
Economics 250c
Fall 2008

In this lecture we discuss estimation of discrete dynamic choice models using conditional
choice probabilities, as �rst proposed by Hotz and Miller (1993). We then consider in some
detail the Rust 1987 paper, and the application of the HM approach to this problem.

A very good reference:
Victor Aguirregabiria and Pedro Mira. "Dynamic Discrete Choice Structural Models: A

Survey." Available at SSRN.

Recap from the end of last lecture:
For a random utility model with J choices, and payo¤s uj = vj + �j , HM showed there is

a inversion mapping
vj � vk =  jk(p); where p = (p1; :::pJ):

For example, in the simple MNL

pj =
evjP
k e

vk

) log pj � log pk = vj � vk

Thus, for the MNL,  jk(p) = log(pj=pk): It is also possible to write the "section bias" E[�j jdj =
1] in terms of the vector of di¤erences vj � vk. Thus, in general we have

E[�j jdj = 1] = wj( (p)):

E.g., for the MNL:
E[�j jdj = 1] =  � log pj

where  = Euler�s constant.

Now consider a �nite state discrete dynamic choice problem with a state variable st, where
in each period the agent chooses from a set fd1; :::dJg and gets within-period (�ow) utility
uj(stj�) + �jt from choice j if the state is st, where � are a set of unknown parameters. Let
dt = (d1t:::dJt) denote the vector of indicators for the choices in t (one of these is 1 and the
rest are 0). Assume that the vector of shocks in period t, �t, is i.i.d. distributed over time,
and that state transitions are given by functions P (st+1jst; dt):

Note that this setup satis�es the 2 critical assumptions of the "Rust approach"
additivity between uj(st) and �jt (with �jt distributed over (�1;+1))
"conditional independence" p(�t; stjst�1; �t�1; dt�1; ) = p(�tjst)p(stjdt�1; st�1)

We can write the individual�s objective starting at period 1 as

max E

0@ TX
t=1

JX
j=1

�tdjt[uj(stj�) + �jt] j s1

1A ;

where expectations are taken with respect to the joint distribution of future states and the
�t�s, assuming that the individual behaves optimally in the future. (To actually write out the
expectation is quite an e¤ort in notation). Let d0jt(st; �t) represent the optimal decision rule in
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period t conditional on st and �t. De�ne V (st) (the integrated value function) as the expected
payo¤ associated with being in state st, assuming optimal choices from period t onward:

V (st) = E

0@ TX
�=t

JX
j=1

���td0j� (s� ; �� )[uj(s� j�) + �j� ] j st

1A :

Finally, de�ne the choice speci�c value functions

(�) vk(st) � uk(st) + �E[V (st+1)jst]

= uk(st) + E

0@ TX
�=t+1

JX
j=1

���td0j� (s� ; �� )[uj(s� j�) + �j� ] j st

1A
= uk(st) +

TX
�=t+1

JX
j=1

���tpj(s� )[uj(s� j�) + E[�j� j dj� = 1; s� ]]

where pj(s� ) represents the "conditional choice probability" for choice j in period � when the
state is s� : Note that vk(st) + �kt is the value of choosing alternative k in period t when the
state is st:

Write the selection bias terms as functions of the choice probabilities:

E[�ktjdkt; st] = wk( (p(st)):

This allows us to rewrite the last line of equation (�) as:

(��) vk(st) = uk(st) +E

0@ TX
�=t+1

JX
j=1

���tpj(s� )[uj(s� j�) + wj( (p(s� ))] j st = s; dkt = 1

1A :

If we can estimate the functions p(s� ); and we know the wj( (p(s� )) functions (as is true
for MNL and GEV models) then we express vk(st) in terms of current and future �ow utility
functions and the choice probabilities. Call the estimated choice probabilites bp(s� ); and let
bvk(stj�) = uk(stj�) + E

0@ TX
�=t+1

JX
j=1

���tbpj(s� )[uj(s� j�) + wj( (bp(s� ))] j st = s; dkt = 1

1A :

(Note that vk and V both depend on � but until this last equation the dependence was
implicit). Given a value for � the implied probability that choice k is selected when the state
is st is

pk(st) =
exp(bvk(stj�))P
j exp(bvj(stj�))

HM proposed to estimate � by applying GMM to the deviations of the estimated proba-
bilites from the predicted values (which themselves depend on the probabilities).
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Aguirregabiria and Mira (Econometrica, 2002) suggested the alternative idea of estimating
� by maximizing the likelihood of the observed sequence of choices "as if" vk(st) were the true
payo¤ function for choice k in state, i.e., by maximizing the "pseudo likelihood"

Q =

nX
i=1

TX
t=1

log

�
exp(bvk(i;t)(st)P
k exp(bvk(st))

�
where k(i; t) is the actual choice made by individual i in period t.

