
layo¤, who have to decide whether to continue waiting for recall, or start looking for a new
job. McCall applied it to a problem of hierarchical search over occupations and then speci�c
jobs within an occupation. In each case the formula delivered an expression for the optimal
time to wait before "bailing out".

1. Stange�s Model
Stange�s model is motivated by the observation that the Mincerian "returns" to the �rst

3 years of college are very low, while the return to a 4-year degree are very high. Why do
so many people attend college for 1-3 years and then drop out? His explanation is that they
have to go to college to learn if they have the ability to complete college. The model explains
the demand for junior college as a cheap option for learning about ability.

The model has two very important simplifying assumptions. First, it is assumed that
school-leaving is irreversible. (More general models, e.g. Keane and Wolpin JPE 1997 add
a "�xed cost" of returing to school once you drop out � they estimate this is very large,
~$10,000). Second, it is assumed that people know their expected discounted income at each
of the 5 "exit nodes" (after highschool, after 1 year of college, .... after 4 years of college).
Stange imputes this number, called Income1; Income2; ::::Income5; using data for an earlier
cohort in the NLSY. The estimates are conditional on exit node, and some characteristics:
race dummies, region dummies, and a quadratic in {HSGPA, AFQT, Parental Education}.

In the absence of learning, Stange�s model is very simple. At each of the 4 decision points
(t = 1 for the end of high school, t = 2 for the end of 1st year of college, ... t = 4 for the end
of third year of college) the student decides whether to continue or stop. At decision point t
the value of entering the labor market is

V wt = Incomet + �
w
t ;

where �wt =� is EV1. The �ow value of continuing in school for the next year is

ust + �st ;

where �st=� is EV1. Adding the discounted expected value of entering the next node, we have

V st = ust + �st + �Et[V
s
t+1]:

At decision point t the optimal choice involves a comparison between V wt and V st :
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Learning
The innovation in Stange�s model is the introduction of another variable, A, that represents

ability and a¤ects the cost of going through college. Speci�cally, Stange assumes that

ust = �m + �AEt[A]� �dDistt � Tuitiont + �2year 1(enrolled in 2-year)

where �m is a random e¤ect. This speci�cation is somewhat ad hoc: one could imagine
a model where the relation between e¤ort, latent ability, and grade outcomes is modelled
explicitly. Students learn A through their college grades, with a prior as of the end of high
school that depends on HSGPA, AFQT, and parental education:

E1[A] = m + gHSGPA+ tAFQT + pParentEd

Again, m is a random e¤ect. The pair (�m; m) are assumed to have a discrete bivariate
distribution with M (=3) points of support. He assumes that

Et[A] = kt + (1� kt)GPAt�1; where

GPAt�1 =
1

t� 1

t�1X
k=1

gk is the cumulative GPA up to t-1,

and gk = GPA in year k of college. In principle, if gk = A + ek, and both A and the "grade
shocks" ek are normally distributed, then kt (which Stange calls Xt) should look like the term
in a normal-learning model. He does not impose that, but treats {kt} as parameters to be
estimated.

With this setup it is straightforward to solve backward from the �nal decision node. At
node 4 (end of 3rd year), the student has observed g1; g2; g3; and has to compare:

value of dropout = V w4 = Income4 + �
w
4

value of continuing = V s4 = us4 + �
s
4 + Income5 + E[�

w
5 ]

= �m + �AE4[AjGPA3; X]� �dDist4 � Tuition4 + �s4 + Income5 + c:

where c=E[�w5 ]: The Emax of this, conditional on GPA3; X is

Emax[V w4 ; V
s
4 jGPA3; X]

which has the usual form, assuming �w4 and �
w
4 are scaled EV1�s. We also can form a standard

logit-type probability for dropping out at node 4, conditional on the information up to that
point:

P (dropout at node 4jg1; g2; g3; X) =
exp(Income4)

exp(Income4) + exp(us4 + Income5 + c)
:

At node 3 (end of 2nd year), the student has observed GPA2 and has to compare:

value of dropout = V w3 = Income3 + �
w
3

value of continuing = V s3 = us3 + �
s
3 + E3Emax[V

w
4 ; V

s
4 jGPA3; X]

= �m + �AE3[AjGPA2; X]� �dDist3 � Tuition3
+E3Emax[V

w
4 ; V

s
4 jGPA3; X] + �s3
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Note that the calculation of E3Emax[V w4 ; V
s
4 jGPA3; X] requires a probability distribution for

GPA3 conditional on GPA2 (since g3 is not known at node 3). Stange uses the usual "Rust"
assumption that

E3Emax[V
w
4 ; V

s
4 jGPA3; X] =

Z
Emax[V w4 ; V

s
4 jGPA3; X]�(GPA3; XjGPA2; X)

where � gives the "transition probabilities" from GPA2 to GPA3. To simplify, Stange assumes
that cumulative GPA lies on a discrete grid. Assuming g3 is normally distributed allows him to
use simple expressions for the probabilites of alternative values of GPA3 conditional on GPA2.
With this calculation in hand it is then possible to calculate P(dropout at node 3jGPA2; X):
The calculations for nodes 2 and 1 are similar, and require calculations of the expressions

E2Emax[V
w
3 ; V

s
3 jGPA2; X] and

E1Emax[V
w
2 ; V

s
2 jGPA1; X]:

The model delivers a likelihood for the joint distribution of GPA outcomes and dropout
decisions. The calculations are pretty simple because the model gives the conditional prob-
abilities of dropping out at each node, and the conditional probabilites for GPAt conditional
on GPAt�1: With mass-point mixing the likelihood is evaluated at each pair of mass points,
then averaged across the mass points with weights that are jointly estimated.

