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1 Introduction

This paper presents an endogenous growth model that departs from the
assumption of time-separable, constant intertemporal elasticity of substitu-
tion (CIES) preferences almost ubiquitous in the literature. The idea, shared
with Ryder and Heal (1973), is rather that it is intuitively plausible to as-
sume that past consumption choices and/or the social environment affect
the utility an individual derives from consuming a given bundle of goods.
Therefore, we assume that the representative agent’s instantaneous utility u
is determined by comparing current consumption c to some reference stock,
or standard, z, called alternatively “consumption experience”, “habits”, or
“customary consumption”, so that u(c, z). With z taken to be a weighted
average of past consumption levels, this choice leads to preferences that
Ryder and Heal termed “intertemporally dependent”.

These preferences represent a tractable departure from the hypothesis
of a time-separable utility function almost ubiquitous in the literature, and
have been used in a variety of different contexts. To mention just a few, Ry-
der and Heal (1973) and Boyer (1975, 1978) investigated their implications
for the neoclassical optimal growth model, showing that they lead to a richer
dynamic behavior of the main variables around an unchanged steady-state
(the modified golden rule). Time non-separable preferences can help to
reconcile rational choice theory with apparently irrational behavior (Becker
and Murphy, 1983), to explain various time-series features of consumption
data (Deaton, 1992), and to shed light on open economy macroeconomic
issues (Obstfeld, 1992; Mansoorian, 1993). Finally, time nonseparable pref-
erences have more recently been used in finance, often in the attempt to
resolve the “equity premium puzzle” (Constantinides (1990), Abel (1990),
Gali (1994), Boldrin et al. (1997), Campbell and Cochrane (1999)), and
in business cycle research (Lattau and Uhlig (2000), Ljungqvist and Uhlig
(2000), Otrok (2001)).

This paper is closely related to Carroll, Overland and Weil (1997, 2000)
and the results we derive complement those obtained in these papers. The
first (Carroll et al., 1997) analyzes the implications of different assumptions
about how the representative agent’s stock of habits evolves. It shows that
both under “external habits” — where the stock of habits is a weighted
average of the aggregate per-capita past consumption levels — and under
“internal habits” — where an individual’s habits are accumulated by his own
consumption — the steady state growth rate of the economy is the same and,
qualitatively, also the transitional dynamics to the balanced growth path.
The companion paper (Carroll et al., 2000) shows the important implications
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of habit forming preferences for understanding the growth to saving causality
apparent in the data.

As in these papers, we introduce the assumption of intertemporally de-
pendent preferences in an otherwise standard Ak growth model, but the
analysis that follows differs from theirs both in emphasis and generality.

In fact, rather than assuming from the outset a specific functional form
for the instantaneous utility function, as these authors do, we work with
a generic u, and provide sufficient conditions that this latter has to meet
for a balanced growth path to qualify as an equilibrium when preferences
are intertemporally dependent. This also allows us to unveil the difference
between the “adjacent” and “distant” complementarity cases, and the ensu-
ing dynamics, which is central to most of the literature on habit formation.
Under adjacent complementarity, an increase in consumption experience
induces the individual to want to increase current consumption, so that c
and z will be positively related in equilibrium. The opposite is true when
preferences are such that complementarity is distant. We choose to focus
mainly on the case of adjacent complementarity, as we regard the addic-
tive behavior it implies as more relevant in the one-sector framework we
consider, where c has to be interpreted as consumption of a wide bundle
of goods.1 Nevertheless, our analysis also encompasses the opposite case of
complementarity, and all the results we present can be readily extended to
consider the implications of this alternative behavioral assumption.

Second, rather than transforming the problem in terms of state-like and
control-like variables, we study the problem by introducing detrended vari-
ables, as in Caballé and Santos (1993), and by linearizing the dynamic
system around the steady state. This allows us to obtain simple explicit
solutions for the implied time paths of the main variables. Furthermore, we
adapt and extend a graphical device first introduced by Obstfeld (1992) in
his analysis of a small open economy facing a constant world interest rate,
to provide a pictorial representation of the equilibrium dynamics resulting
from our growth model with intertemporally dependent preferences. This
representation is, we believe, both simple and transparent, and helps to
grasp in an intuitive way the somewhat tangled interactions among variables
that set in under habit formation.

Finally, having provided a full characterization of the equilibrium dy-
namics under “inward” – or “internal” – habit formation, the explict solu-

1Besides being theoretically plausible, this case seems also to be empirically relevant,
as Fuhrer and Klein (1998) – who provide evidence suggesting that habit formation char-
acterizes aggregate consumption behavior among most of the G-7 countries by testing a
model that implies adjacent complementarity – have recently shown.
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tion for the evolution of the level of the main variables, which will depend
on initial habits and capital stock, allows us to assume heterogeneity in
the initial conditions and focus on the implications for the evolution of the
distribution of capital. In fact, we show that intertemporally dependent
preferences can generate a variety of outcomes in terms of time evolution of
the ratio of individual capital to the mean or average capital in the economy:
they include divergence, convergence, and leapfrogging. The model predicts
that along the transition towards the steady state, individuals that start off
with an initial endowment of capital to habits ratio which is high relative
to the average one will increase their distance from the mean pushing to-
wards more inequality. On the other hand, those individuals characterized
by a relatively low capital to habits ratio should display consumption and
capital holdings converging towards the mean. Which of the two effects will
eventually prevail is therefore a matter of the initial distributions of capital
and habits. Furthermore, a permanent increase in the equilibrium rate of
growth, following say a productivity shock, can either generate increasing
or decreasing inequality according to the distribution of initial conditions.
These effects are absent in the standard time separable case (Rebelo, 1991),
where there is no transitional dynamics and the distribution is always the
same, and, as we will show below, are more rich than those stemming from
the assumption of a Stone-Geary instantaneous utility function, a different
departure from the hypothesis of CIES preferences.

The rest of the paper is organized as follows. Section 2 presents the
model. Section 3 introduces the concepts of equilibrium adopted and gives
sufficient conditions for the existence of a steady-state balanced growth path.
In Section 4, through a normalization of variables, we transform our original
problem into one that involves only variables that take on constant values
in balanced growth, and provide a full characterization of the equilibrium
dynamics of the latter. In Section 5 we present a graphical device that
helps determine the equilibrium dynamics of the economy starting from an
arbitrary set of initial conditions on the state variables, and provide the
economic intuition for the transitional dynamics implied by intertemporally
dependent preferences. In Section 6 we present an example of instantaneous
utility function belonging to the intertemporally dependent class and discuss
the implications of our model in terms of the evolution of the cross-section
of capital holdings. Section 7 concludes.
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2 The model

We study a closed economy with an unbounded horizon, populated by in-
finitely lived, identical individuals. The representative agent has preferences
defined over his own consumption c, as well as on consumption experience,
or habits, z, and maximizes the objective functional:

U(c, z) =
∫ ∞

0
e−δtu(c(t), z(t))dt, (1)

where u is the instantaneous felicity function, and δ the (positive and
constant) rate of time preference.