Provided that the estimated conditional choice probabilities are
p
n�consistent, A-M

showed the estimates of � are asymptotically equivalent to estimates obtained by a 2-step
"nested �xed point" algorithm. (see below for what this is).

A-M�s pseudo-likelihood method is especially easy in the special case where uj(stj�) =
z(st; j)�: In this case, looking at (��) you see that � can be taken outside the sum of the terms
involving z(s� ; j)�. Thus, bvk(stj�) can be written as

bvk(stj�) = ez(st; k)� + ewk(st)
where

ez(st; j) = E

0@ TX
�=t+1

JX
j=1

���tbpj(s� )z(s� ; j) j st = s; dkt = 1

1A
and

ewk(st) = E

0@ TX
�=t+1

JX
j=1

���tbpj(s� )wj( (bp(s� )) j st = s; dkt = 1

1A
(the expectations are over the transition probabilities from st ! st+1 ! st+2:::). Note that
the sums ez(st; j) and ewk(st) only have to be calculated once! The function ez(st; j) is a
discounted, probability-weighted average of the future z(s� ; j)0s that the decision maker will
get to if he/she makes the jth choice in period t with state st.

A-M 2002 also propose an iterative procedure:
given an estimated set of choice probabilities, maximize the pseudo likelihood to esti-

mate �
given �; solve the dynamic problem and get a new set of choice probabilites to constructez and ewk.
maximize the pseudo likelihood to get a new estimate of �

They show that this converges to the solution from the NFP algorithm applied to the same
problem. The iterative solution does not yield any gain in asymptotic e¢ ciency but has better
small sample properties.

Rust (1987)
Let�s change notation slightly to more closely match Rust, and consider a discrete time,

in�nite horizon problem with a �nite set of states denoted by xt and a �xed set of choices
denoted by d1; :::dJ : The �ow payo¤ in period t when the agent makes choice dj is

u(xt; dj j�1) + �jt

and the transition probabilites are

p(xt+1jxt; dt; �3)
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where �1 and �3 are parameters (don�t ask what happened to �2): Temporarily dropping the
�0s denote the value function (in the notation of lecture 7) as

V (xt; �t) = max
d

u(xt; d) + �(d) + �EV (xt+1; �t+1)

= max
d

u(xt; d) + �(d) + �
X
xt+1

"Z
�t+1

V (xt+1; �t+1)dF (�t+1)

#
p(xt+1jxt; d)

The expected value of V (the integrated value function) is

V (xt) =

Z
�t

24max
d

u(xt; d) + �(d) + �
X
xt+1

V (xt+1)p(xt+1jxt; d)

35 dF (�t):
Rust�s crucial insight is that V (xt) looks just like the Emax for a problem with payo¤s
v(xt; d) + �(d) associated with choices d, where

v(xt; d) = u(xt; d) + �
X
xt+1

V (xt+1)p(xt+1jxt; d)

is the "choice speci�c value function". Moreover, the probability that choice d is made (as-
suming the agents observe �(d) when they get to period t, but we as econometricians do not)
is

P (djt = 1jxt) =
exp(v(xt; j))P
k exp(v(xt; k))

:

So the way to solve the in�nite horizon choice problem is to �nd a value function such that

V (xt) = Emax
d
fu(xt; d) + �(d) + �

X
xt+1

V (xt+1)p(xt+1jxt; d)g

In the case where the �0ts are EV1,

V (xt) =  + log

0@X
d

24exp(u(xt; d) + �X
xt+1

V (xt+1)p(xt+1jxt; d)

351A :

This functional equation is a contraction mapping, so, given u(xt; d) and p(xt+1jxt; d) it is
possible to solve forV (xt) by naive iteration. Start with a "trial function" V

1
(xt) (which is

really just a list of numbers for each possible value of the state variable). Then iterate:

V
i+1
(xt) =  + log

0@X
d

24exp(u(xt; d) + �X
xt+1

V
i
(xt+1)p(xt+1jxt; d)

351A
and stop when successive iterations are very close at all values of the state space.

