Economics 101A (Lecture 8, Revised)

Stefano DellaVigna

September 18, 2003

Outline

- 1. Income changes
- 2. Price Changes
- 3. Expenditure minimization

1 Income changes

- Income increases from M to to M' > M.
- Budget line $(p_1x_1 + p_2x_2 = M)$ shifts out:

$$x_2 = \frac{M'}{p_2} - x_1 \frac{p_1}{p_2}$$

• New optimum?

• Engel curve: $x_i^*(M)$: demand for good *i* as function of income *M* holding fixed prices p_1, p_2

- Does x_i^* increase with M?
 - Yes. Good i is normal

- No. Good i is inferior

2 Price changes

- Price of good i increases from p_i to to $p_i^\prime > p_i$
- For example, decrease in price of good 2, $p_2^\prime < p_2$
- Budget line tilts:

$$x_2 = \frac{M}{p_2'} - x_1 \frac{p_1}{p_2'}$$

• New optimum?

• Demand curve: $x_i^*(p_i)$: demand for good *i* as function of own price holding fixed p_j and M

 Odd convention of economists: plot price p_i on vertical axis and quantity x_i on horizontal axis. Better get used to it!

- Does x_i^* decrease with p_i ?
 - Yes. Most cases

- No. Good i is Giffen

- Ex.: Potatoes in Ireland
- Do not confuse with Veblen effect for luxury goods or informational asimmetries: these effects are real, but not included in current model [REVISED]

3 Expenditure minimization

- Nicholson, Ch. 4, pp. 105-108.
- Solve problem **EMIN** (minimize expenditure):

 $\min p_1 x_1 + p_2 x_2$
s.t. $u(x_1, x_2) \ge \bar{u}$

- \bullet Choose bundle that attains utility \bar{u} with minimal expenditure
- Ex.: You are choosing combination CDs/restaurant to make a friend happy
- If utility *u* strictly increasing in *x_i*, can maximize s.t. equality
- Denote by $h_i(p_1, p_2, \bar{u})$ solution to EMIN problem
- $h_i(p_1, p_2, \bar{u})$ is Hicksian or compensated demand

- Graphically:
 - Fix indifference curve at level \bar{u}
 - Consider budget sets with different ${\cal M}$
 - Pick budget set which is tangent to indifference curve

- Optimum coincides with optimum of Utility Maximization!
- Formally:

$$h_i(p_1, p_2, \bar{u}) = x_i^*(p_1, p_2, e(p_1, p_2, \bar{u}))$$

- Expenditure function is expenditure at optimum
- $e(p_1, p_2, \bar{u}) = p_1 h_1(p_1, p_2, \bar{u}) + p_2 h_2(p_1, p_2, \bar{u})$

- $h_i(p_i)$ is Hicksian or compensated demand function
- Is h_i always decreasing in p_i ? Yes!
- Graphical proof: moving along a convex indifference curve

• (For non-convex indifferent curves, still true)

- Now: go back to case where p_2 increases to $p'_2 > p_2$
- What is $\partial x_2^* / \partial p_2$? Decompose effect:
 - 1. Substitution effect of an increase in p_i
 - $\partial h_2^* / \partial p_2$, that is change in EMIN point as p_2 descreases
 - Moving along an indifference curve
 - Certainly $\partial h_2^* / \partial p_2 < 0$

- 2. Income effect of an increase in p_i
 - $\partial x_2^*/\partial M$, increase in consumption of good 2 due to increased income
- * Shift out a budget line
 - * $\partial x_2^* / \partial M > 0$ for normal goods, $\partial x_2^* / \partial M < 0$ for inferior goods