As in Ryder and Heal (1973), we assume that consumption experience
is a weighted average of the representative individual’s past consumption
levels c,

z(t) = z0e
−ρt + ρ

∫ t

0
e−ρ(t−s) c(s) ds, (2)

where ρ > 0 is a constant that measures the rate of habit adjustment,
and z(0) = z0 > 0 is the exogenously inherited standard of living at the
initial date. The larger is ρ, the higher the weight given to past consumption
in determining the current level of consumption experience, and vice versa.2

Differentiating equation (2) with respect to time, it follows that habits
evolve according to

ż(t) = ρ[c(t)− z(t)]. (3)

We impose the following conditions on the instantaneous felicity function
u, assumed to be twice continuously differentiable:

2A substantial modification would stem from the assumption that the representative
agent’s stock of habits is a weighted average of the aggregate per-capita (or average, or
the Joneses’) past consumption levels χ, rather than of his own past consumption c. The
implications of this alternative assumption are studied by Carroll et al. (1997). Since
the representative agent takes χ as given, although χ = c must hold in equilibrium, it
introduces a “consumption externality” that breaks the equivalence between the central-
ized and competitive solutions of the model, with potential policy implications which
are absent when habits are as in (2). Aside from this, the assumption that habits are
accumulated by c, χ, or by a weighted average of the two does not change the steady
state growth rate of the economy, and does not lead to qualitatively different transitional
dynamics to the balanced growth path that are the main object of the present paper.
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U1. uc > 0; lim
c→0

uc = ∞, z ∈ (0,∞);

U2. uz 6= 0; ucz 6= 0;

U3. ucc < 0, ucc uzz − u2
cz ≥ 0;

U4. uc + ( ρ
ρ+g ) uz > 0 ∀g > 0.

Assumption U2 restricts preferences to the intertemporally dependent
class, and Assumption U3 amounts to the requirement of concavity of u in
(c, z), and strict concavity in c.

Finally, as will be shown in footnote 5 below, Assumption U4 (which,
given Assumption U1, is always satisfied whenever u happens to be an in-
creasing function of z) guarantees that a uniformly maintained increase in
the level of consumption along a balanced growth path will increase utility.

There is only one good, which can be either consumed or invested, and
whose output at each point in time is the result of the linear production
function

y(t) = Ak(t), (4)

where y and k are per-capita output and capital, respectively, and A is a
positive constant.3 We assume that individuals directly operate the econ-
omy’s technology. Omitting from now on time indices whenever this choice
does not risk confusion, it follows that the representative agent faces the
budget constraint:

k̇ = Ak − c, (5)

where, for simplicity, depreciation of physical capital has been assumed away
— or incorporated in A. Constraint (5) captures the fact that, in the closed
economy with no outside assets and identical individuals we are about to
study, capital accumulation is the only possible use of savings.

Finally, in order to be able to retrieve the standard “Ak”-results as a
special case of our model, we also assume:

T1. A > δ.

3Obviously this could be interpreted as a reduced form production function, which
captures the essence of “convex” models of endogenous growth. For instance the same
results obtained below would be valid by allowing capital to differ between physical an
human capital, and with the ratio of the initial endowments of the two types of capital
equal to the steady state one. If this ratio happened not to be the steady state one, it
would induce further transitional dynamics.
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3 Equilibrium

Given the above definitions and assumptions, we have the following defi-
nitions of optimal allocation of resources and balanced-growth equilibrium,
respectively.

Definition 1. An optimal allocation of resources is a set of paths {c(t), z(t),
k(t)} that solve the maximization problem:

max U(c, z)

s.t. k̇ = Ak − c, k(0) = k0 > 0 given, (P1)
ż = ρ(c− z), z(0) = z0 > 0 given.

Definition 2. A balanced, or steady-state, equilibrium is a solution {c(t),
z(t), k(t)} to the optimization problem (P1) such that c(t), z(t) and k(t)
grow at a constant rate g > 0.

Equipped with these definitions, in Appendix 1 we prove the following

Proposition 3. Given Assumptions U1 through U4, and T1, a sufficient
condition for constant, positive steady-state growth is homogeneity of degree
ν < 1 of the instantaneous felicity function u. The degree of homogeneity ν
and the steady-state growth rate g of the economy will be related according
to:

g =
A− δ

1 − ν
. (6)

That c, k and z will grow at a common rate g in balanced equilibrium,
as stated in Definition 2, can be readily verified by dividing the laws of
motion of physical capital and habits by k and z respectively, and noting
that the resulting growth rates of these variables will be constant if and
only if the ratios c/k and c/z are also constant. As seems to be the rule
in growth models where the utility function depends on a stock variable,
Proposition 1 states that homogeneity of the instantaneous felicity function
of the degree ν implicitly defined by equation (6) is a sufficient condition for
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a balanced growth path to qualify as an equilibrium.4,5 In the proof of this
Proposition given in Appendix 1, we also show that, when the economy
evolves along this balanced path, one must have

g < A (7)

for the transversality conditions associated with problem (P1) to be satisfied.
In other words, the steady state growth rate has to be less than the maximum
“sustainable” rate that would be associated with zero consumption (see (5)).

Finally, it should be noted that, although Proposition 1 gives conditions
under which a balanced path qualifies as an equilibrium, it does not imply
that the economy will ever converge to it. In the next Section, we will place
on u additional restrictions to make sure that the economy asymptotically
approaches a steady state with constant, positive growth.

4 The Transformed Problem

Given the above results, from now on we shall assume an instantaneous
utility function homogenous of degree ν < 1. This assumption also allows
us to reformulate problem (P1) in a way that greatly simplifies the analysis,
and to give a graphical representation of the equilibrium evolution of the
economy. To this end, following Caballé and Santos (1993), we introduce
the normalized variables

c̃(t) = c(t)e−gt,
z̃(t) = z(t)e−gt,

k̃(t) = k(t)e−gt.

4For an example of a model that resorts to the assumption of homogeneity of the
instantaneous felicity function in a growth setting, see the one with endogenous leisure
choice proposed by Rebelo (1991) along the lines of Heckman (1976). In that model, the
momentary utility function depends on human capital; in our case, the stock variable on
which instantaneous utility depends is consumption experience. The two commonly used
intertemporally dependent specifications of preferences, the one by Abel (1990) and Carroll
et al. (1997) in which the stock of habits enters the utility function multiplicatively, and
the subtractive formulation introduced by Constantinides (1990), are both homogeneous.

5In the standard case of time separable preferences the restriction v < 1 collapses to
the assumption of concavity of the consumption function (Carroll and Kimball, 1996).
Furthermore, if the model is one for which in equilibrium c = z, this restriction boils
down to concavity of the utility function in c = z.
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These new variables will remain constant along a balanced path, and
{c̃∗, z̃∗, k̃∗} will denote their steady-state, balanced growth values. They
will also be referred to as “de-trended” variables, since the normalization
factor e−gt removes from the non-normalized ones the exponential growth
trend that these latter will exhibit in a balanced equilibrium.

Next, we exploit the degree-ν homogeneity of u to transform (1) into a
function of (c̃, z̃):

U(c̃, z̃) =
∫ ∞

0
e−δ̃tu(c̃, z̃) dt,

where

δ̃ = δ − g ν. (8)

Writing the dynamic constraints in terms of de-trended consumption,
habits, and physical capital, we are in a position to reformulate (P1) as
follows:

max U(c̃, z̃)

s.t.
˙̃
k = (A− g)k̃− c̃, k̃0 = k0 > 0 given, (P1’)
˙̃z = ρc̃− (ρ+ g)z̃, z̃0 = z0 > 0 given,

and to write the corresponding current-value Hamiltonian function:

H̃ = u (c̃, z̃) + λ̃
[
(A− g)k̃ − c̃

]
+ µ̃ [ρc̃− (ρ+ g)z̃] .

The necessary conditions:

uc̃ + ρµ̃ = λ̃, (9)
˙̃
λ = (δ̃ −A+ g)λ̃, (10)
˙̃µ = (δ̃ + ρ+ g)µ̃− uz̃, (11)

are, with the laws of motion of k̃ and z̃, also sufficient for a maximum if
the following transversality conditions are met:

lim
t→∞ e−δ̃tλ̃(t)k̃(t) = 0,

lim
t→∞ e−δ̃tµ̃(t)z̃(t) = 0.

