Economics 101A (Lecture 7, Revised)

Stefano DellaVigna

September 16, 2003

Outline

1. Utility Maximization -Tricky cases II

2. Indirect Utility Function
3. Comparative Statics (introduction)

1 Utility maximization - tricky cases II

1. Non-convex preferences. Example:

- Second order conditions:

$$
H=\left(\begin{array}{ccc}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{x_{1}, x_{1}}^{\prime \prime} & u_{x_{1}, x_{2}}^{\prime \prime} \\
-p_{2} & u_{x_{2}, x_{1}}^{\prime \prime} & u_{x_{2}, x_{2}}^{\prime \prime}
\end{array}\right)
$$

$$
\begin{aligned}
|H|= & p_{1}\left(-p_{1} u_{x_{2}, x_{2}}^{\prime \prime}+p_{2} u_{x_{2}, x_{1}}^{\prime \prime}\right) \\
& -p_{2}\left(-p_{1} u_{x_{1}, x_{2}}^{\prime \prime}+p_{2} u_{x_{1}, x_{1}}^{\prime \prime}\right) \\
= & -p_{1}^{2} u_{x_{2}, x_{2}}^{\prime \prime}+2 p_{1} p_{2} u_{x_{1}, x_{2}}^{\prime \prime}-p_{2}^{2} u_{x_{1}, x_{1}}^{\prime \prime}
\end{aligned}
$$

2. Solution does not satisfy $x_{1}^{*}>0$ or $x_{2}^{*}>0$. Example:

$$
\begin{aligned}
& \max x_{1} *\left(x_{2}+5\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}=M
\end{aligned}
$$

- In this case consider corner conditions: what happens for $x_{1}^{*}=0$? And $x_{2}^{*}=0$?

3. Multiplicity of solutions. Example:

- Convex preferences that are not strictly convex

4. Example with CES utility function.

$$
\begin{aligned}
& \max _{x_{1}, x_{2}}\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho} \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- With $\rho>1$ the interior solution is a minimum!
- Draw indifference curves for $\rho=1$ (boundary case) and $\rho=2$
- Can also check using second order conditions

2 Indirect utility function

- Nicholson, Ch. 4, pp. 103-105
- Define the indirect utility $v(\mathbf{p}, M) \equiv u\left(\mathbf{x}^{*}(\mathbf{p}, M)\right)$, with \mathbf{p} vector of prices and \mathbf{x}^{*} vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimimum for prices \mathbf{p} and income M
- Some comparative statics: $\partial v(\mathbf{p}, M) / \partial M=$?
- Hint: Use Envelope Theorem on Lagrangean function
- What is the sign of λ ?
- $\lambda=u_{x_{i}}^{\prime} / p>0$
- $\partial v(\mathbf{p}, M) / \partial p_{i}=?$
- Properties:
- Indirect utility is always increasing in income M
- Indirect utility is always decreasing in the price p_{i}

3 Comparative Statics (introduction)

- Nicholson, Ch. 5, 116-128.
- Utility maximization yields $x_{i}^{*}=x_{i}^{*}\left(p_{1}, p_{2}, M\right)$
- Quantity consumed as a function of income and price
- What happens to quantity consumed x_{i}^{*} as prices or income varies?
- Simple case: Equal increase in prices and income.
- $M^{\prime}=t M, p_{1}^{\prime}=t p_{1}, p_{2}^{\prime}=t p_{2}$.
- Compare $x^{*}\left(t M, t p_{1}, t p_{2}\right)$ and $x^{*}\left(M, p_{1}, p_{2}\right)$.
- What happens?
- Write budget line: $t p_{1} x_{1}+t p_{2} x_{2}=t M$
- Demand is homogeneous of degree 0 in \mathbf{p} and M :

$$
x^{*}\left(t M, t p_{1}, t p_{2}\right)=t^{0} x^{*}\left(M, p_{1}, p_{2}\right)=x^{*}\left(M, p_{1}, p_{2}\right)
$$

- Consider Cobb-Douglas Case:

$$
x_{1}^{*}=\frac{\alpha}{\alpha+\beta} M / p_{1}, x_{2}^{*}=\frac{\beta}{\alpha+\beta} M / p_{2}
$$

- What is $\partial x^{*} / \partial M$?
- What is $\partial x^{*} / \partial p_{x}$?
- What is $\partial x^{*} / \partial p_{y}$?
- General results?

