Economics 101A (Lecture 14, Revised)

Stefano DellaVigna

October 14, 2003

Outline

1. Investment in Risky Asset

2. Measures of Risk Aversion
3. Time Consistency
4. Time Inconsistency

1 Investment in Risk Asset

- Individual has:
- wealth w
- utility function u, with $u^{\prime}>0$
- Two possible investments:
- Asset B (bond) yields return 1 for each dollar
- Asset S (stock) yields uncertain return $(1+r)$: * $r=r_{+}>0$ with probability p
* $r=r_{-}<0$ with probability $1-p$
* $E r=p r_{+}+(1-p) r_{-}>0$
- Share of wealth invested in stock $S=\alpha$
- Individual maximization:

$$
\begin{aligned}
& \max _{\alpha}(1-p) u\left(w\left[(1-\alpha)+\alpha\left(1+r_{-}\right)\right]\right)+ \\
& +p u\left(w\left[(1-\alpha)+\alpha\left(1+r_{+}\right)\right]\right) \\
& \text {s.t. } 0 \leq \alpha \leq 1
\end{aligned}
$$

- Case of risk aversion: $u^{\prime \prime}<0$
- Assume $0 \leq \alpha^{*} \leq 1$, check later
- First order conditions:

$$
\begin{aligned}
0= & (1-p)\left(w r_{-}\right) u^{\prime}\left(w\left[1+\alpha r_{-}\right]\right)+ \\
& +p\left(w r_{+}\right) u^{\prime}\left(w\left[1+\alpha r_{+}\right]\right)
\end{aligned}
$$

- Can $\alpha^{*}=0$ be solution?
- Solution is $\alpha^{*}>0$ (positive investment in stock)
- Exercise: Check s.o.c.

2 Measures of Risk Aversion

- Nicholson, Ch. 8, pp. 207-210.
- How risk averse is an individual?
- Two measures:
- Absolute Risk Aversion r_{A} :

$$
r_{A}=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}
$$

- Relative Risk Aversion r_{R} :

$$
r_{R}=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)} x
$$

- Examples in the Problem Set

3 Time consistency

- Nicholson, Ch. 23, pp. 629-633. (Certainty case only)
- Intertemporal choice
- Three periods, $t=0, t=1$, and $t=2$
- At each period i, agents:
- have income $M_{i}^{\prime}=M_{i}$ +savings/debts from previous period
- choose consumption c_{i};
- can save/borrow $M_{i}^{\prime}-c_{i}$
- no borrowing in last period: at $t=2 M_{2}^{\prime}=c_{2}$
- Utility function at $t=0$

$$
u\left(c_{0}, c_{1}, c_{2}\right)=U\left(c_{0}\right)+\frac{1}{1+\delta} E U\left(c_{1}\right)+\frac{1}{(1+\delta)^{2}} E U\left(c_{2}\right)
$$

- Utility function at $t=1$

$$
u\left(c_{1}, c_{2}\right)=U\left(c_{1}\right)+\frac{1}{1+\delta} E U\left(c_{2}\right)
$$

- Utility function at $t=2$

$$
u\left(c_{2}\right)=U\left(c_{2}\right)
$$

- $U^{\prime}>0, U^{\prime \prime}<0$
- Question: Do preferences of agent in period 0 agree with preferences of agent in period 1 ?
- Period 1.
- Budget constraint at $t=1$:

$$
c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
$$

- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{1}\right)+\frac{1}{1+\delta} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}\right)}{E U^{\prime}\left(c_{2}\right)}=\frac{1+r}{1+\delta}
$$

- Back to period 0.
- Agent at time 0 can commit to consumption at time 1 as function of stochastic income M_{1}.
- Anticipated budget constraint at $t=1$:

$$
c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
$$

- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right)+\frac{1}{(1+\delta)^{2}} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}\right)}{E U^{\prime}\left(c_{2}\right)}=\frac{1+r}{1+\delta}
$$

- The two conditions coincide!
- Time consistency. Plans for future coincide with future actions.
- To see why, rewrite utility function $u\left(c_{0}, c_{1}, c_{2}\right)$:

$$
\begin{aligned}
& U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right)+\frac{1}{(1+\delta)^{2}} E U\left(c_{2}\right) \\
= & U\left(c_{0}\right)+\frac{1}{1+\delta}\left[U\left(c_{1}\right)+\frac{1}{1+\delta} E U\left(c_{2}\right)\right]
\end{aligned}
$$

- Expression in brackets coincides with utility at $t=1$
- Is time consistency right?
- addictive products (alcohol, drugs);
- good actions (exercising, helping friends);
- immediate gratification (shopping, credit card borrowing)

4 Time Inconsistency

- Alternative specification (Akerlof, 1991; Laibson, 1997; O'Donoghue and Rabin, 1999)
- Utility at time t is $u\left(c_{t}, c_{t+1}, c_{t+2}\right)$:

$$
u\left(c_{t}\right)+\frac{\beta}{1+\delta} u\left(c_{t+1}\right)+\frac{\beta}{(1+\delta)^{2}} u\left(c_{t+2}\right)+\ldots
$$

- Discount factor is

$$
1, \frac{\beta}{1+\delta}, \frac{\beta}{(1+\delta)^{2}}, \frac{\beta}{(1+\delta)^{3}}, \ldots
$$

instead of

$$
1, \frac{1}{1+\delta}, \frac{1}{(1+\delta)^{2}}, \frac{1}{(1+\delta)^{3}}, \ldots
$$

- What is the difference?
- Immediate gratification: $\beta<1$
- Back to our problem: Period 1.
- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{1}\right)+\frac{\beta}{1+\delta} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}^{*}\right)}{E U^{\prime}\left(c_{2}^{*}\right)}=\beta \frac{1+r}{1+\delta}
$$

- Now, period 0 with commitment.
- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{0}\right)+\frac{\beta}{1+\delta} U\left(c_{1}\right)+\frac{\beta}{(1+\delta)^{2}} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}^{*, c}\right)}{E U^{\prime}\left(c_{2}^{*, c}\right)}=\frac{1+r}{1+\delta}
$$

- The two conditions differ!
- Time inconsistency: $c_{1}^{*, c}<c_{1}^{*}$ and $c_{2}^{*, c}>c_{2}^{*}$
- The agent allows him/herself too much immediate consumption and saves too little
- Ok, we agree. but should we study this as economists?
- YES!
- One trillion dollars in credit card debt;
- Most debt is in teaser rates;
- Two thirds of Americans are overwight or obese;
- \$10bn health-club industry
- Is this testable?
- In the laboratory?
- In the field?

5 Next lecture and beyond

- Th:
- Finish Time Inconsistency
- Begin Production
- Returns to scale
- Cost minimization