(12)
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While the co-state variable λ̃ is the shadow value of normalized capital,
µ̃, that — from (11) — can be written as

µ̃(t) =
∫ ∞

t

e−(δ̃+ρ+g)(s−t) uz̃(c̃(s), z̃(s)) ds, (13)

is the shadow value of an additional unit of z̃. Condition (9) implies
that, along an optimal path, at each time t the current marginal utility
of consumption, plus the contribution of greater time-t consumption to the
utility stream derived from future consumption experience — a contribution
that is positive if uz̃ > 0, and negative in the opposite case — must be equal
to the time-t shadow value of capital. We define the sum (uc̃ + ρµ̃) “the
time-t full marginal benefit of c̃” to distinguish the present setting from the
standard time-independent case, where the contribution of greater time-t
consumption to the objective functional is given by the term uc̃ only.

In the steady state, condition (10) requires

δ̃ = A− g,

a positive quantity by (7). Using (8), it follows that:

g =
A− δ

1 − ν
,

an expression that gives the same steady state growth rate of the economy
derived in Proposition 1. From these results, it can be immediately verified
that λ̃ will be constant at all times, at a level that we shall denote by λ̃∗

and whose expression will be derived below.
The differentiation of (9) with respect to time, using (10) and (11) and

taking into account the laws of motion of z̃ and k̃, results in the following
autonomous system of differential equations in (c̃, z̃, k̃):

·
c̃ =

(
1
uc̃c̃

)
·
{
(A+ ρ)(uc̃ − λ̃∗) + ρuz̃ − uc̃z̃[ρc̃− (ρ+ g)z̃]

}
, (14a)

˙̃z = ρc̃− (ρ+ g)z̃, (14b)
˙̃
k = (A− g)k̃− c̃. (14c)

From the last two equations, the steady state levels of the detrended
habits and capital are:

z̃∗ =
(

ρ

ρ+ g

)
· c̃∗, (15a)

k̃∗ =
(

1
A− g

)
· c̃∗. (15b)
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To derive c̃∗, notice that (14a) implies that, in the steady state,

uc̃(c̃∗, z̃∗) +
ρ

A+ ρ
uz̃(c̃∗, z̃∗) = λ̃∗,

a positive quantity6. Being (z̃∗/c̃∗) =
(

ρ
ρ+g

)
, homogeneity of degree

(ν − 1) of uc̃ and uz̃ implies that the left hand side of the above equation is
equal to (c̃∗)ν−1 ·

[
uc̃(1,

ρ
ρ+g ) + ( ρ

A+ρ ) · uz̃(1, ρ
ρ+g )

]
, so that:

c̃∗ =

[
λ̃∗

uc̃(1, ρ
ρ+g ) + ( ρ

A+ρ) · uz̃(1, ρ
ρ+g )

] 1
ν−1

. (15c)

We show in Appendix 2 that c̃∗, and therefore λ̃∗, z̃∗ and k̃∗, are
uniquely pinned down by the need to satisfy the transversality conditions
(12), given the initial conditions on the state variables. This result, and
the assumptions placed on u, imply that the steady-state equilibrium just
derived is unique7.

To investigate the dynamic evolution of the economy and the stability
properties of the steady state just characterized, in Appendix 2 we linearize
system (14) around the steady state (15), and show that this latter is a
saddlepoint provided that

j ≡ −(A+ g + 2ρ)u∗c̃ z̃ + ρu∗z̃ z̃
u∗c̃ c̃

<
(A+ ρ)(ρ+ g)

ρ
, (16)

where starred derivatives are evaluated at the steady state.
The crucial role played by the sign and size of j in determining the dy-

namic evolution of consumption and habits in a model with intertemporally
dependent preferences was first pointed out by Ryder and Heal (1973). In

6This is also true when the marginal utility of habits happens to be negative. In this
case, since g < A, assumption U4 implies that u∗

c̃ + ( ρ
A+ρ

)u∗
z̃ > u∗

c̃ + ( ρ
ρ+g

)u∗
z̃ > 0.

7Evaluated at this steady state, instantaneous utility is u(c̃∗, z̃∗) = u(c̃∗, ( ρ
ρ+g )c̃

∗).
The derivative of this expression with respect to c̃∗ is u∗

c̃ + ( ρ
ρ+g

)u∗
z̃, which is positive by

Assumption U4. To see what this latter implies, let us assume that the economy is on
a balanced growth path, with consumption and habits growing over time at a constant,
positive rate g, and consider the two sequences {c(t), z(t)}∞t=s and {c′(t), z′(t)}∞t=s, with
c′(s) > c(s) and ċ(t)/c(t) = ċ′(t)/c′(t) = g, t = s, ...,∞. Assumption U4 amounts to the
(in our opinion, sensible) requirement that the second sequence will yield greater utility
to the individual. Notice that this assumption is the generalization to a growth setting of
the non-satiation condition in Ryder and Heal [1973, p.3].
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their terminology, one has “adjacent complementarity” — that is, comple-
mentarity between consumption at adjacent dates, a property of preferences
that Becker and Murphy (1988) identify with addiction — if j > 0, and “dis-
tant complementarity” if j < 0. Notice that assumption U3 implies that j
is always negative if uc̃z̃ < 0. To have j > 0, one needs uc̃z̃ > 0 and large
enough. When this is the case, condition (16) places an upper bound on the
degree of adjacent complementarity consistent with saddlepath stability of
system (15). We show in Appendix 2 that values of j that violate condition
(16) lead to instability, or to a violation of the hypothesis of concavity of
u; both instances are ruled out by assumption in the present analysis, so
that (16) always holds.

For this case, in the same Appendix we show that equilibrium-normalized
consumption, habits and physical capital evolve according to:

c̃(t) − c̃∗ = [c̃0 − c̃∗] · e−ψt, (17a)
z̃(t) − z̃∗ = ω1 · [c̃(t) − c̃∗], (17b)

k̃(t) − k̃∗ = ω2 · [c̃(t) − c̃∗], (17c)

where −ψ is the negative, real characteristic root associated with the
linearized version of system (14), and

ω1 ≡ ρ

ρ+ g − ψ
, ω2 ≡ 1

A− g + ψ
.

While ω2 > 0 always, in Appendix 2 we prove that ω1 has the same sign as
j. We also show that steady state de-trended consumption is given by:

c̃∗ =
(A− g)(ρ+ g)
ψ(A+ ρ)

[
− 1
ω1

z0 +
1
ω2

k0

]
, (18)

while z̃∗ and k̃∗, which are increasing in c̃∗, can be computed using
(18) in equations (15a) and (15b).8 Finally, the difference between optimal

8When complementarity is adjacent – ω1, j > 0 – the linearization imposes an
upper bound on the value that the ratio of initial conditions may take on. Namely, and
as is clear from (18), for an optimal program to exist, (z0/k0) has to be less than
(z0/k0)

max = ρ[(A − g + ψ)/(ρ + g − ψ)]. Values of (z0/k0) above this quantity imply
so much consumption at time t = 0 that c̃, k̃, z̃ become zero in finite time. In terms of
the diagrams we introduce in Section 5, for a given k0 one finds the maximum stock of
initial habits consistent with the existence of an equilibrium as the value of z0 that, in

Figure 2, generates a saddlepath SS′ in the upper quadrant crossing the
.

z̃ = 0 locus at
(z̃, c̃) = (0, 0).
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time-0 and steady-state normalized consumption that appears in (17a) can
be written as:

c̃0 − c̃∗ =
(ρ+ g)

ψ(A+ ρ)ω1ω2
· [ z0 − ρ(A− g)

(ρ+ g)
k0]. (19)

Equations (17)-(19) imply the following facts about the equilibrium dy-
namics associated with the solution of the transformed problem (P1’)

Proposition 4. In equilibrium:

(i) normalized consumption, habits and physical capital converge mono-
tonically over time to the steady state {c̃∗, z̃∗, k̃∗};

(ii) the steady-state levels of the same variables are decreasing in z0 under
adjacent complementarity (j > 0), and increasing in z0 under distant
complementarity (j < 0); independently of the sign of j, c̃∗, z̃∗ and
k̃∗ increase with k0;

(iii) when j > 0, normalized consumption increases (decreases) over time
toward its steady-state level if z0

k0
< (>)ρ (A−g)

ρ+g . The opposite conclu-
sion holds when j < 0;

(iv) in the transition to the steady state, c̃ and k̃ will always covary pos-
itively; normalized consumption and habits z̃ will covary positively if
j > 0, and negatively if j < 0.

