Economics 101A (Lecture 17, Revised)

Stefano DellaVigna

October 23, 2003

Outline

- 1. Geometry of Cost Curves
- 2. Supply Function
- 3. Short-run Cost Minimization
- 4. One-step Profit Maximization
- 5. Introduction to Market Equilibrium

1 Geometry of cost curves

- Nicholson, Ch. 12, pp. 307–312 and Ch. 13, pp. 342–346.
- Marginal costs $MC = \partial c / \partial y \rightarrow \text{Cost minimization}$ $p = MC = \partial c (w, r, y) / \partial y$

• Average costs $AC = c/y \rightarrow$ Does firm break even? $\pi = py - c(w, r, y) > 0$ iff

 $\pi/y = p - c(w, r, y) / y > 0$ iff

c(w, r, y) / y = AC < p

• **Supply function.** Portion of marginal cost *MC* above average costs.(price equals marginal cost)

- Assume only 1 input (expenditure minimization is trivial)
- Case 1. Production function. $y = L^{\alpha}$

- Cost function? (cost of input is
$$w$$
):
 $c(w, y) = wL^*(w, y) = wy^{1/\alpha}$

- Marginal cost?

$$\frac{\partial c(w,y)}{\partial y} = \frac{1}{\alpha} w y^{(1-\alpha)/\alpha}$$

- Average cost
$$c(w, y) / y$$
?
$$\frac{c(w, y)}{y} = \frac{wy^{1/\alpha}}{y} = wy^{(1-\alpha)/\alpha}$$

• Case 1a. $\alpha > 1$. Plot production function, total cost, average and marginal. Supply function?

• Case 1b. $\alpha = 1$. Plot production function, total cost, average and marginal. Supply function?

• Case 1c. $\alpha < 1$. Plot production function, total cost, average and marginal. Supply function?

• **Case 2.** *Non-convex technology.* Plot production function, total cost, average and marginal. Supply function?

• **Case 3.** *Technology with setup cost.* Plot production function, total cost, average and marginal. Supply function?

2 Supply Function

- Supply function: $y^* = y^*(w, r, p)$
- What happens to y^* as p increases?
- Is the supply function upward sloping?
- Remember f.o.c:

$$p - c'_y\left(w, r, y\right) = \mathbf{0}$$

• Implicit function:

$$\frac{\partial y^{*}}{\partial p} = -\frac{1}{-c_{y,y}^{\prime\prime}\left(w,r,y\right)} > 0$$

as long as s.o.c. is satisfied.

• Yes! Supply function is upward sloping.

3 Short-run Cost Minimization

- So far, we assumed flexibility in choose of all inputs
- Is this realistic?
 - In long-run, yes. Can adjust machines, land,...
 - But... in the long-run, we are all dead! (Keynes)
 - In short-run, no. Capital and land are fixed
- Short-run cost minimization: K fixed at \overline{K} .
- Firm's objective function:

$$\min_{L} wL + r\overline{K}$$

s.t. $f\left(L,\overline{K}\right) \ge y$

• Capital \overline{K} is a constant

• Solution:

$$L^* = L^*_{SR}\left(r, w, y | \overline{K}\right)$$

• Short-run cost function

$$c_{SR}\left(r,w,y|\overline{K}\right) = wL_{SR}^{*}\left(r,w,y|\overline{K}\right) + r\overline{K}$$

• Exercise: Show
$$c_{SR}\left(r, w, y | \overline{K}\right) > c\left(r, w, y\right)$$

• Graphically,

4 One-step Profit Maximization

- Nicholson, Ch. 13, pp. 346-350.
- One-step procedure: maximize profits

- Perfect competition. Price p is given
 - Firms are small relative to market
 - Firms do not affect market price p_M

- Will firm produce at $p > p_M$?
- Will firm produce at $p < p_M$?

 $- \Longrightarrow p = p_M$

• Revenue: py = pf(L, K)

• Cost:
$$wL + rK$$

• Profit pf(L, K) - wL - rK

• Agent optimization:

$$\max_{L,K} pf(L,K) - wL - rK$$

• First order conditions:

$$pf_L'(L,K) - w = \mathbf{0}$$

and

$$pf_K'(L,K) - r = \mathbf{0}$$

• Second order conditions? $pf_{L,L}''(L,K) < 0$ and

$$|H| = \begin{vmatrix} pf_{L,L}''(L,K) & pf_{L,K}''(L,K) \\ pf_{L,K}''(L,K) & pf_{K,K}''(L,K) \end{vmatrix} = \\ = p^2 \left[f_{L,L}''f_{K,K}'' - \left(f_{L,K}'' \right)^2 \right] > 0$$

• Need $f_{L,K}''$ not too large for maximum

- Comparative statics with respect to to p, w, and r.
- What happens if w increases?

$$\frac{\partial L^{*}}{\partial w} = -\frac{\begin{vmatrix} -1 & pf_{L,K}''(L,K) \\ 0 & pf_{K,K}''(L,K) \end{vmatrix}}{\begin{vmatrix} pf_{L,L}''(L,K) & pf_{L,K}''(L,K) \\ pf_{L,K}''(L,K) & pf_{K,K}''(L,K) \end{vmatrix}} < 0$$

 $\quad \text{and} \quad$

$$\frac{\partial L^*}{\partial r} =$$

• Sign of
$$\partial L^* / \partial r$$
 depends on $f_{L,K}''$.