Rust�s 2-step NFP algorithm:
step 1: estimate �3 by �tting models for the observed transition rates p(xt+1jxt; dt; �3):
step 2: estimate �1 in an iterative inner/outer loop procedure

in the inner "contraction mapping" loop, solve for V (xt) and P (djt = 1jxt):
use this to construct a partial log likelihood

P
t logP (djt = 1jxt)
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in the outer loop, choose over �1�s until convergence
(as discussed in A-M�s review paper, there is a sophisticated way to do this that gets the

derivatives of the log likelihood w.r.t. �1 "for free" without having to do numerical derivatives).

Some details of Rust�s example:
Rust applies this idea to data on engine replacements for a �eet of 162 buses owned by the

Madison Metropolitan Bus Company over the period from December 1974 to May 1985. The
data consist of monthly observations on each buses oddometer reading, plus an indicator for
whether the engine was subject to a major overhall/replacement.

The state space has 90 elements, xt 2 f0; 1; :::89g; with xt = j implying that the oddometer
reading is in the jth bin (of width 5000 mi). The choice set is d 2 f0; 1g, where d = 1 is a
"renewal" (replace the engine) and d = 0 is don�t replace and perform normal maintenance.
The payo¤s are

u(xt; 0) = �c(xt; �1)
u(xt; 1) = �c(0; �1)�RC

where c(xt; �1) = �11xt in the simplest model. (In the more complicated models c is quadratic
or cubic). The transition probabilites are

p(xt+1jxt; 0) = �31 if xt+1 = xt

= �32 if xt+1 = xt + 1

= �33 if xt+1 = xt + 2

= 0 otherwise:

In other words, the oddometer can stay the same, rise by 1 bin, or by 2 bins. With this setup
the contraction mapping iteration is

V
i+1
(xt) =  + logfexp

h
(�c(xt; �1) + ��31V

i
(xt) + ��32V

i
(xt+1) + ��33V

i
(xt+2)

i
+exp

h
(�c(0; �1)�RC + ��31V

i
(0) + ��32V

i
(1) + ��33V

i
(2)
i
g:

This converges very fast.

Now lets use the HM approach. A �rst observation is that if we have

v(xt; d) = u(xt; d) + �
X
xt+1

V (xt+1)p(xt+1jxt; d):

and d=1 is a "renewal" then u(xt; 1) = u(0; 1) and p(xt+1jxt; 1) = p�(xt+1j1) independent of
xt: (Under Rust�s assumptions, after a renewal the state variable can only be at 0, 1 or 2; e.g.,
p�(xt+1 = 0j1) = �31). Thus

v(xt; 1) = u(0; 1) + �
X
xt+1

V (xt+1)p
�(xt+1j1) = u(0; 1) + �V �:

The value of a renewal does not depend on the state you enter it from (which is what it means
to be a "renewal"). A second observation is that

V (xt+1) =  + log[exp(v(xt; 0)) + exp(v(xt; 1))]

=  + log[exp(v(xt; 0)) + exp(u(0; 1) + �V
�)]
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Third, note that

P (renew at t+ 1) = P1(xt+1) =
exp(u(0; 1) + �V �)

exp(v(xt; 0)) + exp(u(0; 1) + �V �)
;

implying that

logP1(xt+1) = u(0; 1) + �V � � log[exp(v(xt; 0)) + exp(u(0; 1) + �V �)]:

Combining this with the expression for V (xt+1); we have

V (xt+1) =  + u(0; 1) + �V � � logP1(xt+1):

{Aside: this shows a general result that the emax can always be written as the value of 1
of the alternatives, plus  minus the log of the probability of that alternative. In a renewal
problem, it is convenient to use this idea to express the emax for any value of the state variable
in terms of the renewal probability from that state.}

Plugging in to the equation for v(xt; 0), we get

v(xt; 0) = u(xt; 0) + �
X
xt+1

( + u(0; 1) + �V � � logP1(xt+1)) p(xt+1jxt; 0)

= u(xt; 0) + �( + �V
�) + �

X
xt+1

(u(0; 1)� logP1(xt+1)) p(xt+1jxt; 0):

This says that we can calculate the full value of not renewing at state xt using only information
on u(xt; 0); u(0; 1); the transition probabilities, and the conditional renewal probabilities. We
can use the expressions for v(xt; 1) and v(xt; 0) to get the probability of renewal in each state
in terms of the primitives, then �t a pseudo likelihood as recommended by AM.
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