2. The Hotz-Miller Approach (introduction)
In lecture 6 we considered a choice problem with J choices, where uj = vj + �j , with vj a

set of functions whose form is known and (�1; �2; :::�J) � F (�1; �2; :::�J): Choice 1 is selected
when v1 + �1 > vk + �k , or �k < v1 � vk + �1 (for all k = 2; ::J), which has probability

p1 =

Z 1

�1

Z v1�v2+�1

�1
:::

Z v1�vJ+�1

�1
f(�1; �2; :::�J)d�2:::d�J d�1;

= �1(v1 � v2; v1 � v3; :::v1 � vJ):

Similarly for choices 2; 3; :::J , we can write

pj = �j(vj � v1; vj � v3; :::vj � vJ):

The HM "representation theorem" is that we can invert this mapping to get

vj � vk =  jk(p); where p = (p1; :::pJ):

For example, in the simple MNL

pj =
evjP
k e

vk
;

so (as noted by Berry, 1994):
log pj � log pk = vj � vk:

Thus, in the basic MNL case,  jk(p) = log(pj=pk): Given the mapping from the p
0s to the v0s,

we noted that the "selection bias" terms can as be written in terms of the choice probabilities:

E[�1jd1 = 1] =

R1
�1

R v1�v2+�1
�1 :::

R v1�vJ+�1
�1 �1f(�1; �2; :::�J)d�2:::d�Jd�1

P (d1 = 1jv1::vJ)
= w1( (p))
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for some function w1: Likewise for the other choices:

E[�j jdj = 1] = wj( (p)):

For example, recall from lecture 6 that for the basic MNL:

E[�j jdj = 1] =  � log pj

where  = Euler�s constant.
Now consider a �nite horizon discrete dynamic programming problem with a state variable

st, where in each period the agent chooses from a set fd1; :::dJg and gets within-period (�ow)
utility uj(st) + �jt from choice j if the state is st. Let dt = (d1t:::dJt) denote the vector of
indicators for the choices in t (one of these is 1 and the rest are 0). Assume that the vector
of shocks in period t, �t, is i.i.d. distributed over time, and let Fk(st+1jst) represent the d.f.
for st+1 conditional on st and dkt = 1. The individual�s objective is:

max E

0@ TX
t=1

JX
j=1

�tdjt[uj(st) + �jt] j st

1A ;

where expectations are taken with respect to the joint distribution of future states and the
�t�s.

Let d0jt(st; �t) represent the optimal decision rule in period t conditional on st and �t. De�ne
V (st) as the expected payo¤ associated with being in state st, assuming optimal choices from
period t onward:

V (st) = E

0@ TX
�=t

JX
j=1

���td0j� (s� ; �� )[uj(s� ) + �j� ] j st

1A :

Finally, de�ne

(�) vk(st) � uk(st) + �E[V (st+1)jst]

= uk(st) + E

0@ TX
�=t+1

JX
j=1

���td0j� (s� ; �� )[uj(s� ) + �j� ] j st

1A
= uk(st) +

TX
�=t+1

JX
j=1

���tpj(s� )[uj(s� ) + E[�j� j dj� = 1; s� ]]

where pj(s� ) represents the "conditional choice probability" for choice j in period � when the
state is s� : Note that vk(st) + �kt is the value of choosing alternative k in period t when the
state is st:

We can apply the HM representation theorem to express the di¤erences in the vk(st)
functions (for a given state) in terms of the choice probabilies:

vj(st)� vk(st) =  jk(p(st));

where p(st) = (p1(st); :::pJ(st)): We can also write the selection bias terms as functions of the
choice probabilities:

E[�ktjdkt; st] = wk( (p(st)):
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Now suppose we knew the form of the selection corrections. Then we could rewrite the last
line of equation (�) as:

(��) vk(s) = uk(s) + E

0@ TX
�=t+1

X
j

���tpj(s� )[uj(s� ) + wj( (p(s� ))] j st = s; dkt = 1

1A :

This expresses everything in terms of the �ow payo¤ functions uk(s), and the conditional choice
probabilities pj(s� ): The idea of the HM approach is to start with estimates of the conditional
choice probabilities, and choose distributions for the error terms so that wj( (p(s� )) can be
computed. Then using (��) it is possible to get expressions for the conditional valuation of
choice k in state s. Intuitively, what we are doing is "�lling in" the expression �E[V (st+1)jst]
with an average of the payo¤s that the individual will receive in each future state, weighting
the payo¤ associated with each choice by the estimated probability that this is the optimal
choice, and adjusting for the selection bias term.
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