Economics 101A (Lecture 21, Revised)

Stefano DellaVigna

November 13, 2003

Outline

1. Midterm 2

2. Profit Maximization: Monopoly

1 Midterm 2

- Problem 1. One input, L, with wage w
- Production function f :

$$
f(L)=\left\{\begin{array}{cl}
(L-\bar{L})^{\alpha} & \text { if } \quad L \geq \bar{L} \\
0 & \text { if } \quad 0 \leq L<\bar{L}
\end{array}\right.
$$

- Notice: $\bar{L}>0$
- Picture
- Returns to scale:
- Decreasing? $(f(t L) \leq t f(L)$ for all $t>1$ and all $L \geq 0$)
- No! Take any $L_{0}<\bar{L}$ and $t=2 \bar{L} / L_{0}$. Then,

$$
f\left(t L_{0}\right)=f(2 \bar{L})=(2 \bar{L}-\bar{L})^{\alpha}>t f\left(L_{0}\right)=0
$$

- Increasing?
- Yes, for $\alpha \geq 1$.
- Easy for $L_{0}<\bar{L}$ (see above)
- Consider now $L_{1}>\bar{L}$.

$$
\begin{aligned}
f\left(t L_{1}\right) & =\left(t L_{1}-\bar{L}\right)^{\alpha}=\left(t L_{1}-t \frac{\bar{L}}{t}\right)^{\alpha}= \\
& =t^{\alpha}\left(L_{1}-\frac{\bar{L}}{t}\right)^{\alpha}>t^{\alpha}\left(L_{1}-\bar{L}\right)^{\alpha} \\
& >t f\left(L_{1}\right)
\end{aligned}
$$

for $\alpha \geq 1$.

- Cost minimization:

$$
\begin{aligned}
& \min w L \\
& \text { s.t.f }(L) \geq y
\end{aligned}
$$

- Also: $y>0$
- Only one input! Pick quantity L that produces exactly output y
- Equilibrium $L^{*}(w, y \mid \bar{L}, \alpha)$ is solution to

$$
\left(L^{*}(w, y \mid \bar{L}, \alpha)-\bar{L}\right)^{\alpha}=y
$$

or

$$
L^{*}(w, y \mid \bar{L}, \alpha)=\bar{L}+y^{1 / \alpha}
$$

- Notice: solution does not depend on w.
- Firm cannot substitute away to another input
- Cost function:

$$
c(w, y \mid \bar{L}, \alpha)=w L^{*}(w, y \mid \bar{L}, \alpha)=w \bar{L}+w y^{1 / \alpha}
$$

- Graphically, it's reflection with respect to 45 degree line of production function
- Problem 2.
- Figure of utility function
- Prospect theory explains actual choices under risk better than expected utility theory
- Intuition for solution:
- Low reference point r :
- convex part of utility
- risk-prone
- "Would rather take a gamble than settle for a worse job than $r^{\prime \prime}$
- Trying-to-break-even effect
- Low reference point r :
- concave part of utility
- risk-averse
- "Better not take too much risk, given that safe job is already better than r "

2 Profit Maximization: Monopoly

- Nicholson, Ch. 18, pp. 496-504
- Nicholson, Ch. 13, pp. 335-342
- Perfect competition. Firms small relative to market
- Monopoly. One, large firm. Firm sets price p to maximize profits.
- What does it mean to set prices?
- Firm chooses p, demand given by $y=D(p)$
- (OR: firm sets quantity y. Price $\left.p(y)=D^{-1}(y)\right)$
- Write maximization with respect to y
- Firm maximizes profits, that is, revenue minus costs:

$$
\max _{y} p(y) y-c(y)
$$

- Notice $p(y)=D^{-1}(y)$
- First order condition:

$$
p^{\prime}(y) y+p(y)-c_{y}^{\prime}(y)=0
$$

or

$$
\frac{p(y)-c_{y}^{\prime}(y)}{p}=-p^{\prime}(y) \frac{y}{p}=-\frac{1}{\varepsilon_{y, p}}
$$

- Compare with f.o.c. in perfect competition
- Check s.o.c.
- Elasticity of demand determines markup:
- very elastic demand \rightarrow low mark-up
- relatively inelastic demand \rightarrow higher mark-up
- Graphically, y^{*} is where marginal revenue $\left(p^{\prime}(y) y+p(y)\right)$ equals marginal cost $\left(c_{y}^{\prime}(y)\right)$
- Find p on demand function
- Example.
- Linear inverse demand function $p=a-b y$
- Linear costs: $C(y)=c y$, with $c>0$
- Maximization:

$$
\max _{y}(a-b y) y-c y
$$

- Solution:

$$
y^{*}(a, b, c)=\frac{a-c}{2 b}
$$

and

$$
p^{*}(a, b, c)=a-b \frac{a-c}{2 b}=\frac{a+c}{2}
$$

- S.O.C.
- Figure
- Comparative statics:
- Change in marginal cost c
- Shift in demand curve a

- Monopoly profits

- Case 1. High profits
- Case 2. No profits
- Welfare consequences of monopoly
- Too little production
- Too high prices
- Graphical analysis

