Economics 101A (Lecture 17, Revised)

Stefano DellaVigna

October 23, 2003

Outline

1. Geometry of Cost Curves

2. Supply Function
3. Short-run Cost Minimization

4. One-step Profit Maximization

5. Introduction to Market Equilibrium

1 Geometry of cost curves

- Nicholson, Ch. 12, pp. 307-312 and Ch. 13, pp. 342-346.
- Marginal costs $M C=\partial c / \partial y \rightarrow$ Cost minimization

$$
p=M C=\partial c(w, r, y) / \partial y
$$

- Average costs $A C=c / y \rightarrow$ Does firm break even?

$$
\begin{aligned}
\pi & =p y-c(w, r, y)>0 \text { iff } \\
\pi / y & =p-c(w, r, y) / y>0 \mathrm{iff} \\
c(w, r, y) / y & =A C<p
\end{aligned}
$$

- Supply function. Portion of marginal cost $M C$ above average costs. (price equals marginal cost)
- Assume only 1 input (expenditure minimization is trivial)
- Case 1. Production function. $y=L^{\alpha}$
- Cost function? (cost of input is w):

$$
c(w, y)=w L^{*}(w, y)=w y^{1 / \alpha}
$$

- Marginal cost?

$$
\frac{\partial c(w, y)}{\partial y}=\frac{1}{\alpha} w y^{(1-\alpha) / \alpha}
$$

- Average cost $c(w, y) / y$?

$$
\frac{c(w, y)}{y}=\frac{w y^{1 / \alpha}}{y}=w y^{(1-\alpha) / \alpha}
$$

- Case 1a. $\alpha>1$. Plot production function, total cost, average and marginal. Supply function?
- Case 1b. $\alpha=1$. Plot production function, total cost, average and marginal. Supply function?
- Case 1c. $\alpha<1$. Plot production function, total cost, average and marginal. Supply function?
- Case 2. Non-convex technology. Plot production function, total cost, average and marginal. Supply function?
- Case 3. Technology with setup cost. Plot production function, total cost, average and marginal. Supply function?

2 Supply Function

- Supply function: $y^{*}=y^{*}(w, r, p)$
- What happens to y^{*} as p increases?
- Is the supply function upward sloping?
- Remember f.o.c:

$$
p-c_{y}^{\prime}(w, r, y)=0
$$

- Implicit function:

$$
\frac{\partial y^{*}}{\partial p}=-\frac{1}{-c_{y, y}^{\prime \prime}(w, r, y)}>0
$$

as long as s.o.c. is satisfied.

- Yes! Supply function is upward sloping.

3 Short-run Cost Minimization

- So far, we assumed flexibility in choose of all inputs
- Is this realistic?
- In long-run, yes. Can adjust machines, land,...
- But... in the long-run, we are all dead! (Keynes)
- In short-run, no. Capital and land are fixed
- Short-run cost minimization: K fixed at \bar{K}.
- Firm's objective function:

$$
\begin{aligned}
& \min _{L} w L+r \bar{K} \\
& \text { s.t. } f(L, \bar{K}) \geq y
\end{aligned}
$$

- Capital \bar{K} is a constant
- Solution:

$$
L^{*}=L_{S R}^{*}(r, w, y \mid \bar{K})
$$

- Short-run cost function

$$
c_{S R}(r, w, y \mid \bar{K})=w L_{S R}^{*}(r, w, y \mid \bar{K})+r \bar{K}
$$

- Exercise: Show $c_{S R}(r, w, y \mid \bar{K})>c(r, w, y)$
- Graphically,

4 One-step Profit Maximization

- Nicholson, Ch. 13, pp. 346-350.
- One-step procedure: maximize profits
- Perfect competition. Price p is given
- Firms are small relative to market
- Firms do not affect market price p_{M}
- Will firm produce at $p>p_{M}$?
- Will firm produce at $p<p_{M}$?
$-\Longrightarrow p=p_{M}$
- Revenue: $p y=p f(L, K)$
- Cost: $w L+r K$
- Profit $p f(L, K)-w L-r K$
- Agent optimization:

$$
\max _{L, K} p f(L, K)-w L-r K
$$

- First order conditions:

$$
p f_{L}^{\prime}(L, K)-w=0
$$

and

$$
p f_{K}^{\prime}(L, K)-r=0
$$

- Second order conditions? $p f_{L, L}^{\prime \prime}(L, K)<0$ and

$$
\begin{aligned}
|H| & =\left|\begin{array}{cc}
p f_{L, L}^{\prime \prime}(L, K) & p f_{L, K}^{\prime \prime}(L, K) \\
p f_{L, K}^{\prime \prime}(L, K) & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|= \\
& =p^{2}\left[f_{L, L}^{\prime \prime} f_{K, K}^{\prime \prime}-\left(f_{L, K}^{\prime \prime}\right)^{2}\right]>0
\end{aligned}
$$

- Need $f_{L, K}^{\prime \prime}$ not too large for maximum
- Comparative statics with respect to to p, w, and r.
- What happens if w increases?

$$
\begin{aligned}
& \qquad \frac{\partial L^{*}}{\partial w}=-\frac{\left|\begin{array}{cc}
-1 & p f_{L, K}^{\prime \prime}(L, K) \\
0 & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|}{\left|\begin{array}{cc}
p f_{L, L}^{\prime \prime}(L, K) & p f_{L, K}^{\prime \prime}(L, K) \\
p f_{L, K}^{\prime \prime}(L, K) & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|}<0 \\
& \text { and } \\
& \qquad \frac{\partial L^{*}}{\partial r}=
\end{aligned}
$$

- Sign of $\partial L^{*} / \partial r$ depends on $f_{L, K}^{\prime \prime}$.

