Economics 101A (Lecture 6, Revised)

Stefano DellaVigna

September 11, 2003

Outline

1. Common Utility Functions

2. Utility Maximization with Lagrangeans
3. Utility maximization - tricky cases

1 Common utility functions

- Nicholson, Ch. 3, pp. 80-84

1. Cobb-Douglas preferences: $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$

- $M R S=-\alpha x_{1}^{a-1} x_{2}^{1-\alpha} /(1-a) x_{1}^{\alpha} x_{2}^{-\alpha}=-\frac{\alpha}{1-\alpha} \frac{x_{2}}{x_{1}}$ [REVISED]

2. Perfect substitutes: $u\left(x_{1}, x_{2}\right)=\alpha x_{1}+\beta x_{2}$

- $M R S=-\alpha / \beta$

3. Perfect complements: $u\left(x_{1}, x_{2}\right)=\min \left(\alpha x_{1}, \beta x_{2}\right)$

- $M R S$ discontinuous at $x_{2}=\frac{\alpha}{\beta} x_{1}$

4. Constant Elasticity of Substitution: $u\left(x_{1}, x_{2}\right)=$ $\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho}$

- $M R S=-\frac{\alpha}{\beta}\left(\frac{x_{1}}{x_{2}}\right)^{\rho-1}$
- if $\rho=1$, then...
- if $\rho=0$, then \ldots
- if $\rho \rightarrow-\infty$, then \ldots [CORRECTION]

2 Utility Maximization

- Nicholson, Ch. 4, pp. 91-103
- $X=R_{+}^{2}(2$ goods $)$
- Consumers: choose bundle $x=\left(x_{1}, x_{2}\right)$ in X which yields highest utility.
- Constraint: income $=M$
- Price of good $1=p_{1}$, price of good $2=p_{2}$
- Bundle x is feasible if $p_{1} x_{1}+p_{2} x_{2} \leq M$
- Consumer maximizes

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2} \leq M \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

- Maximization subject to inequality. How do we solve that?
- Trick: u strictly increasing in at least one dimension. (\succeq strictly monotonic)
- Budget constraint always satisfied with equality
- Ignore temporarily $x_{1} \geq 0, x_{2} \geq 0$ and check afterwards that they are satisfied for x_{1}^{*} and x_{2}^{*}.

- Problem becomes

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- $L\left(x_{1}, x_{2}\right)=u\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}=M\right)$
- F.o.c.s:

$$
\begin{aligned}
u_{x_{i}}^{\prime}-\lambda p_{i} & =0 \text { for } i=1,2 \\
p_{1} x_{1}+p_{2} x_{2}-M & =0
\end{aligned}
$$

- Moving the two terms across and dividing, we get:

$$
M R S=-\frac{u_{x_{1}}^{\prime}}{u_{x_{2}}^{\prime}}=-\frac{p_{1}}{p_{2}}
$$

- Graphical interpretation.
- Example with CES utility function.

$$
\begin{aligned}
& \max _{x_{1}, x_{2}}\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho} \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- Lagrangean $=$
- F.o.c.:
- Special case: $\rho=0$ (Cobb-Douglas)

3 Utility maximization - tricky cases

1. Non-convex preferences. Example:

- Second order conditions:

$$
H=\left(\begin{array}{ccc}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{x_{1}, x_{1}}^{\prime \prime} & u_{x_{1}, x_{2}}^{\prime \prime} \\
-p_{2} & u_{x_{2}, x_{1}}^{\prime \prime} & u_{x_{2}, x_{2}}^{\prime \prime}
\end{array}\right)
$$

$$
\begin{aligned}
|H|= & p_{1}\left(-p_{1} u_{x_{2}, x_{2}}^{\prime \prime}+p_{2} u_{x_{2}, x_{1}}^{\prime \prime}\right) \\
& -p_{2}\left(-p_{1} u_{x_{1}, x_{2}}^{\prime \prime}+p_{2} u_{x_{1}, x_{1}}^{\prime \prime}\right) \\
= & -p_{1}^{2} u_{x_{2}, x_{2}}^{\prime \prime}+2 p_{1} p_{2} u_{x_{1}, x_{2}}^{\prime \prime}-p_{2}^{2} u_{x_{1}, x_{1}}^{\prime \prime}
\end{aligned}
$$

2. Solution does not satisfy $x_{1}^{*}>0$ or $x_{2}^{*}>0$. Example:

$$
\begin{aligned}
& \max x_{1} *\left(x_{2}+5\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}=M
\end{aligned}
$$

- In this case consider corner conditions: what happens for $x_{1}^{*}=0$? And $x_{2}^{*}=0$?

3. Multiplicity of solutions. Example:

- Convex preferences that are not strictly convex

4. Example with CES utility function.

$$
\begin{aligned}
& \max _{x_{1}, x_{2}}\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho} \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- With $\rho>1$ the interior solution is a minimum!
- Draw indifference curves for $\rho=1$ (boundary case) and $\rho=2$
- Can also check using second order conditions