5 Picturing Transitional Dynamics

In this Section, we modify and extend a technique used by Obstfeld (1992)
and draw a simple diagram to illustrate the transitional dynamics implied
by our model and to provide the economic intuition for the results derived so
far, and summarized in Proposition 2. Although we choose to focus on the
case of adjacent complementarity, which we regard as most relevant, the
same arguments can be used to give an account of the dynamic evolution of
the variables in the model when complementarity is distant.

Assuming j > 0, in Figure 1 we draw four loci:

– the ( ˙̃z = 0)-locus, which — see equation (14b) — is a straight line
emanating from the origin with slope (ρ+ g)/ρ > 1 in the (z̃, c̃)-plane;
z̃ will be increasing over time above this locus, and decreasing below
it;
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– the stable saddle path in the same plane, obtained by combining equa-
tions (17a) and (17b); in the upper quadrant, it is the arrowed path
labeled SS

′
, with slope (ρ+ g − ψ)/ρ, positive and smaller than the

slope of the ˙̃z = 0 locus;

– the saddlepath in the (k̃, z̃)-plane, the line TT
′
with slope ρ(A−g+ψ)

ρ+g−ψ ,
obtained by combining equations (17b) and (17c);

– the relationship between steady state levels of normalized habits and
physical capital that is implied by (14a) and (14b), the straight line
emanating from the origin in the lower quadrant, with slope ρ(A−g)

ρ+g

(< ρ(A−g+ψ)
ρ+g−ψ ).

It should be noted that those shown in the figure are not standard phase
diagrams. This is because the steady state levels of c̃, z̃ and k̃ — and,
with them, the location of the two saddlepaths SS

′
and TT

′
— depend on

the set of initial conditions (z0, k0), as is clear from (17)-(19).
To understand how this graphical device helps determine the equilib-

rium dynamics for arbitrary initial conditions on the stock variables, let us
assume that the economy starts off with the pair (z0, k0) given by point T
in the lower quadrant of the figure. Notice that the assumed configuration
of initial conditions is such that (z0/k0) <

ρ (A−g)
ρ+g . The steady state pair

(k̃∗, z̃∗) — point T
′
— is found as the intersection between the line emanat-

ing from T with slope ρ(A−g+ψ)
ρ+g−ψ and the steady state locus z̃∗ = ρ(A−g)

ρ+g k̃∗.
Given the z̃∗ so determined, one uses the ( ˙̃z = 0)-locus in the upper quad-
rant to find the pair (z̃∗, c̃∗) – point S

′
. The saddlepath in the (z̃, c̃)-plane

is then the line going through S
′

with slope (1/ω1) ≡ ρ+g−ψ
ρ (a positive

quantity, under adjacent complementarity); finally, one determines the
optimal time-0 choice of consumption, c̃0, as the value of c̃ that, along this
line, is associated with the assumed z0.

From the figure, it is clear that, as stated in Proposition 1, a stable
dynamics calls for levels of normalized consumption, habits, and physical
capital to rise over time. In fact, given (z0/k0) <

ρ (A−g)
ρ+g , optimal time-0

consumption is lower than the level (A − g)k0 which — through (14c) —
would yield ˙̃k(0) = 0, and point S is located above the ( ˙̃z = 0)-locus. It
follows that both normalized physical capital and habits will be increasing
at time zero. The next instant — which, for simplicity, we call t = 1 —
the economy will therefore start off with larger beginning-of-period k̃ and
z̃. All other things being equal, a larger capital stock will exert a positive

13



wealth effect on time-1 consumption, c̃1. In addition, under adjacent com-
plementarity the individual has a further incentive to raise his consumption
level at time t = 1 because of the increase in the stock of habits. For both
reasons, c̃1 > c̃0.

To understand why an increase in z̃ leads to an increase in the optimal
choice of c̃, notice that (13) implies that what we have termed the “full
marginal benefit” of current consumption can be written as:

uc̃(c̃(t), z̃(t)) + ρ

∫ ∞

t
e−(A+ρ)(s−t) uz̃(c̃(s), z̃(s)) ds. (20)

Since, for s > t, one has

z̃(s) = z̃(t)e−(ρ+g)(s−t) + ρ

∫ s

t
e−(ρ+g)(s−τ ) c(τ) dτ,

the derivative with respect to z̃(t) of (20) is9:

uc̃z̃(c̃(t), z̃(t)) + ρ

∫ ∞

t
e−(A+g+2ρ)(s−t) uz̃z̃(c̃(s), z̃(s)) ds. (21)

Evaluated at the steady state, (21) reduces to

u∗c̃z̃ +
ρ

A+ g + 2ρ
u∗z̃z̃ ≡ (−u∗c̃c̃) · (A+ g + 2ρ) · j,

an expression which has the same sign as j. It follows that, in the local
analysis of the equilibrium dynamics under adjacent complementarity we are
carrying out, the full marginal benefit of c̃ will move in the same direction
as z̃, and the individual has an incentive to increase c̃ when z̃ rises.

Having shown that, for the assumed configuration of initial conditions,
c̃1 > c̃0, it is straightforward to verify that, at time t = 1, this higher
level of consumption is still consistent with the accumulation of capital and
habits , although at a slower rate than in the previous period. The same
process is repeated the next instant and the economy converges over time
to the steady state (S

′
, T

′
) along the arrowed paths in the two quadrants.

Suppose now that the economy starts off with an unchanged level of
physical capital, but with a z′0 > z0. If , as assumed in the figure, this
increase in initial consumption experience is such that (z′0/k0) is still less
than the critical level ρ (A−g)

ρ+g , we end up with the new saddlepaths given

9This step involves the computation of the “Volterra derivative” of the functional in
(20). For a definition of Volterra derivatives, see Ryder and Heal (1973), pp. 3-4.
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by the dashed lines labeled S
′′
S

′′′
and T

′′
T

′′′
, and with lower steady state

levels of c̃, z̃ and k̃.
That the steady state levels of the variables are decreasing in z0 when

j > 0 simply reflects the higher marginal benefit of consumption associated
with higher initial habits. The individual will consume more at time 0,
and will accumulate less capital10. This smaller accumulation will — via
a wealth effect — cause a smaller increase in consumption, and therefore
habits, during the transition to the steady state, as well as lower levels of
the variables in the new balanced growth equilibrium (S

′′′
, T

′′′
).

On the other hand, when z0 happens to be so large that (z0/k0) >
ρ (A−g)
ρ+g , the whole dynamics is reversed. As shown in Figure 1, under ad-

jacent complementarity the individual will choose to consume so much at
time zero that k̃ will be decumulated (c̃0 > (A− g)k0). De-trended habits
will decrease as well, since the economy starts off at point S, which is now
below the ˙̃z = 0 locus: although the individual consumes a lot, the optimal
initial choice of consumption — one that is consistent with the transversal-
ity condition on k̃ — does not add to consumption experience enough to
compensate for the depreciation term (ρ + g)z0, which is large because z0
is large. In this case, normalized consumption, habits and physical capital
will decrease over time toward their steady-state levels.

