Economics 101A (Lecture 7, Revised)

Stefano DellaVigna

September 16, 2003

Outline

- 1. Utility Maximization –Tricky cases II
- 2. Indirect Utility Function
- 3. Comparative Statics (introduction)

1 Utility maximization – tricky cases II

1. Non-convex preferences. Example:

• Second order conditions:

$$H = \begin{pmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{x_1,x_1}'' & u_{x_1,x_2}'' \\ -p_2 & u_{x_2,x_1}'' & u_{x_2,x_2}'' \end{pmatrix}$$

$$|H| = p_1 \left(-p_1 u''_{x_2, x_2} + p_2 u''_{x_2, x_1} \right) - p_2 \left(-p_1 u''_{x_1, x_2} + p_2 u''_{x_1, x_1} \right) = -p_1^2 u''_{x_2, x_2} + 2p_1 p_2 u''_{x_1, x_2} - p_2^2 u''_{x_1, x_1}$$

2. Solution does not satisfy $x_1^* > 0$ or $x_2^* > 0$. Example:

 $\max x_1 * (x_2 + 5)$ s.t. $p_1 x_1 + p_2 x_2 = M$

• In this case consider corner conditions: what happens for $x_1^* = 0$? And $x_2^* = 0$?

3. Multiplicity of solutions. Example:

• Convex preferences that are not strictly convex

4. Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$

s.t. $p_1 x_1 + p_2 x_2 - M = \mathbf{0}$

- With $\rho > 1$ the interior solution is a minimum!
- Draw indifference curves for ho=1 (boundary case) and ho=2

• Can also check using second order conditions

2 Indirect utility function

- Nicholson, Ch. 4, pp. 103–105
- Define the indirect utility v(p, M) ≡ u(x*(p, M)), with p vector of prices and x* vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimimum for prices \mathbf{p} and income M
- Some comparative statics: $\partial v(\mathbf{p}, M) / \partial M = ?$
- Hint: Use Envelope Theorem on Lagrangean function

• What is the sign of λ ?

•
$$\lambda = u'_{x_i}/p > 0$$

- $\partial v(\mathbf{p}, M) / \partial p_i = ?$
- Properties:
 - Indirect utility is always increasing in income ${\cal M}$
 - Indirect utility is always decreasing in the price $p_{i} \label{eq:pi}$

3 Comparative Statics (introduction)

- Nicholson, Ch. 5, 116–128.
- Utility maximization yields $x_i^* = x_i^*(p_1, p_2, M)$
- Quantity consumed as a function of income and price

• What happens to quantity consumed x_i^* as prices or income varies?

• Simple case: Equal increase in prices and income.

•
$$M' = tM, p'_1 = tp_1, p'_2 = tp_2.$$

- Compare $x^*(tM, tp_1, tp_2)$ and $x^*(M, p_1, p_2)$.
- What happens?

• Write budget line: $tp_1x_1 + tp_2x_2 = tM$

• Demand is homogeneous of degree 0 in p and M: $x^*(tM, tp_1, tp_2) = t^0 x^*(M, p_1, p_2) = x^*(M, p_1, p_2).$ • Consider Cobb-Douglas Case:

$$x_1^* = \frac{\alpha}{\alpha + \beta} M/p_1, x_2^* = \frac{\beta}{\alpha + \beta} M/p_2$$

• What is $\partial x^* / \partial M$?

• What is $\partial x^* / \partial p_x$?

• What is $\partial x^* / \partial p_y$?

• General results?