Economics 101A (Lecture 16, Revised)

Stefano DellaVigna

October 21, 2003

Outline

1. Addenda to isoquants

2. Cost Minimization: Summary
3. Cost Minimization: Example
4. Geometry of Cost Curves

1 Addenda to isoquants

- Production function $f(L, K)$
- When are isoquants convex? When $d^{2} K / d^{2} L>0$
- Mathematically,

$$
\left.\frac{d K}{d L}\right|_{\text {isoquant }}=-\frac{f_{L}^{\prime}(L, K(L))}{f_{K}^{\prime}(L, K(L))}
$$

- What is

$$
\left.\frac{d^{2} K}{d^{2} L}\right|_{\text {isoquant }}=?
$$

Good exercise!

- The steps are as follows:
- $d^{2} K / d^{2} L$ is the second derivative with respect to L of $d K / d L$. It follows $\left.\frac{d^{2} K}{d^{2} L}\right|_{\text {isoquant }}=$

$$
\begin{gathered}
-\frac{\left[f_{L, L}^{\prime \prime}(L, K)+f_{L, K}^{\prime \prime}(L, K) \frac{\partial K(L)}{\partial L}\right] f_{K}^{\prime}(L, K)}{\left(f_{K}^{\prime}(K, L)\right)^{2}} \\
-\frac{-\left[f_{K, L}^{\prime \prime}(L, K)+f_{K, K}^{\prime \prime}(L, K) \frac{\partial K(L)}{\partial L}\right] f_{L}^{\prime}(L, K)}{\left(f_{K}^{\prime}(K, L)\right)^{2}}
\end{gathered}
$$

- Substitute in

$$
\frac{\partial K(L)}{\partial L}=-\frac{f_{L}^{\prime}(L, K(L))}{f_{K}^{\prime}(L, K(L))}
$$

- Simplify and get

$$
\begin{aligned}
\left.\frac{d^{2} K}{d^{2} L}\right|_{\text {isoquant }}= & -\frac{f_{L, L}^{\prime \prime}(L, K(L)) f_{K}^{\prime}(L, K(L))}{\left(f_{K}^{\prime}(K(L), L)\right)^{2}} \\
& +\frac{2 f_{K, L}^{\prime \prime}(L, K(L)) f_{L}^{\prime}(L, K(L))}{\left(f_{K}^{\prime}(K(L), L)\right)^{2}} \\
& -\frac{f_{K, K}^{\prime \prime}(L, K(L)) \frac{\left[f_{L}^{\prime}(L, K(L))\right]^{2}}{f_{K}^{\prime}(L, K(L))}}{\left(f_{K}^{\prime}(K(L), L)\right)^{2}}
\end{aligned}
$$

- Terms 1 and 3 are always positive.
- Term 2 is positive if $f_{K, L}^{\prime \prime}(L, K(L)) \geq 0$
- Conclusion: $f_{K, L}^{\prime \prime}(L, K(L)) \geq 0$ is the only additional assumption we need to guarantee convex isoquants ($d^{2} K / d^{2} L>0$)

2 Cost Minimization: Summary

- First stage. Firm's objective function:

$$
\begin{aligned}
& \min _{L, K} w L+r K \\
& \text { s.t. } f(L, K) \geq y
\end{aligned}
$$

- Equality in constraint holds if:

1. $w>0, r>0$;
2. f strictly increasing in at least L or K.

- Counterexample if ass. 1 is not satisfied
- Counterexample if ass. 2 is not satisfied
- Second stage. Firm's objective function:

$$
\max _{y} p y-c(w, r, y)
$$

- First order condition:

$$
p-c_{y}^{\prime}\left(w, r, y^{*}\right)=0
$$

- Second order condition:

$$
-c_{y, y}^{\prime \prime}\left(w, r, y^{*}\right)<0
$$

- For maximum, need increasing marginal cost curve.

3 Cost Minimization: Example

- [HEAVILY REVISED BELOW]
- Continue example above: $y=f(L, K)=A K^{\alpha} L^{\beta}$
- Cost minimization:

$$
\begin{aligned}
& \min w L+r K \\
& \text { s.t. } A K^{\alpha} L^{\beta}=y
\end{aligned}
$$

- Solutions:
- Optimal amount of labor:

$$
L^{*}(r, w, y)=\left(\frac{y}{A}\right)^{\frac{1}{\alpha+\beta}}\left(\frac{w}{r} \frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}}
$$