The same diagram can be used to determine the effects of changes in k0

for a given z0. For instance, and going back to Figure 1, an increase in
k0 would cause a parallel, downward shift of the TT

′
locus and an upward

shift of the SS
′
locus, thus leading to an increase both in the initial optimal

choice of c̃, and in the steady state levels of the three variables on the axes.
If the initial configuration of initial conditions is the one shown in Figure
2, an increase in k0 such that the ratio (z0/k0) remains above the critical
value ρ (A−g)

ρ+g leads to qualitatively similar displacements of the TT
′
and the

SS
′
loci, and, once again, to higher steady state values of c̃∗, z̃∗, and k̃∗.

10That c̃0 is increasing in z̃0 simply reflects the fact that consumption is increas-
ing in habits under adjacent complementarity. It follows that, as shown in the Fig-
ure, point S

′
is located to the north-east of point S. This can be proved as follows.

First, evaluate at time t = 0 the expressions for the two loci TT
′

and SS
′
, ob-

taining z̃0 − z̃∗ = ρ(A−g+ψ)
(ρ+g−ψ)

(k̃0 − k̃∗) and c̃0 − c̃∗ = (ρ+g−ψ)
ρ

(z̃0 − z̃∗). Next,

differentiate totally the first expression, setting dk̃0 = 0 and dk̃∗ = (ρ+g)
ρ(A−g)dz̃

∗, to

get dz̃∗ = − (A−g)(ρ+g−ψ)
ψ(A+ρ)

dz̃0. Finally, differentiation of the second expression, using

dc̃∗ = (ρ+g)
ρ

dz̃∗ = − (ρ+g)(A−g)(ρ+g−ψ)
ρψ(A+ρ)

dz̃0, yields dc̃0/dz̃0 = (ρ+g)(ρ+g−ψ)
ρ(A+ρ)

> 0. The same
result can be derived, in a more straightforward fashion, using the explicit expresion for
c̃0 given by (A.2.12) in Appendix 2.
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More generally, to assess the impact of simultaneous changes of k0 and
z0, or the qualitative properties of the transitional dynamics of the variables
starting from an arbitrary pair (z0, k0), all that matters is how the ratio
(z0/k0) compares to ρ (A−g)

ρ+g – or, in graphical terms, whether the point
that denotes the initial conditions on the two stock variables in the lower
quadrant of the Figure is located above or below the locus z̃∗ = ρ(A−g)

ρ+g k̃∗.

If, by accident, (z0/k0) = ρ (A−g)
ρ+g , the economy jumps immediately on

the steady state. In general, however, consumption, habits and physical
capital converge to a balanced growth path increasing or decreasing over
time, depending on whether (z0/k0) ≶ ρ (A−g)

ρ+g .

Finally, the results one gets under the standard assumption of time-
separable preferences can be retrieved as a special case of our model.

To see this, first notice that, if uz̃ = uc̃z̃ = 0, so that Assumption U2
is violated, one has µ̃ = 0, uc̃ = λ̃∗, ∀t. It follows that the right-hand
side of equation (14a) is zero, and the saddlepaths SS

′
and TT

′
become

flat at the levels of consumption c̃ = (A − g)k0 and capital k̃ = k0, re-
spectively. Regardless of initial conditions, this implies that de-trended
consumption and physical capital will be constant over time, and that — as
in the standard “Ak” model — c and k will always grow at the steady-state
rate g = A−δ

1−ν . Given the usual time-separable, isoelastic instantaneous fe-
licity function c1−σ

1−σ , which is homogeneous of degree ν = 1 − σ, this is just
the familiar growth rate A−δ

σ .11

Up to this point, we have provided a full characterization of the equi-
librium dynamics of what we have termed “normalized”, or “de-trended”,
variables. In order to go from the latter to the behavior over time of “actual”
consumption, habits, capital, and output, one has simply to remember that
the generic variable x is related to its normalized counterpart x̃ according
to x = egtx̃, or, in terms of growth rates:

ẋ

x
= g +

·
x̃

x̃
.

Since normalized variables converge monotonically over time to a steady
state where they take on constant values, the growth rate of the actual
ones will converge asymptotically to g. In the transition, their growth rate
will be above or below this value, depending on whether their de-trended

11If, for given k0, z0 6= ρ (A−g)
α+g k0, there will be a transitional dynamics of the stock of

habits; however, this will not affect consumption, capital, nor utility levels.
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counterparts converge to the steady state increasing or decreasing over time
– an information one can readily retrieve from Proposition 2, or the first
row of Table 1.

In turn, it is possible to infer the behavior of the growth rate of per-
capita output, gy, by noticing that:

gy ≡ ẏ

y
=
k̇

k
= g +

˙̃k
k̃
. (22)

Using these results, the last two rows of Table 1 summarize the tran-
sitional dynamics of gy under adjacent complementarity. The growth rate
of per-capita output is decreasing in (z0/k0), and can initially be negative
for values of this ratio that are very high, while still being consistent with
the upper bound mentioned in footnote 8.12 For values of (z0/k0) below
(above) the threshold ρ(A−g)

(ρ+g) , gy will be larger (smaller) than g, converging
asymptotically to this constant, positive value.

Table 1: Transitional dynamics
z0
k0
< ρ(A−g)

(ρ+g)
z0
k0
> ρ(A−g)

(ρ+g)
.
c̃,

.
z̃,

.

k̃ > 0 < 0
gy > g < g
ġy < 0 > 0

Finally, defining the saving rate as:

s ≡ 1 − c

Ak
,

and noticing that (c/k) = (c̃/k̃) = (A− g) − ( ˙̃
k/k̃), from (22) one has:

s =
gy
A
.

It follows that s will take on the constant value s∗ = (g/A) < 1 in balanced
growth, and that its transitional dynamics will be qualitatively identical

12Since gy asymptotically approaches g > 0, gy < 0 is possible only during the first
stages of the transition. Furthermore, the possibility of a negative growth rate depends
not just on the size of the ratio (z0/k0), but also – through j and ψ – on the characteristics
of the instantaneous utility function.
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to that of the rate of growth of per-capita output: the saving rate will be
initially “high”, and decreasing over time, when z0

k0
<

ρ(A−g)
(ρ+g) , and rela-

tively “low”, but increasing toward its steady state level, for the opposite
configuration of initial conditions.

6 An example, with implications for distribution

dynamics

In this Section we consider a particular specification of preferences belonging
to the intertemporally dependent class, proposed by Constantinides (1990)
in his attempt to solve the equity premium puzzle and used, among others,
by Detemple and Zapatero (1991). We, further, assume heterogeneity in
the distribution of initial habits and capital stock and, having shown that
the average of all agents behaves exactly as if there was a single agent, with
average initial capital and habits, we analyze the predictions of the model
with respect to the evolution of the cross-section of per capita capital hold-
ings. We also compare the implications of our model with those associated
with a different departure from the assumption of CIES preferences.

Consider the functional form:

u(ci, zi) =
(ci − bzi)1−σ

1 − σ
, for ci ≥ bzi, (23)

= −∞ for ci < bzi,

where the subscript i denotes the generical individual; σ > 0 and 6= 1,
1 ≥ b ≥ 0. We also assume that at time zero each agent is endowed with
enough capital to produce bz0,i, that is Ak0,i > bz0,i.13 Since lim

ci−bzi→0
uc = ∞

and z0,i > 0, ct,i > bzt,i > 0 ∀t ∀i. In addition, uz, ucc, uzz < 0,
uccuzz − u2

cz = 0, assumption U4 is met and j = b [A+ g + ρ (2 − b)] > 0,
so we are always in the adjacent complementarity case.

