Economics 101A (Lecture 13, Revised)

Stefano DellaVigna

October 9, 2003

Outline

1. Nobel Prize winners

2. Risk Aversion
3. Insurance
4. Investment in Risky Asset
5. Measures of Risk Aversion

1 Nobel Prize winners

- After two Nobel prize winners in Berkeley or exBerkeley...
- Dan McFadden (2000);
- George Akerlof (2001);
- Daniel Kahneman (2002).
- ...one in the UC system:
- Clive Granger (UCSD);
- Robert Engel
- It is the time of time-series econometrics
- What is econometrics?
- Getting the data to speak about economics variables
- Examples:
- Minimum wage and labor demand (Card and Krueger, 1990)
- Effect of schooling programs (Chay, 2003)
- Incumbency effect (Lee, 2002)

2 Risk aversion

- Nicholson, Ch. 8, pp. 200-206. [REVISED]
- Risk aversion:
- individuals dislike uncertainty
- u concave, $u^{\prime \prime}<0$
- Implications?
- purchase of insurance (possible accident)
- investment in risky asset (risky investment)
- choice over time (future income uncertain)
- Experiment - Are you risk-averse?
- Let me try again!

3 Insurance

- Nicholson, Ch. 8, pp. 211-216 [REVISED, different treatment than in class]
- Individual has:
- wealth w
- utility function u, with $u^{\prime}>0, u^{\prime \prime}<0$
- Probability p of accident with loss L
- Insurance offers coverage:
- premium $\$ q$ for each $\$ 1$ paid in case of accident
- units of coverage purchased α
- Individual maximization:

$$
\begin{aligned}
& \max _{\alpha}(1-p) u(w-q \alpha)+p u(w-q \alpha-L+\alpha) \\
& \text { s.t. } \alpha \geq 0
\end{aligned}
$$

- Assume $\alpha^{*} \geq 0$, check later
- First order conditions:

$$
\begin{aligned}
0= & -q(1-p) u^{\prime}(w-q \alpha) \\
& +(1-q) p u^{\prime}(w-q \alpha-L+\alpha)
\end{aligned}
$$

or

$$
\frac{u^{\prime}(w-q \alpha)}{u^{\prime}(w-q \alpha-L+\alpha)}=\frac{1-q}{q} \frac{p}{1-p}
$$

- Assume first $q=p$ (insurance is fair)
- Solution for $\alpha^{*}=$?
- $\alpha^{*}>0$, so we are ok!
- What if $q>p$ (insurance needs to cover operating costs)?
- Insurance will be only partial (if at all)
- Exercise: Check second order conditions!

4 Investment in Risk Asset

- Individual has:
- wealth w
- utility function u, with $u^{\prime}>0$
- Two possible investments:
- Asset B (bond) yields return 1 for each dollar
- Asset S (stock) yields uncertain return $(1+r)$: * $r=r_{+}>0$ with probability p
* $r=r_{-}<0$ with probability $1-p$
* $E r=p r_{+}+(1-p) r_{-}>0$
- Share of wealth invested in stock $S=\alpha$
- Individual maximization:

$$
\begin{aligned}
& \max _{\alpha}(1-p) u\left(w\left[(1-\alpha)+\alpha\left(1+r_{-}\right)\right]\right)+ \\
& +p u\left(w\left[(1-\alpha)+\alpha\left(1+r_{+}\right)\right]\right) \\
& \text {s.t. } 0 \leq \alpha \leq 1
\end{aligned}
$$

- Case of risk neutrality: $u(x)=a+b x, b>0$
- Assume $a=0$ (no loss of generality)
- Maximization becomes

$$
\max _{\alpha} b(1-p)\left(w\left[1+\alpha r_{-}\right]\right)+b p\left(w\left[1+\alpha r_{+}\right]\right)
$$

or

$$
\max _{\alpha} b w+\alpha b w\left[(1-p) r_{-}+p r_{+}\right]
$$

- Sign of term in square brackets? Positive!
- Set $\alpha^{*}=1$
- Case of risk aversion: $u^{\prime \prime}<0$
- Assume $0 \leq \alpha^{*} \leq 1$, check later
- First order conditions:

$$
\begin{aligned}
0= & (1-p)\left(w r_{-}\right) u^{\prime}\left(w\left[1+\alpha r_{-}\right]\right)+ \\
& +p\left(w r_{+}\right) u^{\prime}\left(w\left[1+\alpha r_{+}\right]\right)
\end{aligned}
$$

- Can $\alpha^{*}=0$ be solution?
- Solution is $\alpha^{*}>0$ (positive investment in stock)
- Exercise: Check s.o.c.

5 Next lecture and beyond

- Tu:
- Time consistency
- Time inconsistency
- Application to health clubs
- Th:
- Production!
- Returns to scale
- Cost minimization

