Economics 101A (Lecture 6, Revised)

Stefano DellaVigna

September 11, 2003

Outline

- 1. Common Utility Functions
- 2. Utility Maximization with Lagrangeans
- 3. Utility maximization tricky cases

1 Common utility functions

- Nicholson, Ch. 3, pp. 80-84
- 1. Cobb-Douglas preferences: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$
 - $MRS = -\alpha x_1^{a-1} x_2^{1-\alpha} / (1-a) x_1^{\alpha} x_2^{-\alpha} = -\frac{\alpha}{1-\alpha} \frac{x_2}{x_1}$ [REVISED]

2. Perfect substitutes: $u(x_1, x_2) = \alpha x_1 + \beta x_2$

•
$$MRS = -\alpha/\beta$$

3. Perfect complements: $u(x_1, x_2) = \min(\alpha x_1, \beta x_2)$

•
$$MRS$$
 discontinuous at $x_2 = \frac{\alpha}{\beta} x_1$

4. Constant Elasticity of Substitution: $u(x_1, x_2) = \left(\alpha x_1^{\rho} + \beta x_2^{\rho}\right)^{1/\rho}$

•
$$MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2}\right)^{\rho-1}$$

- if $\rho = 1$, then...
- if $\rho = 0$, then...
- if $\rho \to -\infty$, then... [CORRECTION]

2 Utility Maximization

- Nicholson, Ch. 4, pp. 91-103
- $X = R_{+}^{2}$ (2 goods)
- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.
- Constraint: income = M
- Price of good $1 = p_1$, price of good $2 = p_2$
- Bundle x is feasible if $p_1x_1 + p_2x_2 \le M$
- Consumer maximizes

 $\max_{x_1, x_2} u(x_1, x_2)$ s.t. $p_1 x_1 + p_2 x_2 \le M$ $x_1 \ge 0, \ x_2 \ge 0$

- Maximization subject to inequality. How do we solve that?
- Trick: *u* strictly increasing in at least one dimension.
 (≻ strictly monotonic)
- Budget constraint always satisfied with equality

• Ignore temporarily $x_1 \ge 0$, $x_2 \ge 0$ and check afterwards that they are satisfied for x_1^* and x_2^* .

• Problem becomes

$$\max_{x_1, x_2} u(x_1, x_2)$$

s.t. $p_1 x_1 + p_2 x_2 - M = 0$

•
$$L(x_1, x_2) = u(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 = M)$$

• F.o.c.s:

$$u'_{x_i} - \lambda p_i = 0$$
 for $i = 1, 2$
 $p_1 x_1 + p_2 x_2 - M = 0$

• Moving the two terms across and dividing, we get:

$$MRS = -\frac{u'_{x_1}}{u'_{x_2}} = -\frac{p_1}{p_2}$$

• Graphical interpretation.

• Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$

s.t. $p_1 x_1 + p_2 x_2 - M = 0$

- Lagrangean =
- F.o.c.:

• Special case: $\rho = 0$ (Cobb-Douglas)

3 Utility maximization – tricky cases

1. Non-convex preferences. Example:

• Second order conditions:

$$H = \begin{pmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{x_1,x_1}'' & u_{x_1,x_2}'' \\ -p_2 & u_{x_2,x_1}'' & u_{x_2,x_2}'' \end{pmatrix}$$

$$|H| = p_1 \left(-p_1 u''_{x_2, x_2} + p_2 u''_{x_2, x_1} \right) - p_2 \left(-p_1 u''_{x_1, x_2} + p_2 u''_{x_1, x_1} \right) = -p_1^2 u''_{x_2, x_2} + 2p_1 p_2 u''_{x_1, x_2} - p_2^2 u''_{x_1, x_1}$$

2. Solution does not satisfy $x_1^* > 0$ or $x_2^* > 0$. Example:

 $\max x_1 * (x_2 + 5)$ s.t. $p_1 x_1 + p_2 x_2 = M$

• In this case consider corner conditions: what happens for $x_1^* = 0$? And $x_2^* = 0$?

3. Multiplicity of solutions. Example:

• Convex preferences that are not strictly convex

4. Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$

s.t. $p_1 x_1 + p_2 x_2 - M = \mathbf{0}$

- With $\rho > 1$ the interior solution is a minimum!
- Draw indifference curves for ho=1 (boundary case) and ho=2

• Can also check using second order conditions