Without loss of generality, and only to simplify the algebra, let us assume
from here on b ≡ 1, which implies that only the excess of consumption over
the standard of living is valued. In Appendix 3 we show that the capital

13Equivalently, the upper bound on the ratio of initial conditions mentioned in footnote
8 above now becomes (z0,i/k0,i) < A/b. Interesting complications would arise when, at
least for some agents, this inequality is not satisfied, that is when some individuals are
wealth constrained. These are not discussed in this paper, since they would lead us too
far afield.
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stock of the i-th individual evolves according to:

kt,i =
[

ρ+ g

g(A+ ρ)

]
(Ak0,i − z0,i)egt +

[
ρ+ g

g(A+ ρ)

][
z0,i −

(
ρ(A− g)
ρ+ g

)
k0,i

]
,

where g = A−δ
σ is the common steady state growth rate of each variable

in the model. Since this equation is linear in (k0,i, z0,i), it is immediate to
note that the average of all agents (the representative consumer) behaves
exactly as if there was a single agent, with average initial capital and habits
(ka0 , z

a
0).

The growth rate of each agent’s output and capital is:

gy,i =
˙kt,i
kt,i

= (kt,i)−1

(
ρ+ g

A+ ρ

)
(Ak0,i − z0,i)egt > 0.

Notice that:

ġy,i = (kt,i)−2

(
ρ+ g

A+ ρ

)2

(Ak0,i − z0,i)
[
z0,i − ρ(A− g)

ρ+ g
k0,i

]
egt, (24)

which is negative for (z0,i/k0,i) ∈ (0, ρ(A−g)ρ+g ), and positive for (z0,i/k0,i) ∈
(ρ(A−g)ρ+g , A).

The attractive property of the functional form under consideration is
that these equilibrium paths represent the global dynamics of the variables,
that one gets solving the system (14a)-(14c) directly (see Appendix 3).14

The model with intertemporally dependent preferences just outlined
therefore allows us to study the dynamics of the distribution of per capita
capital, which is totally absent in the the standard time separable specifi-
cation (Rebelo, 1991). Of course, the simplicity of the model, especially for
what concerns the production side of the economy, makes the following exer-
cise purely illustrative of the potential implications of a richer specification
of preferences and does not intend to provide a conving explanation of the
actual determinants of the evolution of inequality.15

As in Caselli and Ventura (2000), this model, since it allows for a repre-
sentative agent, cannot be used to study how the initial wealth distribution

14The same conclusion does not hold for the ratio specification of preferences of Abel
(1990) and Carroll et al. (1997, 2000). In this case all the results we will derive below
hold in the approximation around the steady state.

15Diaz et al. (forthcoming) show that habit formation is an important determinant of
precautionary savings in economies with idiosyncratic uncertainty.
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affects economic growth. However, it can yield interesting insights on the
evolution of the wealth distribution along the transition towards a steady
state growth and it can be used to analyze the effect of growth on the steady
state distribution. The effects of inequality on economic growth is surveyed
in Benabou (1996). Aghion et al. (1999) also analyze the way in which
growth might affect inequality and concludes that technical change, besides
being one of the main sources of economic growth, is also one of the main
determinants of the distribution of wages and therefore of inequality. Yet,
the extent to which growth induces higher inequality is uncertain since it
is mediated by the institutional characteristics of each country. Empirical
evidence, arising from cross-country analyses, is not conclusive. In the only
study we are aware of, Deininger and Squire (1996) find that episodes of
growth were, almost with the same frequence, followed by increases or de-
creases in inequality. Moreover, and more importantly from the point of view
of the present analysis, does not seem to emerge any systematic relationship
between growth and subsequent inequality, even limiting to subgroups of
countries such as advanced vs. low-middle income. As it will be clear be-
low, this is consistent with our model, where the level of initial habits play
a prominent role.

To study the evolution of inequality let us define the ratio of individial
i’s capital to the average one kRt ≡ kt,i/k

a
t . This can be written as

kRt =
(Ak0,i − z0,i) +

[
z0,i −

(
ρ(A−g)
ρ+g

)
k0,i

]
e−gt

(Aka0 − za0 ) +
[
za0 −

(
ρ(A−g)
ρ+g

)
ka0

]
e−gt

.

In steady state this ratio will be constant and will depend only on initial
conditions, as well as on the productivity parameter A:

(
kR

)∗
=

(Ak0,i − z0,i)
(Aka0 − za0 )

. (25)

Yet, along the transition kRt can either increase or decrease. We first
study the evolution of inequality during the transitional dynamics, then we
analyze how the steady state distribution modifies following a productivity
shock.

First of all, notice that — assuming that the individual i was initially
richer than the mean (k0,i > ka0) — nothing precludes

(
kR

)∗
< 1, that is

nothing precludes that he can become poorer than the mean. This will hap-
pen if (z0,i−za0 ) > A(k0,i−ka0) > 0. As described before, the fact that under

20



adjacent complementarity the steady state level of capital is decreasing in
z0 reflects the higher marginal benefit of consumption associated with initial
habits. With a very high habit stock the individual i will chose a level of
consumption so high, and a saving rate so low that he will end up poorer
than the mean. Stretching this conclusion to the implications for the pat-
tern of cross-country growth, if individuals are interpreted as countries, it
means that this model can replicate growth miracles or disasters.

By differentiating kRt with respect to time, after some algebra, it can be
shown that along the transition the distribution of capital becomes more
unequal (equal) if ka0z0,i−k0,iz

a
0 > 0 (< 0). This means that an individual i

initially richer than the mean (k0,i > ka0) will increase (decrease) his distance
from the mean if k0,i/z0,i > (<) ka0/z

a
0 . To understand the intuition of this

result, let us examine the initial saving rates ratio, which is given by

sR0 ≡ s0,i
sa0

=
ka0(Ak0,i − z0,i)
k0,i(Aka0 − za0)

. (26)

When k0,i/z0,i > ka0/z
a
0 , s

R
0 > 1, which means that the individual i,

already richer than the mean, saves also more than the mean, augmenting
more than proportionally his capital stock and increasing the inequality.
The reverse is true when k0,i/z0,i < ka0/z

a
0 .

Now let us imagine a positive permanent shock to A. This will raise the
steady state rate of growth, but how will it affect the steady state distri-
bution of capital? Differentiating (25) with respect to A, it turns out that
in the steady state the relative holding of capital stock will increase (de-
crease), that is the distribution of capital will become more unequal (equal)
if k0,i/z0,i < (>) ka0/z

a
0 . Again this is due to the different effect of the in-

crease in A on the saving rates. In fact, the initial saving rates ratio sR0
increases, following an increase in A, if k0,i/z0,i < ka0/z

a
0 .16

As in the model with intertemporally dependent preferences just de-
scribed, an evolving distribution of capital holdings is possible, even if with
some limitations, in the Ak model with Stone-Geary preferences:

u(ci) =
(ci − c̄)1−σ

1− σ
, σ > 0, 6= 1,

16If one wants to consider the effects of an increase in steady state growth on the
evolution of inequality along the whole path, the relationship might be non-monotonic
and will depend on how far the economy is from the balanced growth path.
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where the positive constant c̄ is the subsistence level of consumption. This
specification of preferences, used in a growth setting by Christiano (1989),
Rebelo (1992) and Chatterjee and Ravikumar (1999).

It is easy to show that, with the Stone-Geary utility function, in equi-
librium:

kt,i = k̄ + (k0,i − k̄)egt,

where k0,i > k̄, k̄ ≡ (c̄/A), and the positive constant c̄ is the subsistence
level of consumption. Since an Ak technology is assumed, k̄ can be inter-
preted as the amount of capital needed to produce the subsistence level of
consumption. Furthermore,

gy,i = (kt,i)−1g(k0,i− k̄)egt > 0,

ġy,i = (kt,i)−2g2(k0,i − k̄)egtk̄ > 0, (27)

where g = A−δ
σ . These are the same solutions that would be obtained

assuming the functional form (23) and setting ρ = 0 and z0,i ≡ c̄ ∀i, so that
zt,i = z0,i ≡ c̄ ∀t ∀i, and the customary consumption is just constant at the
subsistence level c̄, which is the same for all the individuals . Comparing
(24) and (27), it is clear that — because it allows, for each agent, a
changing level of z — (23) is generally consistent with a wider range of
possibilities in terms of transitional dynamics toward the steady state growth
path: while ρ = 0 (and therefore a Stone-Geary utility function) yields the
implication that the growth rate of per-capita output and the saving rate
must necessarily be increasing over time along the transition, they can be
either increasing or decreasing when ρ 6= 0 and the dynamics of habits feed
back to consumption and accumulation choices.

