Economics 101A (Lecture 5, Revised)

Stefano DellaVigna

September 9, 2003

Outline

1. Properties of Preferences (continued)

2. From Preferences to Utility (and viceversa)
3. Common Utility Functions
4. (Utility maximization)

1 Properties of Preferences (ctd)

- Indifference relation $\sim: x \sim y$ if $x \succeq y$ and $y \succeq x$
- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$
- Exercise. If \succeq is rational,
$-\succ$ is transitive
$-\sim$ is transitive
- Reflexive property of \succeq. For all $x, x \succeq x$.
- Other features of preferences
- Preference relation \succeq is:
- monotonic if $x \geq y$ implies $x \succeq y$.
- strictly monotonic if $x \geq y$ and $x_{j}>y_{j}$ for some j implies $x \succ y$.
- convex if for all x, y, and z in X such that $x \succeq z$ and $y \succeq z$, then $t x+(1-t) y \succeq z$ for all t in [0, 1]

2 From preferences to utility

- Nicholson, Ch. 3
- Economists like to use utility functions $u: X \rightarrow R$
- $u(x)$ is 'liking' of $\operatorname{good} x$
- $u(a)>u(b)$ means: I prefer a to b.
- Def. Utility function u represents preferences \succeq if, for all x and y in $X, x \succeq y$ if and only if $u(x) \geq$ $u(y)$.
- Theorem. If preference relation \succeq is rational and continuous, there exists a continuous utility function $u: X \rightarrow R$ that represents it.
- Proof for case $X=R_{+}^{2}$ and \succeq strongly monotonic.
- Define $u(x)=$?
- Consider the points in the diagonal, (t, t)
- Set $\{t:(t, t) \succeq x\}$ is non-empty by monotonicity
- Set $\{t: x \succeq(t, t)\}$ is non-empty by monotonicity
- Both sets are closed by continuity
- (Connected set $X: A \subset X$ closed, $B \subset X$ closed, and $A \cup B=X \Longrightarrow A \cap B$ non-empty)
- By connectedness of R, the two sets have nonempty intersection $\Longrightarrow \exists t_{x}$ such that $\left(t_{x}, t_{x}\right) \sim$ x. Define $u(x)=t_{x}$.
- Does u represent \succeq ?
$-x \succeq y$ implies $(u(x), u(x)) \sim x \succeq y \sim(u(y), u(y))$ [by transitivity] $(u(x), u(x)) \succeq(u(y), u(y)) \Longrightarrow$ [by monotonicity] $u(x) \geq u(y)$
- Similarly can prove other direction (exercise!)
- (We do not prove continuity of $u(x)$)
- Utility function representing \succeq is not unique
- Take $\exp (u(x))$
- $u(a)>u(b) \Longleftrightarrow \exp (u(a))>\exp (u(b))$
- If $u(x)$ represents preferences \succeq and f is a strictly increasing function, then $f(u(x))$ represents \succeq as well.
- If preferences are represented from a utility function, are they rational?
- completeness
- transitivity
- Indifference curves: $u\left(x_{1}, x_{2}\right)=\bar{u}$
- They are just implicit functions! $u\left(x_{1}, x_{2}\right)-\bar{u}=0$

$$
\frac{d x_{2}}{d x_{1}}=-\frac{U_{x_{1}}^{\prime}}{U_{x_{2}}^{\prime}}=M R S
$$

- Indifference curves for:
- monotonic preferences;
- strictly monotonic preferences;
- convex preferences

3 Common utility functions

- Nicholson, Ch. 3, pp. 80-84

1. Cobb-Douglas preferences: $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$

- $M R S=-\alpha x_{1}^{a-1} x_{2}^{1-\alpha} /(1-a) x_{1}^{\alpha} x_{2}^{-\alpha}=\frac{\alpha}{1-\alpha} \frac{x_{2}}{x_{1}}$

2. Perfect substitutes: $u\left(x_{1}, x_{2}\right)=\alpha x_{1}+\beta x_{2}$

- $M R S=-\alpha / \beta$

3. Perfect complements: $u\left(x_{1}, x_{2}\right)=\min \left(\alpha x_{1}, \beta x_{2}\right)$

- $M R S$ discontinuous at $x_{2}=\frac{\alpha}{\beta} x_{1}$

4. Constant Elasticity of Substitution: $u\left(x_{1}, x_{2}\right)=$ $\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho}$

- $M R S=-\frac{\alpha}{\beta}\left(\frac{x_{1}}{x_{2}}\right)^{\rho-1}$
- if $\rho=1$, then...
- if $\rho=0$, then \ldots
- if $\rho \rightarrow+\infty$, then...

