Economics 101A (Lecture 12, Revised)

Stefano DellaVigna

October 7, 2003

Outline

- 1. Mid-term questionnaire
- 2. Altruism and Charitable Donations
- 3. Introduction to probability
- 4. Expected utility

1 Mid-term questionnaire

2 Altruism and Charitable Donations

• Wendy maximizes

$$\max_D u(M_W - D) + lpha u \left(M_M + D
ight)$$

• First order condition:

$$-u'(M_W - D^*) + \alpha u'(M_M + D^*) = 0$$

• Second order conditions:

$$u''(M_W - D^*) + \alpha u''(M_M + D^*) < 0$$

- Assume $\alpha = 1$.
 - Solution?

$$- u'(M_W - D) = u'(M_M + D^*)$$

-
$$M_W - D^* = M_M + D^*$$
 or $D^* = (M_W - M_M)/2$

- Transfer money so as to equate incomes!
- Careful: $D<{\rm 0}~({\rm negative~donation!})$ if $M_M>M_W$
- Corrected maximization:

$$\max_{D} u(M_W - D) + \alpha u(M_M + D)$$

s.t.D \ge 0

• Solution (
$$\alpha = 1$$
):

$$D^* = \begin{cases} (M_W - M_M)/2 & \text{if } M_W - M_M > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Assume interior solution. $(D^* > 0)$
- Comparative statics 1 (altruism):

$$\frac{\partial D^*}{\partial \alpha} = -\frac{u'\left(M_M + D^*\right)}{u''(M_W - D^*) + \alpha u''\left(M_M + D^*\right)} > 0$$

• Comparative statics 2 (income of donor):

$$\frac{\partial D^*}{\partial M_W} = -\frac{-u''(M_W + D^*)}{u''(M_W - D^*) + \alpha u''(M_M + D^*)} > 0$$

• Comparative statics 3 (income of recipient):

$$\frac{\partial D^*}{\partial M_M} = -\frac{\alpha u'' (M_M + D^*)}{u'' (M_W - D^*) + \alpha u'' (M_M + D^*)} < 0$$

3 Introduction to Probability

- So far deterministic world:
 - income given, known M
 - interest rate known r
- But some variables are unknown at time of decision:
 - future income M_1 ?
 - future interest rate r_1 ?

- Generalize framework to allow for uncertainty
 - Events that are truly unpredictable (weather)
 - Event that are very hard to predict (future income)

- Probability is the language of uncertainty
- Example:
 - Income M_1 at t = 1 depends on state of the economy
 - Recession $(M_1 = 20)$, Slow growth $(M_2 = 25)$, Boom $(M_3 = 30)$

– Three probabilities: p_1, p_2, p_3

$$- p_1 = P(M_1) = P(\text{recession})$$

• Properties:

$$- 0 \le p_i \le 1$$

 $- p_1 + p_2 + p_3 = 1$

• Mean income: $EM = \sum_{i=1}^{3} p_i M_i$

• If
$$(p_1, p_2, p_3) = (1/3, 1/3, 1/3)$$
,
 $EM = \frac{1}{3}20 + \frac{1}{3}25 + \frac{1}{3}30 = \frac{75}{3} = 25$

- Variance of income: $V(M) = \sum_{i=1}^{3} p_i (M_i EM)^2$
- If $(p_1, p_2, p_3) = (1/3, 1/3, 1/3)$, $V(M) = \frac{1}{3}(20 - 25)^2 + \frac{1}{3}(25 - 25)^2 + \frac{1}{3}(30 - 25)^2$ $= \frac{1}{3}5^2 + \frac{1}{3}5^2 = 2/3 * 25$
- Mean and variance if $(p_1, p_2, p_3) = (1/4, 1/2, 1/4)$?

4 Expected Utility

- Nicholson, Ch. 8, pp. 198-206
- Consumer at time 0 asks: what is utility in time 1?
- At t = 1 consumer maximizes

$$\begin{array}{l} \max U(c^{1})\\ s.t. \ c_{i}^{1} \leq M_{i}^{1} + (1+r) \left(M^{0} - c^{0}\right)\\ \end{array}$$
 with $i=1,2,3.$

- What is utility at optimum at t = 1 if U' > 0?
- Assume for now $M^0 c^0 = 0$
- Utility $U\left(M_i^1\right)$
- This is uncertain, depends on which *i* is realized!

- How do we evaluate future uncertain utility?
- Expected utility

$$EU = \sum_{i=1}^{3} p_i U\left(M_i^1\right)$$

• In example:

$$EU = 1/3U(20) + 1/3U(25) + 1/3U(30)$$

- Compare with U(EC) = U(25).
- Agents prefer riskless outcome EM to uncertain outcome M if [REVISED]

$$1/3U(20) + 1/3U(25) + 1/3U(30) < U(25)$$
 or
 $1/3U(20) + 1/3U(30) < 2/3U(25)$ or
 $1/2U(20) + 1/2U(30) < U(25)$

• Picture

- Depends on sign of U'', on concavity/convexity
- Three cases:
 - U''(x) = 0 for all x. (linearity of U)
 * U(x) = a + bx
 * 1/2U(20) + 1/2U(30) = U(25)

-
$$U''(x) < 0$$
 for all x . (concavity of U)
* $1/2U(20) + 1/2U(30) < U(25)$

-
$$U''(x) > 0$$
 for all x . (convexity of U)
* $1/2U(20) + 1/2U(30) > U(25)$

 If U''(x) = 0 (linearity), consumer is indifferent to uncertainty

 If U''(x) < 0 (concavity), consumer dislikes uncertainty

• If U''(x) > 0 (convexity), consumer likes uncertainty

- Do consumers like uncertainty?
- Do *you* like uncertainty?

• Theorem. (Jensen's inequality) If a function f(x) is concave, the following inequality holds:

$$f(Ex) \ge Ef(x)$$

where ${\cal E}$ indicates expectation. If f is strictly concave, we obtain

$$f(Ex) > Ef(x)$$

- Apply to utility function U.
- Individuals dislike uncertainty:

$$U\left(Ex\right) \geq EU\left(x\right)$$

- Jensen's inequality then implies U concave $(U'' \leq 0)$
- Relate to diminishing marginal utility of income