Moreover, it can be shown that a Stone-Geary utility function implies
that inequality always increases along the transition (see Chatterjee and
Ravikumar, 1999) and, finally, that a positive shock to A makes the steady
state distribution of capital more concentrated. In fact, given this utility
function, in equilibrium:

kt,i = k̄ + (k0,i − k̄)egt,

where k0,i > k̄. It follows that the steady state ratio of individual i’s capital
to the mean is given by

(
k̄R

)∗
=

(Ak0,i − c̄)
(Aka0 − c̄)

,

which is decreasing in A for k0,i > ka0 and increasing for k0,i < ka0 .
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7 Concluding remarks

In this paper, we have provided a full characterization of the dynamics of
the economy under internal habit formation and a linear technology. Rather
than assuming a specific functional form for the instantaneous utility func-
tion, we have derived the restrictions that have to be placed on this latter
to guarantee the existence of a balanced growth path, and introduced a
simple graphical apparatus that greatly simplifies the study of the transi-
tional dynamics starting from an arbitrary set of initial conditions on the
state variables. We have also explored the implications of the model for the
undertstanding of the evolution of the cross-section of wealth, concluding
that they are not inconsistent with the, still scarce, empirical evidence.

We think that the main contribution of the present paper lies in the
analysis of the rich dynamics stemming from a plausible, and tractable,
departure from the assumption of time-separable, isoelastic preferences.
These dynamics should be superimposed on those implied by models that
give a more realistic account of the production side of the economy, allow for
the existence of barriers to the international diffusion and adoption of tech-
nology, take into account the role played by Governments and institutions
and, more generally, the countless factors we have deliberately neglected,
but that which undoubtedly play an important role in the process of growth.
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Appendix 1 - Proof of Proposition 1

The current-value Hamiltonian for problem (P1) is:

H = u(c, z) + λ(Ak− c) + µρ(c− z),

where λ and µ are the co-state variables associated with k and z, re-
spectively.

It follows that, among the necessary conditions for (P1), we have:

uc + ρµ = λ, (A.1.1)

λ̇ = (δ −A)λ, (A.1.2)
µ̇ = (ρ+ δ)µ− uz (A.1.3)

Differentiating (A.1.1) with respect to time, and using (A.1.2)-(A.1.3),
one gets:

uccċ+ ucz ż = (δ + ρ)uc − (A+ ρ)λ+ ρuz,

that, rearranging, can be written as follows:

cucc(ċ/c) + zucz(ż/z)
uc

= (δ + ρ)− (A+ ρ)
λ

uc
+ ρ

uz
uc
. (A.1.4)

To be an equilibrium, a balanced growth path must satisfy (A.1.4).
Since c and z grow at the common rate g in balanced growth, in steady-
state equilibrium (A.1.4) becomes:

g

[
cucc + zucz

uc

]
= (δ + ρ)− (A+ ρ)

λ

uc
+ ρ

uz
uc
. (A.1.5)

Let’s assume that u is homogeneous of degree ν in (c, z), so that uc is
homogeneous of degree (ν− 1) in the same variables. Euler’s theorem then
implies: [

cucc + zucz
uc

]
= ν − 1,

so that the left-hand side of (A.1.5) is a constant. For a balanced growth
path to be an equilibrium, the right-hand side of (A.1.5) must be constant
as well. Since homogeneity of u implies that the term (uc/uz) is a function
of the ratio (c/z) only – a constant in steady state growth –, this requires:

u̇c
uc

=
λ̇

λ
,
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or, using (A.1.2) and evaluating at the steady state the rate of change
of the marginal utility of consumption,

g(ν − 1) = δ −A.

Rearranging, one obtains ν = δ−A
g + 1, or the equivalent expression

for the relationship between the degree of homogeneity of u and g given by
equation (6) in the text. Notice that the requirement of positive steady
state growth and Assumption T1 imply ν < 1.

Finally, it is easy to verify that, in steady state growth, (µ̇/µ) =
(λ̇/λ) = δ − A. It follows that, for a balanced growth path to satisfy the
transversality conditions associated with problem (P1),

lim
t→∞e

−δtλtkt = 0,

lim
t→∞e

−δtµtzt = 0,

one must have A > g. We restrict the parameters in the model so as
to make sure that this inequality always holds, implying that the balanced
growth path just characterized satisfies all the necessary – and, given our
assumptions, sufficient – conditions for an optimum.

Appendix 2 - Derivation of equations (17a)-(17c)

Since k̃ does not enter (14a)- (14b), we begin our local analysis of the
equilibrium dynamics associated with system (14) by focusing on the pair
(c̃, z̃). The dynamics of k̃ follows recursively, through (14c).

Linearizing (14a)-(14b) around the steady state, one gets:

[ ˙̃c
˙̃z

]
= J ·

[
c̃− c̃∗

z̃ − z̃∗

]
, (A.2.1)

where

J ≡
[
A + ρ −j
ρ −(ρ+ g)

]
,

and j is given by (16) in the text. The two roots of the characteristic
equation associated with system (A.2.1) are:

(A− g)
2

±
√

∆
2
, (A.2.2)
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where

∆ ≡ (A− g)2 + 4(A+ ρ)(ρ+ g)− 4ρj

= 4 ·
{[

(A+ g)
2

+ ρ

]2

− ρj

}
.

Using the definition of j:[
(A+ g)

2
+ ρ

]2

− ρj =
(

1
u∗c̃c̃

)
·
{[

(A+ g)
2

+ ρ

]2

u∗c̃c̃ + 2ρ
[
(A+ g)

2
+ ρ

]
u∗c̃z̃ + ρ2u∗z̃z̃

}
≥ 0,

because the term in curly brackets is a quadratic form in
[

(A+g)
2 + ρ

]
and ρ, and the Hessian of u is negative semidefinite.

It follows that concavity of the instantaneous felicity function implies:

ρj ≤
[
(A+ g)

2
+ ρ

]2

, (A.2.3)

so that ∆≥ 0, and the two roots in (A.2.2) are real.
Given this result, and the fact that Trace(J) = A − g > 0, their sign

can be determined on the basis of the sign of the determinant:

| J |= ρj − (A+ ρ)(ρ+ g).

When j < 0, the jacobian determinant is negative, and we have two
real roots of opposite sign. To make sure that the system is saddlepath
stable also in the case of adjacent complementarity (j > 0) on which we
focus in the text, we assume:

ρj < (A+ ρ)(ρ+ g),

which amounts to the restriction on j in (16). Notice that, being

(A+ ρ) (ρ+ g) <
[

(A+g)
2 + ρ

]2
, any value of j consistent with saddlepath

stability is also consistent with concavity of u, and the upper bound that
this assumption imposes on j (see (A.2.3)).

We shall denote by ζ the positive characteristic root associated with the
linearized version of system (14), and, as stated in the text, by −ψ the
negative one:

−ψ =
(A− g)

2
−

√[
(A+ g)

2
+ ρ

]2

− ρj. (A.2.4)
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Notice that, although j depends on the second partial derivatives of u
evaluated at the steady state (c̃∗, z̃∗), homogeneity of u implies that these
roots are not a function of the initial conditions (k0, z0). In fact,

j = −(A+ g + 2ρ)uc̃ z̃(c̃∗, z̃∗) + ρuz̃ z̃(c̃∗, z̃∗)
uc̃ c̃(c̃∗, z̃∗)

= −
(A+ g + 2ρ)(c̃∗)ν−2uc̃ z̃(1,

ρ
ρ+g ) + ρ(c̃∗)ν−2uz̃ z̃(1,

ρ
ρ+g )

(c̃∗)ν−2uc̃ c̃(1,
ρ
ρ+g )

= −(A+ g + 2ρ)uc̃ z̃(1,
ρ
ρ+g ) + ρuz̃ z̃(1,

ρ
ρ+g )

uc̃ c̃(1,
ρ
ρ+g )

.

