Economics 101A (Lecture 5, Revised)

Stefano DellaVigna

September 9, 2003

Outline

- 1. Properties of Preferences (continued)
- 2. From Preferences to Utility (and viceversa)
- 3. Common Utility Functions
- 4. (Utility maximization)

1 Properties of Preferences (ctd)

- Indifference relation $\sim: x \sim y \text{ if } x \succeq y \text{ and } y \succeq x$
- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$
- Exercise. If \succeq is rational,
 - \succ is transitive
 - \sim is transitive
 - Reflexive property of \succeq . For all $x, x \succeq x$.

- Other features of preferences
- Preference relation \succeq is:

- monotonic if $x \ge y$ implies $x \succeq y$.

- strictly monotonic if $x \ge y$ and $x_j > y_j$ for some j implies $x \succ y$.

convex if for all x, y, and z in X such that x ≥ z
and y ≥ z, then tx + (1 - t)y ≥ z for all t in
[0, 1]

2 From preferences to utility

- Nicholson, Ch. 3
- Economists like to use utility functions $u:X\to R$
- u(x) is 'liking' of good x
- u(a) > u(b) means: I prefer a to b.
- Def. Utility function u represents preferences ≽ if, for all x and y in X, x ≽ y if and only if u(x) ≥ u(y).
- Theorem. If preference relation ≽ is rational and continuous, there exists a continuous utility function u : X → R that represents it.

- Proof for case $X = R_+^2$ and \succeq strongly monotonic.
 - Define u(x) = ?
 - Consider the points in the diagonal, (t, t)
 - Set $\{t : (t,t) \succeq x\}$ is non-empty by monotonicity
 - Set $\{t : x \succeq (t, t)\}$ is non-empty by monotonicity
 - Both sets are closed by continuity
 - (Connected set X: $A \subset X$ closed, $B \subset X$ closed, and $A \cup B = X \Longrightarrow A \cap B$ non-empty)
 - By connectedness of R, the two sets have nonempty intersection ⇒ ∃ t_x such that (t_x, t_x) ~
 x. Define u(x) = t_x.

- Does u represent \succeq ?
- $x \succeq y \text{ implies } (u(x), u(x)) \sim x \succeq y \sim (u(y), u(y)) \Longrightarrow$ [by transitivity] $(u(x), u(x)) \succeq (u(y), u(y)) \Longrightarrow$ [by monotonicity] $u(x) \ge u(y)$
- Similarly can prove other direction (exercise!)
- (We do not prove continuity of u(x))

- Utility function representing \succeq is not unique
- Take exp(u(x))

•
$$u(a) > u(b) \iff \exp(u(a)) > \exp(u(b))$$

If u(x) represents preferences ≽ and f is a strictly increasing function, then f(u(x)) represents ≿ as well.

- If preferences are represented from a utility function, are they rational?
 - completeness
 - transitivity

- Indifference curves: $u(x_1, x_2) = \overline{u}$
- They are just implicit functions! $u(x_1, x_2) \bar{u} = 0$

$$\frac{dx_2}{dx_1} = -\frac{U'_{x_1}}{U'_{x_2}} = MRS$$

- Indifference curves for:
 - monotonic preferences;
 - strictly monotonic preferences;
 - convex preferences

3 Common utility functions

- Nicholson, Ch. 3, pp. 80-84
- 1. Cobb-Douglas preferences: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

•
$$MRS = -\alpha x_1^{\alpha-1} x_2^{1-\alpha} / (1-\alpha) x_1^{\alpha} x_2^{-\alpha} = \frac{\alpha}{1-\alpha} \frac{x_2}{x_1}$$

2. Perfect substitutes: $u(x_1, x_2) = \alpha x_1 + \beta x_2$

•
$$MRS = -\alpha/\beta$$

3. Perfect complements: $u(x_1, x_2) = \min(\alpha x_1, \beta x_2)$

•
$$MRS$$
 discontinuous at $x_2 = \frac{\alpha}{\beta} x_1$

4. Constant Elasticity of Substitution: $u(x_1, x_2) = \left(\alpha x_1^{\rho} + \beta x_2^{\rho}\right)^{1/\rho}$

•
$$MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2}\right)^{\rho-1}$$

- if $\rho = 1$, then...
- if $\rho = 0$, then...
- if $\rho \to +\infty$, then...