- Optimal amount of capital:

$$
\begin{aligned}
K^{*}(r, w, y) & =\frac{w}{r} \frac{\alpha}{\beta}\left(\frac{y}{A}\right)^{\frac{1}{\alpha+\beta}}\left(\frac{w}{r} \frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}}= \\
& =\left(\frac{y}{A}\right)^{\frac{1}{\alpha+\beta}}\left(\frac{w}{r} \frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}
\end{aligned}
$$

- Check various comparative statics:
- $\partial L^{*} / \partial A<0$ (technological progress and unemployment)
$-\partial L^{*} / \partial y>0$ (more workers needed to produce more output)
$-\partial L^{*} / \partial w<0, \partial L^{*} / \partial r>0$ (substitute away from more expensive inputs)
- Parallel comparative statics for K^{*}
- Cost function

$$
\begin{aligned}
c(w, r, y) & =w L^{*}(r, w, y)+r K^{*}(r, w, y)= \\
& =\left(\frac{y}{A}\right)^{\frac{1}{\alpha+\beta}}\left[\begin{array}{c}
w\left(\frac{w}{r} \frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}}+ \\
+r\left(\frac{w}{r} \frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}
\end{array}\right]
\end{aligned}
$$

- Define $B:=w\left(\frac{w}{r} \frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}}+r\left(\frac{w}{r} \frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}$
- Cost-minimizing output choice:

$$
\max p y-B\left(\frac{y}{A}\right)^{\frac{1}{\alpha+\beta}}
$$

- First order condition:

$$
p-\frac{1}{\alpha+\beta} \frac{B}{A}\left(\frac{y}{A}\right)^{\frac{1-(\alpha+\beta)}{\alpha+\beta}}=0
$$

- Second order condition:

$$
-\frac{1}{\alpha+\beta} \frac{1-(\alpha+\beta)}{\alpha+\beta} \frac{B}{A^{2}}\left(\frac{y}{A}\right)^{\frac{1-2(\alpha+\beta)}{\alpha+\beta}}
$$

- When is the second order condition satisfied?
- Solution:

$$
\begin{array}{r}
-\alpha+\beta=1(\mathrm{CRS}): \\
* \text { S.o.c. equal to } 0
\end{array}
$$

* Solution depends on p
* For $p>\frac{1}{\alpha+\beta} \frac{B}{A}$, produce $y^{*} \rightarrow \infty$
* For $p=\frac{1}{\alpha+\beta} \frac{B}{A}$, produce any $y^{*} \in[0, \infty)$
* For $p<\frac{1}{\alpha+\beta} \frac{B}{A}$, produce $y^{*}=0$
$-\alpha+\beta>1$ (IRS):
* S.o.c. positive
* Solution of f.o.c. is a minimum!
* Solution is $y^{*} \rightarrow \infty$.
* Keep increasing production since higher production is associated iwth higher returns
$-\alpha+\beta<1$ (DRS):
* s.o.c. negative. OK!
* Solution of f.o.c. is an interior optimum
* This is the only "well-behaved" case under perfect competition
* Here can define a supply function

4 Geometry of cost curves

- Nicholson, Ch. 12, pp. 307-312 and Ch. 13, pp. 342-346.
- Marginal costs $M C=\partial c / \partial y \rightarrow$ Cost minimization

$$
p=M C=\partial c(w, r, y) / \partial y
$$

- Average costs $A C=c / y \rightarrow$ Does firm break even?

$$
\begin{aligned}
\pi & =p y-c(w, r, y)>0 \mathrm{iff} \\
\pi / y & =p-c(w, r, y) / y>0 \mathrm{iff} \\
c(w, r, y) / y & =A C<p
\end{aligned}
$$

- Supply function. Portion of marginal cost $M C$ above average costs. (price equals marginal cost)
- Assume only 1 input (expenditure minimization is trivial)
- Case 1. Production function. $y=L^{\alpha}$
- Cost function? (cost of input is w):

$$
c(w, y)=w L^{*}(w, y)=w y^{1 / \alpha}
$$

- Marginal cost?

$$
\frac{\partial c(w, y)}{\partial y}=\frac{1}{\alpha} w y^{(1-\alpha) / \alpha}
$$

- Average cost $c(w, y) / y$?

$$
\frac{c(w, y)}{y}=\frac{w y^{1 / \alpha}}{y}=w y^{(1-\alpha) / \alpha}
$$

- Case 1a. $\alpha>1$. Plot production function, total cost, average and marginal. Supply function?
- Case 1b. $\alpha=1$. Plot production function, total cost, average and marginal. Supply function?
- Case 1c. $\alpha<1$. Plot production function, total cost, average and marginal. Supply function?
- Case 2. Non-convex technology. Plot production function, total cost, average and marginal. Supply function?
- Case 3. Technology with setup cost. Plot production function, total cost, average and marginal. Supply function?