It follows that changes in the initial conditions will determine parallel
upward or downward shifts of the saddlepaths in Figures 1 and 2.

For later use, let’s define the two constants ω1 ≡ ρ
ρ+g−ψ , ω2 ≡ 1

A−g+ψ .
While the second one is always positive, the sign of ω1 depends on that of
(ρ+ g − ψ), which is the same as the sign of j. To see this, notice that ,
using (A.2.4):

ρ+ g − ψ =
[
(A+ g)

2
+ ρ

]
−

√[
(A+ g)

2
+ ρ

]2

− ρj,

where we know that the term under the radical is positive. It follows
that (ρ+ g − ψ) ≷ 0 as j ≷ 0.

These definitions and results imply that the general solution of system
(A.2.1) can be written as follows:

c̃t − c̃∗ = Ω1e
−ψt + Ω2e

ζt, (A.2.5)

z̃t − z̃∗ = ω1Ω1e
−ψt +

(
ρ

ρ+ g + ζ

)
Ω2e

ζt, (A.2.6)

where Ω1 and Ω2 are arbitrary constants, to be determined using the
initial conditions on the state variables and the transversality conditions
in (12). Using (A.2.5) in the linearized version of the law of motion of k̃
and solving the resulting first-order, non-autonomous differential equation,
yields:

k̃t − k̃∗ =
[
(k0 − k̃∗) − ω2Ω1

]
e(A−g)t + ω2Ω1e

−ψt +(
Ω2

g −A+ ζ

)
(e(A−g)t − eζt). (A.2.7)
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Being λ̃ constant, the first transversality condition in (12) requires:

lim
t→∞e

−(A−g)tk̃t = lim
t→∞{e−(A−g)tk̃∗ +

[
(k0 − k̃∗) − ω2Ω1

]
+

ω2Ω1e
−(A−g+ψ)t +

(
Ω2

g −A+ ζ

)
(1 − e[ζ−(A−g)]t)} = 0

Since ζ − (A− g) = ψ > 0, for the transversality condition on the capital
stock to be met one must have:

Ω2 = 0, (A.2.8)

Ω1 =
(

1
ω2

)
(k0 − k̃∗), (A.2.9)

which imply that, in equilibrium, (A.2.7) becomes:

k̃t − k̃∗ = (k0 − k̃∗)e−ψt. (A.2.10)

Now notice that, using (A.2.8) in (A.2.5)-(A.2.6), evaluating at time
t = 0 the resulting expressions for (c̃t− c̃∗) and (z̃t− z̃∗), and taking (A.2.9)
into account, one obtains:

c̃0 − c̃∗ =
(

1
ω1

)
(z0 − z̃∗) =

(
1
ω2

)
(k0 − k̃∗). (A.2.11)

Plugging the expressions for z̃∗and k̃∗ as a function of c̃∗ given by (15a)-
(15b) into the second of these equalities, one gets:

c̃∗ =
(A− g)(ρ+ g)
ψ(A+ ρ)

[
− 1
ω1

z0 +
1
ω2

k0

]
;

this result, used in the first equality in (A.2.11), yields:

c̃0 =
(ρ+ g)

(A+ ρ)ω1
z0 +

(A− g)
(A+ ρ)ω2

k0. (A.2.12)

Finally, it is immediate to verify that (A.2.5), (A.2.6) and (A.2.10) can
be written as (17a)-(17c) in the text, with c̃0 and c̃∗ taking on the values
just derived. Since these equilibrium paths imply convergence to a steady
state in which all variables assume constant values, they also satisfy the
second transversality condition in (12).
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Appendix 3 - Global dynamics in the subtractive
formulation of preferences

In this Appendix we prove the claim made in the text that, when the
instantaneous utility function is (23), the equilibrium paths (17a)-(17c)
derived by linearizing system (14) around the steady state (15) also describe
the global – and not just the local – equilibrium dynamics of (c̃i, z̃i, k̃i), and
therefore (ci, zi, ki).

First notice that, with u given by (24), we have: uc = (ci − zi)−σ ;
uz = −(ci − zi)−σ; ucc = −σ(ci − zi)−σ−1; uzz = −σ(ci − zi)−σ−1; ucz =
σ(ci − zi)−σ−1. It follows that (14a)-(14b) can be equivalently written as:

.
c̃i −

.
z̃i = B(c̃i − z̃i)σ+1 −

(
A

σ

)
(c̃i − z̃i),

.
z̃i = ρc̃i − (ρ+ g)z̃i,

where B ≡ λ̃∗(A+ρ)
σ > 0. Next, define ηi ≡ c̃i − z̃i, and rewrite the

above system as follows:

η̇i = Bησ+1
i −

(
A

σ

)
ηi,

.
z̃i = ρηi − gz̃i.

The phase diagram for this system is shown in Fig. A3. The only initial
choice of ηi consistent with convergence to the steady state η∗i =

(
A
σB

)1/σ
,

z̃∗i = ρ
g

(
A
σB

)1/σ is η0,i = η∗i , so that ηt,i = η0,i =
(
A
σB

)1/σ ∀t. Other choices
of η0,i would lead either to a situation in which ηi hits zero in finite time
(which cannot be optimal, being lim

ηi→0
uc = ∞), or to a violation of the

transversality condition on z̃i.
Plugging ηt,i = η0,i into the law of motion of z̃i, and solving the resulting

autonomous differential equation, yields:

z̃t,i = [z0,i − (
ρ

g
)η0,i]e−gt + (

ρ

g
)η0,i, (A.3.1)

so that:

c̃t,i = z̃t,i + η0,i = [z0,i − (
ρ

g
)η0,i]e−gt + (

ρ+ g

g
)η0,i. (A.3.2)
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Using this expression for c̃t,i into the law of motion of k̃i, and integrating,
one gets:

k̃t,i = k0,ie
(A−g)t +

[
ρ+ g

g(A− g)

]
η0,i(1 − e−(A−g)t) +

(
1
A

)
[z0,i − (

ρ

g
)η0,i](e−gt − e(A−g)t).

Since the transversality condition lim
t→∞ e−(A−g)tk̃t,i = 0 requires:

η0,i =
(
A− g

A+ ρ

)
(Ak0,i − z0,i), (A.3.3)

in equilibrium:

k̃t,i =
[

ρ+ g

g(A+ ρ)

]
(Ak0,i − z0,i) +

[
ρ+ g

g(A+ ρ)

] [
z0,i −

(
ρ(A− g)
ρ+ g

)
k0,i

]
e−gt.

Finally, using (A.3.3) into (A.3.1) and (A.3.2) yields:

z̃t,i =
[
ρ(A− g)
g(A+ ρ)

]
(Ak0,i − z0,i) +

[
A(ρ+ g)
g(A+ ρ)

] [
z0,i −

(
ρ(A− g)
ρ+ g

)
k0,i

]
e−gt,

c̃t,i =
[
(A− g)(ρ+ g)
g(A+ ρ)

]
(Ak0,i − z0,i) +

[
A(ρ+ g)
g(A+ ρ)

] [
z0,i −

(
ρ(A− g)
ρ+ g

)
k0,i

]
e−gt.

These are the same equilibrium paths one would get using (17)-(19) and
setting ω1 = 1, ω2 = (1/A), ψ = g, the values these constants take on
when the instantaneous utility function is (23).
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